File: computation.rst

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (957 lines) | stat: -rw-r--r-- 29,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
.. currentmodule:: xarray

.. _compute:

###########
Computation
###########


The labels associated with :py:class:`~xarray.DataArray` and
:py:class:`~xarray.Dataset` objects enables some powerful shortcuts for
computation, notably including aggregation and broadcasting by dimension
names.

Basic array math
================

Arithmetic operations with a single DataArray automatically vectorize (like
numpy) over all array values:

.. jupyter-execute::
    :hide-code:
    :hide-output:

    import numpy as np
    import pandas as pd
    import xarray as xr

    np.random.seed(123456)

    %xmode minimal

.. jupyter-execute::

    arr = xr.DataArray(
        np.random.default_rng(0).random((2, 3)),
        [("x", ["a", "b"]), ("y", [10, 20, 30])],
    )
    arr - 3

.. jupyter-execute::

    abs(arr)

You can also use any of numpy's or scipy's many `ufunc`__ functions directly on
a DataArray:

__ https://numpy.org/doc/stable/reference/ufuncs.html

.. jupyter-execute::

    np.sin(arr)

Use :py:func:`~xarray.where` to conditionally switch between values:

.. jupyter-execute::

    xr.where(arr > 0, "positive", "negative")

Use ``@`` to compute the :py:func:`~xarray.dot` product:

.. jupyter-execute::

    arr @ arr

Data arrays also implement many :py:class:`numpy.ndarray` methods:

.. jupyter-execute::

    arr.round(2)

.. jupyter-execute::

    arr.T

.. jupyter-execute::

    intarr = xr.DataArray([0, 1, 2, 3, 4, 5])
    intarr << 2  # only supported for int types

.. jupyter-execute::

    intarr >> 1

.. _missing_values:

Missing values
==============

Xarray represents missing values using the "NaN" (Not a Number) value from NumPy, which is a
special floating-point value that indicates a value that is undefined or unrepresentable.
There are several methods for handling missing values in xarray:

Xarray objects borrow the :py:meth:`~xarray.DataArray.isnull`,
:py:meth:`~xarray.DataArray.notnull`, :py:meth:`~xarray.DataArray.count`,
:py:meth:`~xarray.DataArray.dropna`, :py:meth:`~xarray.DataArray.fillna`,
:py:meth:`~xarray.DataArray.ffill`, and :py:meth:`~xarray.DataArray.bfill`
methods for working with missing data from pandas:

:py:meth:`~xarray.DataArray.isnull` is a method in xarray that can be used to check for missing or null values in an xarray object.
It returns a new xarray object with the same dimensions as the original object, but with boolean values
indicating where **missing values** are present.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.isnull()

In this example, the third and fourth elements of 'x' are NaN, so the resulting :py:class:`~xarray.DataArray`
object has 'True' values in the third and fourth positions and 'False' values in the other positions.

:py:meth:`~xarray.DataArray.notnull` is a method in xarray that can be used to check for non-missing or non-null values in an xarray
object. It returns a new xarray object with the same dimensions as the original object, but with boolean
values indicating where **non-missing values** are present.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.notnull()

In this example, the first two and the last elements of x are not NaN, so the resulting
:py:class:`~xarray.DataArray` object has 'True' values in these positions, and 'False' values in the
third and fourth positions where NaN is located.

:py:meth:`~xarray.DataArray.count` is a method in xarray that can be used to count the number of
non-missing values along one or more dimensions of an xarray object. It returns a new xarray object with
the same dimensions as the original object, but with each element replaced by the count of non-missing
values along the specified dimensions.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.count()

In this example, 'x' has five elements, but two of them are NaN, so the resulting
:py:class:`~xarray.DataArray` object having a single element containing the value '3', which represents
the number of non-null elements in x.

:py:meth:`~xarray.DataArray.dropna` is a method in xarray that can be used to remove missing or null values from an xarray object.
It returns a new xarray object with the same dimensions as the original object, but with missing values
removed.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.dropna(dim="x")

In this example, on calling x.dropna(dim="x") removes any missing values and returns a new
:py:class:`~xarray.DataArray` object with only the non-null elements [0, 1, 2] of 'x', in the
original order.

:py:meth:`~xarray.DataArray.fillna` is a method in xarray that can be used to fill missing or null values in an xarray object with a
specified value or method. It returns a new xarray object with the same dimensions as the original object, but with missing values filled.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.fillna(-1)

In this example, there are two NaN values in 'x', so calling x.fillna(-1) replaces these values with -1 and
returns a new :py:class:`~xarray.DataArray` object with five elements, containing the values
[0, 1, -1, -1, 2] in the original order.

:py:meth:`~xarray.DataArray.ffill` is a method in xarray that can be used to forward fill (or fill forward) missing values in an
xarray object along one or more dimensions. It returns a new xarray object with the same dimensions as the
original object, but with missing values replaced by the last non-missing value along the specified dimensions.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.ffill("x")

In this example, there are two NaN values in 'x', so calling x.ffill("x") fills these values with the last
non-null value in the same dimension, which are 0 and 1, respectively. The resulting :py:class:`~xarray.DataArray` object has
five elements, containing the values [0, 1, 1, 1, 2] in the original order.

:py:meth:`~xarray.DataArray.bfill` is a method in xarray that can be used to backward fill (or fill backward) missing values in an
xarray object along one or more dimensions. It returns a new xarray object with the same dimensions as the original object, but
with missing values replaced by the next non-missing value along the specified dimensions.

.. jupyter-execute::

    x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
    x.bfill("x")

In this example, there are two NaN values in 'x', so calling x.bfill("x") fills these values with the next
non-null value in the same dimension, which are 2 and 2, respectively. The resulting :py:class:`~xarray.DataArray` object has
five elements, containing the values [0, 1, 2, 2, 2] in the original order.

Like pandas, xarray uses the float value ``np.nan`` (not-a-number) to represent
missing values.

Xarray objects also have an :py:meth:`~xarray.DataArray.interpolate_na` method
for filling missing values via 1D interpolation. It returns a new xarray object with the same dimensions
as the original object, but with missing values interpolated.

.. jupyter-execute::

    x = xr.DataArray(
        [0, 1, np.nan, np.nan, 2],
        dims=["x"],
        coords={"xx": xr.Variable("x", [0, 1, 1.1, 1.9, 3])},
    )
    x.interpolate_na(dim="x", method="linear", use_coordinate="xx")

In this example, there are two NaN values in 'x', so calling x.interpolate_na(dim="x", method="linear",
use_coordinate="xx") fills these values with interpolated values along the "x" dimension using linear
interpolation based on the values of the xx coordinate. The resulting :py:class:`~xarray.DataArray` object has five elements,
containing the values [0., 1., 1.05, 1.45, 2.] in the original order. Note that the interpolated values
are calculated based on the values of the 'xx' coordinate, which has non-integer values, resulting in
non-integer interpolated values.

Note that xarray slightly diverges from the pandas ``interpolate`` syntax by
providing the ``use_coordinate`` keyword which facilitates a clear specification
of which values to use as the index in the interpolation.
Xarray also provides the ``max_gap`` keyword argument to limit the interpolation to
data gaps of length ``max_gap`` or smaller. See :py:meth:`~xarray.DataArray.interpolate_na`
for more.

.. _agg:

Aggregation
===========

Aggregation methods have been updated to take a ``dim`` argument instead of
``axis``. This allows for very intuitive syntax for aggregation methods that are
applied along particular dimension(s):

.. jupyter-execute::

    arr.sum(dim="x")

.. jupyter-execute::

    arr.std(["x", "y"])

.. jupyter-execute::

    arr.min()


If you need to figure out the axis number for a dimension yourself (say,
for wrapping code designed to work with numpy arrays), you can use the
:py:meth:`~xarray.DataArray.get_axis_num` method:

.. jupyter-execute::

    arr.get_axis_num("y")

These operations automatically skip missing values, like in pandas:

.. jupyter-execute::

    xr.DataArray([1, 2, np.nan, 3]).mean()

If desired, you can disable this behavior by invoking the aggregation method
with ``skipna=False``.

.. _compute.rolling:

Rolling window operations
=========================

``DataArray`` objects include a :py:meth:`~xarray.DataArray.rolling` method. This
method supports rolling window aggregation:

.. jupyter-execute::

    arr = xr.DataArray(np.arange(0, 7.5, 0.5).reshape(3, 5), dims=("x", "y"))
    arr

:py:meth:`~xarray.DataArray.rolling` is applied along one dimension using the
name of the dimension as a key (e.g. ``y``) and the window size as the value
(e.g. ``3``).  We get back a ``Rolling`` object:

.. jupyter-execute::

    arr.rolling(y=3)

Aggregation and summary methods can be applied directly to the ``Rolling``
object:

.. jupyter-execute::

    r = arr.rolling(y=3)
    r.reduce(np.std)

.. jupyter-execute::

    r.mean()

Aggregation results are assigned the coordinate at the end of each window by
default, but can be centered by passing ``center=True`` when constructing the
``Rolling`` object:

.. jupyter-execute::

    r = arr.rolling(y=3, center=True)
    r.mean()

As can be seen above, aggregations of windows which overlap the border of the
array produce ``nan``\s.  Setting ``min_periods`` in the call to ``rolling``
changes the minimum number of observations within the window required to have
a value when aggregating:

.. jupyter-execute::

    r = arr.rolling(y=3, min_periods=2)
    r.mean()

.. jupyter-execute::

    r = arr.rolling(y=3, center=True, min_periods=2)
    r.mean()

From version 0.17, xarray supports multidimensional rolling,

.. jupyter-execute::

    r = arr.rolling(x=2, y=3, min_periods=2)
    r.mean()

.. tip::

   Note that rolling window aggregations are faster and use less memory when bottleneck_ is installed. This only applies to numpy-backed xarray objects with 1d-rolling.

.. _bottleneck: https://github.com/pydata/bottleneck

We can also manually iterate through ``Rolling`` objects:

.. code:: python

    for label, arr_window in r:
        # arr_window is a view of x
        ...

.. _compute.rolling_exp:

While ``rolling`` provides a simple moving average, ``DataArray`` also supports
an exponential moving average with :py:meth:`~xarray.DataArray.rolling_exp`.
This is similar to pandas' ``ewm`` method. numbagg_ is required.

.. _numbagg: https://github.com/numbagg/numbagg

.. code:: python

    arr.rolling_exp(y=3).mean()

The ``rolling_exp`` method takes a ``window_type`` kwarg, which can be ``'alpha'``,
``'com'`` (for ``center-of-mass``), ``'span'``, and ``'halflife'``. The default is
``span``.

Finally, the rolling object has a ``construct`` method which returns a
view of the original ``DataArray`` with the windowed dimension in
the last position.
You can use this for more advanced rolling operations such as strided rolling,
windowed rolling, convolution, short-time FFT etc.

.. jupyter-execute::

    # rolling with 2-point stride
    rolling_da = r.construct(x="x_win", y="y_win", stride=2)
    rolling_da

.. jupyter-execute::

    rolling_da.mean(["x_win", "y_win"], skipna=False)

Because the ``DataArray`` given by ``r.construct('window_dim')`` is a view
of the original array, it is memory efficient.
You can also use ``construct`` to compute a weighted rolling sum:

.. jupyter-execute::

    weight = xr.DataArray([0.25, 0.5, 0.25], dims=["window"])
    arr.rolling(y=3).construct(y="window").dot(weight)

.. note::
  numpy's Nan-aggregation functions such as ``nansum`` copy the original array.
  In xarray, we internally use these functions in our aggregation methods
  (such as ``.sum()``) if ``skipna`` argument is not specified or set to True.
  This means ``rolling_da.mean('window_dim')`` is memory inefficient.
  To avoid this, use ``skipna=False`` as the above example.


.. _compute.weighted:

Weighted array reductions
=========================

:py:class:`DataArray` and :py:class:`Dataset` objects include :py:meth:`DataArray.weighted`
and :py:meth:`Dataset.weighted` array reduction methods. They currently
support weighted ``sum``, ``mean``, ``std``, ``var`` and ``quantile``.

.. jupyter-execute::

    coords = dict(month=("month", [1, 2, 3]))

    prec = xr.DataArray([1.1, 1.0, 0.9], dims=("month",), coords=coords)
    weights = xr.DataArray([31, 28, 31], dims=("month",), coords=coords)

Create a weighted object:

.. jupyter-execute::

    weighted_prec = prec.weighted(weights)
    weighted_prec

Calculate the weighted sum:

.. jupyter-execute::

    weighted_prec.sum()

Calculate the weighted mean:

.. jupyter-execute::

    weighted_prec.mean(dim="month")

Calculate the weighted quantile:

.. jupyter-execute::

    weighted_prec.quantile(q=0.5, dim="month")

The weighted sum corresponds to:

.. jupyter-execute::

    weighted_sum = (prec * weights).sum()
    weighted_sum

the weighted mean to:

.. jupyter-execute::

    weighted_mean = weighted_sum / weights.sum()
    weighted_mean

the weighted variance to:

.. jupyter-execute::

    weighted_var = weighted_prec.sum_of_squares() / weights.sum()
    weighted_var

and the weighted standard deviation to:

.. jupyter-execute::

    weighted_std = np.sqrt(weighted_var)
    weighted_std

However, the functions also take missing values in the data into account:

.. jupyter-execute::

    data = xr.DataArray([np.nan, 2, 4])
    weights = xr.DataArray([8, 1, 1])

    data.weighted(weights).mean()

Using ``(data * weights).sum() / weights.sum()`` would (incorrectly) result
in 0.6.


If the weights add up to to 0, ``sum`` returns 0:

.. jupyter-execute::

    data = xr.DataArray([1.0, 1.0])
    weights = xr.DataArray([-1.0, 1.0])

    data.weighted(weights).sum()

and ``mean``, ``std`` and ``var`` return ``nan``:

.. jupyter-execute::

    data.weighted(weights).mean()


.. note::
  ``weights`` must be a :py:class:`DataArray` and cannot contain missing values.
  Missing values can be replaced manually by ``weights.fillna(0)``.

.. _compute.coarsen:

Coarsen large arrays
====================

:py:class:`DataArray` and :py:class:`Dataset` objects include a
:py:meth:`~xarray.DataArray.coarsen` and :py:meth:`~xarray.Dataset.coarsen`
methods. This supports block aggregation along multiple dimensions,

.. jupyter-execute::

    x = np.linspace(0, 10, 300)
    t = pd.date_range("1999-12-15", periods=364)
    da = xr.DataArray(
        np.sin(x) * np.cos(np.linspace(0, 1, 364)[:, np.newaxis]),
        dims=["time", "x"],
        coords={"time": t, "x": x},
    )
    da

In order to take a block mean for every 7 days along ``time`` dimension and
every 2 points along ``x`` dimension,

.. jupyter-execute::

    da.coarsen(time=7, x=2).mean()

:py:meth:`~xarray.DataArray.coarsen` raises a ``ValueError`` if the data
length is not a multiple of the corresponding window size.
You can choose ``boundary='trim'`` or ``boundary='pad'`` options for trimming
the excess entries or padding ``nan`` to insufficient entries,

.. jupyter-execute::

    da.coarsen(time=30, x=2, boundary="trim").mean()

If you want to apply a specific function to coordinate, you can pass the
function or method name to ``coord_func`` option,

.. jupyter-execute::

    da.coarsen(time=7, x=2, coord_func={"time": "min"}).mean()

You can also :ref:`use coarsen to reshape<reshape.coarsen>` without applying a computation.

.. _compute.using_coordinates:

Computation using Coordinates
=============================

Xarray objects have some handy methods for the computation with their
coordinates. :py:meth:`~xarray.DataArray.differentiate` computes derivatives by
central finite differences using their coordinates,

.. jupyter-execute::

    a = xr.DataArray([0, 1, 2, 3], dims=["x"], coords=[[0.1, 0.11, 0.2, 0.3]])
    a.differentiate("x")

This method can be used also for multidimensional arrays,

.. jupyter-execute::

    a = xr.DataArray(
        np.arange(8).reshape(4, 2), dims=["x", "y"], coords={"x": [0.1, 0.11, 0.2, 0.3]}
    )
    a.differentiate("x")

:py:meth:`~xarray.DataArray.integrate` computes integration based on
trapezoidal rule using their coordinates,

.. jupyter-execute::

    a.integrate("x")

.. note::
    These methods are limited to simple cartesian geometry. Differentiation
    and integration along multidimensional coordinate are not supported.


.. _compute.polyfit:

Fitting polynomials
===================

Xarray objects provide an interface for performing linear or polynomial regressions
using the least-squares method. :py:meth:`~xarray.DataArray.polyfit` computes the
best fitting coefficients along a given dimension and for a given order,

.. jupyter-execute::

    x = xr.DataArray(np.arange(10), dims=["x"], name="x")
    a = xr.DataArray(3 + 4 * x, dims=["x"], coords={"x": x})
    out = a.polyfit(dim="x", deg=1, full=True)
    out

The method outputs a dataset containing the coefficients (and more if ``full=True``).
The inverse operation is done with :py:meth:`~xarray.polyval`,

.. jupyter-execute::

    xr.polyval(coord=x, coeffs=out.polyfit_coefficients)

.. note::
    These methods replicate the behaviour of :py:func:`numpy.polyfit` and :py:func:`numpy.polyval`.


.. _compute.curvefit:

Fitting arbitrary functions
===========================

Xarray objects also provide an interface for fitting more complex functions using
:py:func:`scipy.optimize.curve_fit`. :py:meth:`~xarray.DataArray.curvefit` accepts
user-defined functions and can fit along multiple coordinates.

For example, we can fit a relationship between two ``DataArray`` objects, maintaining
a unique fit at each spatial coordinate but aggregating over the time dimension:

.. jupyter-execute::

    def exponential(x, a, xc):
        return np.exp((x - xc) / a)


    x = np.arange(-5, 5, 0.1)
    t = np.arange(-5, 5, 0.1)
    X, T = np.meshgrid(x, t)
    Z1 = np.random.uniform(low=-5, high=5, size=X.shape)
    Z2 = exponential(Z1, 3, X)
    Z3 = exponential(Z1, 1, -X)

    ds = xr.Dataset(
        data_vars=dict(
            var1=(["t", "x"], Z1), var2=(["t", "x"], Z2), var3=(["t", "x"], Z3)
        ),
        coords={"t": t, "x": x},
    )
    ds[["var2", "var3"]].curvefit(
        coords=ds.var1,
        func=exponential,
        reduce_dims="t",
        bounds={"a": (0.5, 5), "xc": (-5, 5)},
    )

We can also fit multi-dimensional functions, and even use a wrapper function to
simultaneously fit a summation of several functions, such as this field containing
two gaussian peaks:

.. jupyter-execute::

    def gaussian_2d(coords, a, xc, yc, xalpha, yalpha):
        x, y = coords
        z = a * np.exp(
            -np.square(x - xc) / 2 / np.square(xalpha)
            - np.square(y - yc) / 2 / np.square(yalpha)
        )
        return z


    def multi_peak(coords, *args):
        z = np.zeros(coords[0].shape)
        for i in range(len(args) // 5):
            z += gaussian_2d(coords, *args[i * 5 : i * 5 + 5])
        return z


    x = np.arange(-5, 5, 0.1)
    y = np.arange(-5, 5, 0.1)
    X, Y = np.meshgrid(x, y)

    n_peaks = 2
    names = ["a", "xc", "yc", "xalpha", "yalpha"]
    names = [f"{name}{i}" for i in range(n_peaks) for name in names]
    Z = gaussian_2d((X, Y), 3, 1, 1, 2, 1) + gaussian_2d((X, Y), 2, -1, -2, 1, 1)
    Z += np.random.normal(scale=0.1, size=Z.shape)

    da = xr.DataArray(Z, dims=["y", "x"], coords={"y": y, "x": x})
    da.curvefit(
        coords=["x", "y"],
        func=multi_peak,
        param_names=names,
        kwargs={"maxfev": 10000},
    )

.. note::
    This method replicates the behavior of :py:func:`scipy.optimize.curve_fit`.


.. _compute.broadcasting:

Broadcasting by dimension name
==============================

``DataArray`` objects automatically align themselves ("broadcasting" in
the numpy parlance) by dimension name instead of axis order. With xarray, you
do not need to transpose arrays or insert dimensions of length 1 to get array
operations to work, as commonly done in numpy with :py:func:`numpy.reshape` or
:py:data:`numpy.newaxis`.

This is best illustrated by a few examples. Consider two one-dimensional
arrays with different sizes aligned along different dimensions:

.. jupyter-execute::

    a = xr.DataArray([1, 2], [("x", ["a", "b"])])
    a

.. jupyter-execute::

    b = xr.DataArray([-1, -2, -3], [("y", [10, 20, 30])])
    b

With xarray, we can apply binary mathematical operations to these arrays, and
their dimensions are expanded automatically:

.. jupyter-execute::

    a * b

Moreover, dimensions are always reordered to the order in which they first
appeared:

.. jupyter-execute::

    c = xr.DataArray(np.arange(6).reshape(3, 2), [b["y"], a["x"]])
    c

.. jupyter-execute::

    a + c

This means, for example, that you always subtract an array from its transpose:

.. jupyter-execute::

    c - c.T

You can explicitly broadcast xarray data structures by using the
:py:func:`~xarray.broadcast` function:

.. jupyter-execute::

    a2, b2 = xr.broadcast(a, b)
    a2

.. jupyter-execute::

    b2

.. _math automatic alignment:

Automatic alignment
===================

Xarray enforces alignment between *index* :ref:`coordinates` (that is,
coordinates with the same name as a dimension, marked by ``*``) on objects used
in binary operations.

Similarly to pandas, this alignment is automatic for arithmetic on binary
operations. The default result of a binary operation is by the *intersection*
(not the union) of coordinate labels:

.. jupyter-execute::

    arr = xr.DataArray(np.arange(3), [("x", range(3))])
    arr + arr[:-1]

If coordinate values for a dimension are missing on either argument, all
matching dimensions must have the same size:

.. jupyter-execute::
    :raises:

    arr + xr.DataArray([1, 2], dims="x")

However, one can explicitly change this default automatic alignment type ("inner")
via :py:func:`~xarray.set_options()` in context manager:

.. jupyter-execute::

    with xr.set_options(arithmetic_join="outer"):
        arr + arr[:1]
    arr + arr[:1]

Before loops or performance critical code, it's a good idea to align arrays
explicitly (e.g., by putting them in the same Dataset or using
:py:func:`~xarray.align`) to avoid the overhead of repeated alignment with each
operation. See :ref:`align and reindex` for more details.

.. note::

    There is no automatic alignment between arguments when performing in-place
    arithmetic operations such as ``+=``. You will need to use
    :ref:`manual alignment<align and reindex>`. This ensures in-place
    arithmetic never needs to modify data types.

.. _coordinates math:

Coordinates
===========

Although index coordinates are aligned, other coordinates are not, and if their
values conflict, they will be dropped. This is necessary, for example, because
indexing turns 1D coordinates into scalar coordinates:

.. jupyter-execute::

    arr[0]

.. jupyter-execute::

    arr[1]

.. jupyter-execute::

    # notice that the scalar coordinate 'x' is silently dropped
    arr[1] - arr[0]

Still, xarray will persist other coordinates in arithmetic, as long as there
are no conflicting values:

.. jupyter-execute::

    # only one argument has the 'x' coordinate
    arr[0] + 1

.. jupyter-execute::

    # both arguments have the same 'x' coordinate
    arr[0] - arr[0]

Math with datasets
==================

Datasets support arithmetic operations by automatically looping over all data
variables:

.. jupyter-execute::

    ds = xr.Dataset(
        {
            "x_and_y": (("x", "y"), np.random.randn(3, 5)),
            "x_only": ("x", np.random.randn(3)),
        },
        coords=arr.coords,
    )
    ds > 0

Datasets support most of the same methods found on data arrays:

.. jupyter-execute::

    ds.mean(dim="x")

.. jupyter-execute::

    abs(ds)

Datasets also support NumPy ufuncs (requires NumPy v1.13 or newer), or
alternatively you can use :py:meth:`~xarray.Dataset.map` to map a function
to each variable in a dataset:

.. jupyter-execute::

    np.sin(ds) # equivalent to ds.map(np.sin)

Datasets also use looping over variables for *broadcasting* in binary
arithmetic. You can do arithmetic between any ``DataArray`` and a dataset:

.. jupyter-execute::

    ds + arr

Arithmetic between two datasets matches data variables of the same name:

.. jupyter-execute::

    ds2 = xr.Dataset({"x_and_y": 0, "x_only": 100})
    ds - ds2

Similarly to index based alignment, the result has the intersection of all
matching data variables.

.. _compute.wrapping-custom:

Wrapping custom computation
===========================

It doesn't always make sense to do computation directly with xarray objects:

  - In the inner loop of performance limited code, using xarray can add
    considerable overhead compared to using NumPy or native Python types.
    This is particularly true when working with scalars or small arrays (less
    than ~1e6 elements). Keeping track of labels and ensuring their consistency
    adds overhead, and xarray's core itself is not especially fast, because it's
    written in Python rather than a compiled language like C. Also, xarray's
    high level label-based APIs removes low-level control over how operations
    are implemented.
  - Even if speed doesn't matter, it can be important to wrap existing code, or
    to support alternative interfaces that don't use xarray objects.

For these reasons, it is often well-advised to write low-level routines that
work with NumPy arrays, and to wrap these routines to work with xarray objects.
However, adding support for labels on both :py:class:`~xarray.Dataset` and
:py:class:`~xarray.DataArray` can be a bit of a chore.

To make this easier, xarray supplies the :py:func:`~xarray.apply_ufunc` helper
function, designed for wrapping functions that support broadcasting and
vectorization on unlabeled arrays in the style of a NumPy
`universal function <https://numpy.org/doc/stable/reference/ufuncs.html>`_ ("ufunc" for short).
``apply_ufunc`` takes care of everything needed for an idiomatic xarray wrapper,
including alignment, broadcasting, looping over ``Dataset`` variables (if
needed), and merging of coordinates. In fact, many internal xarray
functions/methods are written using ``apply_ufunc``.

Simple functions that act independently on each value should work without
any additional arguments:

.. jupyter-execute::

    squared_error = lambda x, y: (x - y) ** 2
    arr1 = xr.DataArray([0, 1, 2, 3], dims="x")
    xr.apply_ufunc(squared_error, arr1, 1)

For using more complex operations that consider some array values collectively,
it's important to understand the idea of "core dimensions" from NumPy's
`generalized ufuncs <https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html>`_. Core dimensions are defined as dimensions
that should *not* be broadcast over. Usually, they correspond to the fundamental
dimensions over which an operation is defined, e.g., the summed axis in
``np.sum``. A good clue that core dimensions are needed is the presence of an
``axis`` argument on the corresponding NumPy function.

With ``apply_ufunc``, core dimensions are recognized by name, and then moved to
the last dimension of any input arguments before applying the given function.
This means that for functions that accept an ``axis`` argument, you usually need
to set ``axis=-1``. As an example, here is how we would wrap
:py:func:`numpy.linalg.norm` to calculate the vector norm:

.. code-block:: python

    def vector_norm(x, dim, ord=None):
        return xr.apply_ufunc(
            np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1}
        )

.. jupyter-execute::
    :hide-code:

    def vector_norm(x, dim, ord=None):
        return xr.apply_ufunc(
            np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1}
        )

.. jupyter-execute::

    vector_norm(arr1, dim="x")

Because ``apply_ufunc`` follows a standard convention for ufuncs, it plays
nicely with tools for building vectorized functions, like
:py:func:`numpy.broadcast_arrays` and :py:class:`numpy.vectorize`. For high performance
needs, consider using :doc:`Numba's vectorize and guvectorize <numba:user/vectorize>`.

In addition to wrapping functions, ``apply_ufunc`` can automatically parallelize
many functions when using dask by setting ``dask='parallelized'``. See
:ref:`dask.automatic-parallelization` for details.

:py:func:`~xarray.apply_ufunc` also supports some advanced options for
controlling alignment of variables and the form of the result. See the
docstring for full details and more examples.