1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
.. currentmodule:: xarray
.. _compute:
###########
Computation
###########
The labels associated with :py:class:`~xarray.DataArray` and
:py:class:`~xarray.Dataset` objects enables some powerful shortcuts for
computation, notably including aggregation and broadcasting by dimension
names.
Basic array math
================
Arithmetic operations with a single DataArray automatically vectorize (like
numpy) over all array values:
.. jupyter-execute::
:hide-code:
:hide-output:
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
%xmode minimal
.. jupyter-execute::
arr = xr.DataArray(
np.random.default_rng(0).random((2, 3)),
[("x", ["a", "b"]), ("y", [10, 20, 30])],
)
arr - 3
.. jupyter-execute::
abs(arr)
You can also use any of numpy's or scipy's many `ufunc`__ functions directly on
a DataArray:
__ https://numpy.org/doc/stable/reference/ufuncs.html
.. jupyter-execute::
np.sin(arr)
Use :py:func:`~xarray.where` to conditionally switch between values:
.. jupyter-execute::
xr.where(arr > 0, "positive", "negative")
Use ``@`` to compute the :py:func:`~xarray.dot` product:
.. jupyter-execute::
arr @ arr
Data arrays also implement many :py:class:`numpy.ndarray` methods:
.. jupyter-execute::
arr.round(2)
.. jupyter-execute::
arr.T
.. jupyter-execute::
intarr = xr.DataArray([0, 1, 2, 3, 4, 5])
intarr << 2 # only supported for int types
.. jupyter-execute::
intarr >> 1
.. _missing_values:
Missing values
==============
Xarray represents missing values using the "NaN" (Not a Number) value from NumPy, which is a
special floating-point value that indicates a value that is undefined or unrepresentable.
There are several methods for handling missing values in xarray:
Xarray objects borrow the :py:meth:`~xarray.DataArray.isnull`,
:py:meth:`~xarray.DataArray.notnull`, :py:meth:`~xarray.DataArray.count`,
:py:meth:`~xarray.DataArray.dropna`, :py:meth:`~xarray.DataArray.fillna`,
:py:meth:`~xarray.DataArray.ffill`, and :py:meth:`~xarray.DataArray.bfill`
methods for working with missing data from pandas:
:py:meth:`~xarray.DataArray.isnull` is a method in xarray that can be used to check for missing or null values in an xarray object.
It returns a new xarray object with the same dimensions as the original object, but with boolean values
indicating where **missing values** are present.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.isnull()
In this example, the third and fourth elements of 'x' are NaN, so the resulting :py:class:`~xarray.DataArray`
object has 'True' values in the third and fourth positions and 'False' values in the other positions.
:py:meth:`~xarray.DataArray.notnull` is a method in xarray that can be used to check for non-missing or non-null values in an xarray
object. It returns a new xarray object with the same dimensions as the original object, but with boolean
values indicating where **non-missing values** are present.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.notnull()
In this example, the first two and the last elements of x are not NaN, so the resulting
:py:class:`~xarray.DataArray` object has 'True' values in these positions, and 'False' values in the
third and fourth positions where NaN is located.
:py:meth:`~xarray.DataArray.count` is a method in xarray that can be used to count the number of
non-missing values along one or more dimensions of an xarray object. It returns a new xarray object with
the same dimensions as the original object, but with each element replaced by the count of non-missing
values along the specified dimensions.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.count()
In this example, 'x' has five elements, but two of them are NaN, so the resulting
:py:class:`~xarray.DataArray` object having a single element containing the value '3', which represents
the number of non-null elements in x.
:py:meth:`~xarray.DataArray.dropna` is a method in xarray that can be used to remove missing or null values from an xarray object.
It returns a new xarray object with the same dimensions as the original object, but with missing values
removed.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.dropna(dim="x")
In this example, on calling x.dropna(dim="x") removes any missing values and returns a new
:py:class:`~xarray.DataArray` object with only the non-null elements [0, 1, 2] of 'x', in the
original order.
:py:meth:`~xarray.DataArray.fillna` is a method in xarray that can be used to fill missing or null values in an xarray object with a
specified value or method. It returns a new xarray object with the same dimensions as the original object, but with missing values filled.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.fillna(-1)
In this example, there are two NaN values in 'x', so calling x.fillna(-1) replaces these values with -1 and
returns a new :py:class:`~xarray.DataArray` object with five elements, containing the values
[0, 1, -1, -1, 2] in the original order.
:py:meth:`~xarray.DataArray.ffill` is a method in xarray that can be used to forward fill (or fill forward) missing values in an
xarray object along one or more dimensions. It returns a new xarray object with the same dimensions as the
original object, but with missing values replaced by the last non-missing value along the specified dimensions.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.ffill("x")
In this example, there are two NaN values in 'x', so calling x.ffill("x") fills these values with the last
non-null value in the same dimension, which are 0 and 1, respectively. The resulting :py:class:`~xarray.DataArray` object has
five elements, containing the values [0, 1, 1, 1, 2] in the original order.
:py:meth:`~xarray.DataArray.bfill` is a method in xarray that can be used to backward fill (or fill backward) missing values in an
xarray object along one or more dimensions. It returns a new xarray object with the same dimensions as the original object, but
with missing values replaced by the next non-missing value along the specified dimensions.
.. jupyter-execute::
x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"])
x.bfill("x")
In this example, there are two NaN values in 'x', so calling x.bfill("x") fills these values with the next
non-null value in the same dimension, which are 2 and 2, respectively. The resulting :py:class:`~xarray.DataArray` object has
five elements, containing the values [0, 1, 2, 2, 2] in the original order.
Like pandas, xarray uses the float value ``np.nan`` (not-a-number) to represent
missing values.
Xarray objects also have an :py:meth:`~xarray.DataArray.interpolate_na` method
for filling missing values via 1D interpolation. It returns a new xarray object with the same dimensions
as the original object, but with missing values interpolated.
.. jupyter-execute::
x = xr.DataArray(
[0, 1, np.nan, np.nan, 2],
dims=["x"],
coords={"xx": xr.Variable("x", [0, 1, 1.1, 1.9, 3])},
)
x.interpolate_na(dim="x", method="linear", use_coordinate="xx")
In this example, there are two NaN values in 'x', so calling x.interpolate_na(dim="x", method="linear",
use_coordinate="xx") fills these values with interpolated values along the "x" dimension using linear
interpolation based on the values of the xx coordinate. The resulting :py:class:`~xarray.DataArray` object has five elements,
containing the values [0., 1., 1.05, 1.45, 2.] in the original order. Note that the interpolated values
are calculated based on the values of the 'xx' coordinate, which has non-integer values, resulting in
non-integer interpolated values.
Note that xarray slightly diverges from the pandas ``interpolate`` syntax by
providing the ``use_coordinate`` keyword which facilitates a clear specification
of which values to use as the index in the interpolation.
Xarray also provides the ``max_gap`` keyword argument to limit the interpolation to
data gaps of length ``max_gap`` or smaller. See :py:meth:`~xarray.DataArray.interpolate_na`
for more.
.. _agg:
Aggregation
===========
Aggregation methods have been updated to take a ``dim`` argument instead of
``axis``. This allows for very intuitive syntax for aggregation methods that are
applied along particular dimension(s):
.. jupyter-execute::
arr.sum(dim="x")
.. jupyter-execute::
arr.std(["x", "y"])
.. jupyter-execute::
arr.min()
If you need to figure out the axis number for a dimension yourself (say,
for wrapping code designed to work with numpy arrays), you can use the
:py:meth:`~xarray.DataArray.get_axis_num` method:
.. jupyter-execute::
arr.get_axis_num("y")
These operations automatically skip missing values, like in pandas:
.. jupyter-execute::
xr.DataArray([1, 2, np.nan, 3]).mean()
If desired, you can disable this behavior by invoking the aggregation method
with ``skipna=False``.
.. _compute.rolling:
Rolling window operations
=========================
``DataArray`` objects include a :py:meth:`~xarray.DataArray.rolling` method. This
method supports rolling window aggregation:
.. jupyter-execute::
arr = xr.DataArray(np.arange(0, 7.5, 0.5).reshape(3, 5), dims=("x", "y"))
arr
:py:meth:`~xarray.DataArray.rolling` is applied along one dimension using the
name of the dimension as a key (e.g. ``y``) and the window size as the value
(e.g. ``3``). We get back a ``Rolling`` object:
.. jupyter-execute::
arr.rolling(y=3)
Aggregation and summary methods can be applied directly to the ``Rolling``
object:
.. jupyter-execute::
r = arr.rolling(y=3)
r.reduce(np.std)
.. jupyter-execute::
r.mean()
Aggregation results are assigned the coordinate at the end of each window by
default, but can be centered by passing ``center=True`` when constructing the
``Rolling`` object:
.. jupyter-execute::
r = arr.rolling(y=3, center=True)
r.mean()
As can be seen above, aggregations of windows which overlap the border of the
array produce ``nan``\s. Setting ``min_periods`` in the call to ``rolling``
changes the minimum number of observations within the window required to have
a value when aggregating:
.. jupyter-execute::
r = arr.rolling(y=3, min_periods=2)
r.mean()
.. jupyter-execute::
r = arr.rolling(y=3, center=True, min_periods=2)
r.mean()
From version 0.17, xarray supports multidimensional rolling,
.. jupyter-execute::
r = arr.rolling(x=2, y=3, min_periods=2)
r.mean()
.. tip::
Note that rolling window aggregations are faster and use less memory when bottleneck_ is installed. This only applies to numpy-backed xarray objects with 1d-rolling.
.. _bottleneck: https://github.com/pydata/bottleneck
We can also manually iterate through ``Rolling`` objects:
.. code:: python
for label, arr_window in r:
# arr_window is a view of x
...
.. _compute.rolling_exp:
While ``rolling`` provides a simple moving average, ``DataArray`` also supports
an exponential moving average with :py:meth:`~xarray.DataArray.rolling_exp`.
This is similar to pandas' ``ewm`` method. numbagg_ is required.
.. _numbagg: https://github.com/numbagg/numbagg
.. code:: python
arr.rolling_exp(y=3).mean()
The ``rolling_exp`` method takes a ``window_type`` kwarg, which can be ``'alpha'``,
``'com'`` (for ``center-of-mass``), ``'span'``, and ``'halflife'``. The default is
``span``.
Finally, the rolling object has a ``construct`` method which returns a
view of the original ``DataArray`` with the windowed dimension in
the last position.
You can use this for more advanced rolling operations such as strided rolling,
windowed rolling, convolution, short-time FFT etc.
.. jupyter-execute::
# rolling with 2-point stride
rolling_da = r.construct(x="x_win", y="y_win", stride=2)
rolling_da
.. jupyter-execute::
rolling_da.mean(["x_win", "y_win"], skipna=False)
Because the ``DataArray`` given by ``r.construct('window_dim')`` is a view
of the original array, it is memory efficient.
You can also use ``construct`` to compute a weighted rolling sum:
.. jupyter-execute::
weight = xr.DataArray([0.25, 0.5, 0.25], dims=["window"])
arr.rolling(y=3).construct(y="window").dot(weight)
.. note::
numpy's Nan-aggregation functions such as ``nansum`` copy the original array.
In xarray, we internally use these functions in our aggregation methods
(such as ``.sum()``) if ``skipna`` argument is not specified or set to True.
This means ``rolling_da.mean('window_dim')`` is memory inefficient.
To avoid this, use ``skipna=False`` as the above example.
.. _compute.weighted:
Weighted array reductions
=========================
:py:class:`DataArray` and :py:class:`Dataset` objects include :py:meth:`DataArray.weighted`
and :py:meth:`Dataset.weighted` array reduction methods. They currently
support weighted ``sum``, ``mean``, ``std``, ``var`` and ``quantile``.
.. jupyter-execute::
coords = dict(month=("month", [1, 2, 3]))
prec = xr.DataArray([1.1, 1.0, 0.9], dims=("month",), coords=coords)
weights = xr.DataArray([31, 28, 31], dims=("month",), coords=coords)
Create a weighted object:
.. jupyter-execute::
weighted_prec = prec.weighted(weights)
weighted_prec
Calculate the weighted sum:
.. jupyter-execute::
weighted_prec.sum()
Calculate the weighted mean:
.. jupyter-execute::
weighted_prec.mean(dim="month")
Calculate the weighted quantile:
.. jupyter-execute::
weighted_prec.quantile(q=0.5, dim="month")
The weighted sum corresponds to:
.. jupyter-execute::
weighted_sum = (prec * weights).sum()
weighted_sum
the weighted mean to:
.. jupyter-execute::
weighted_mean = weighted_sum / weights.sum()
weighted_mean
the weighted variance to:
.. jupyter-execute::
weighted_var = weighted_prec.sum_of_squares() / weights.sum()
weighted_var
and the weighted standard deviation to:
.. jupyter-execute::
weighted_std = np.sqrt(weighted_var)
weighted_std
However, the functions also take missing values in the data into account:
.. jupyter-execute::
data = xr.DataArray([np.nan, 2, 4])
weights = xr.DataArray([8, 1, 1])
data.weighted(weights).mean()
Using ``(data * weights).sum() / weights.sum()`` would (incorrectly) result
in 0.6.
If the weights add up to to 0, ``sum`` returns 0:
.. jupyter-execute::
data = xr.DataArray([1.0, 1.0])
weights = xr.DataArray([-1.0, 1.0])
data.weighted(weights).sum()
and ``mean``, ``std`` and ``var`` return ``nan``:
.. jupyter-execute::
data.weighted(weights).mean()
.. note::
``weights`` must be a :py:class:`DataArray` and cannot contain missing values.
Missing values can be replaced manually by ``weights.fillna(0)``.
.. _compute.coarsen:
Coarsen large arrays
====================
:py:class:`DataArray` and :py:class:`Dataset` objects include a
:py:meth:`~xarray.DataArray.coarsen` and :py:meth:`~xarray.Dataset.coarsen`
methods. This supports block aggregation along multiple dimensions,
.. jupyter-execute::
x = np.linspace(0, 10, 300)
t = pd.date_range("1999-12-15", periods=364)
da = xr.DataArray(
np.sin(x) * np.cos(np.linspace(0, 1, 364)[:, np.newaxis]),
dims=["time", "x"],
coords={"time": t, "x": x},
)
da
In order to take a block mean for every 7 days along ``time`` dimension and
every 2 points along ``x`` dimension,
.. jupyter-execute::
da.coarsen(time=7, x=2).mean()
:py:meth:`~xarray.DataArray.coarsen` raises a ``ValueError`` if the data
length is not a multiple of the corresponding window size.
You can choose ``boundary='trim'`` or ``boundary='pad'`` options for trimming
the excess entries or padding ``nan`` to insufficient entries,
.. jupyter-execute::
da.coarsen(time=30, x=2, boundary="trim").mean()
If you want to apply a specific function to coordinate, you can pass the
function or method name to ``coord_func`` option,
.. jupyter-execute::
da.coarsen(time=7, x=2, coord_func={"time": "min"}).mean()
You can also :ref:`use coarsen to reshape<reshape.coarsen>` without applying a computation.
.. _compute.using_coordinates:
Computation using Coordinates
=============================
Xarray objects have some handy methods for the computation with their
coordinates. :py:meth:`~xarray.DataArray.differentiate` computes derivatives by
central finite differences using their coordinates,
.. jupyter-execute::
a = xr.DataArray([0, 1, 2, 3], dims=["x"], coords=[[0.1, 0.11, 0.2, 0.3]])
a.differentiate("x")
This method can be used also for multidimensional arrays,
.. jupyter-execute::
a = xr.DataArray(
np.arange(8).reshape(4, 2), dims=["x", "y"], coords={"x": [0.1, 0.11, 0.2, 0.3]}
)
a.differentiate("x")
:py:meth:`~xarray.DataArray.integrate` computes integration based on
trapezoidal rule using their coordinates,
.. jupyter-execute::
a.integrate("x")
.. note::
These methods are limited to simple cartesian geometry. Differentiation
and integration along multidimensional coordinate are not supported.
.. _compute.polyfit:
Fitting polynomials
===================
Xarray objects provide an interface for performing linear or polynomial regressions
using the least-squares method. :py:meth:`~xarray.DataArray.polyfit` computes the
best fitting coefficients along a given dimension and for a given order,
.. jupyter-execute::
x = xr.DataArray(np.arange(10), dims=["x"], name="x")
a = xr.DataArray(3 + 4 * x, dims=["x"], coords={"x": x})
out = a.polyfit(dim="x", deg=1, full=True)
out
The method outputs a dataset containing the coefficients (and more if ``full=True``).
The inverse operation is done with :py:meth:`~xarray.polyval`,
.. jupyter-execute::
xr.polyval(coord=x, coeffs=out.polyfit_coefficients)
.. note::
These methods replicate the behaviour of :py:func:`numpy.polyfit` and :py:func:`numpy.polyval`.
.. _compute.curvefit:
Fitting arbitrary functions
===========================
Xarray objects also provide an interface for fitting more complex functions using
:py:func:`scipy.optimize.curve_fit`. :py:meth:`~xarray.DataArray.curvefit` accepts
user-defined functions and can fit along multiple coordinates.
For example, we can fit a relationship between two ``DataArray`` objects, maintaining
a unique fit at each spatial coordinate but aggregating over the time dimension:
.. jupyter-execute::
def exponential(x, a, xc):
return np.exp((x - xc) / a)
x = np.arange(-5, 5, 0.1)
t = np.arange(-5, 5, 0.1)
X, T = np.meshgrid(x, t)
Z1 = np.random.uniform(low=-5, high=5, size=X.shape)
Z2 = exponential(Z1, 3, X)
Z3 = exponential(Z1, 1, -X)
ds = xr.Dataset(
data_vars=dict(
var1=(["t", "x"], Z1), var2=(["t", "x"], Z2), var3=(["t", "x"], Z3)
),
coords={"t": t, "x": x},
)
ds[["var2", "var3"]].curvefit(
coords=ds.var1,
func=exponential,
reduce_dims="t",
bounds={"a": (0.5, 5), "xc": (-5, 5)},
)
We can also fit multi-dimensional functions, and even use a wrapper function to
simultaneously fit a summation of several functions, such as this field containing
two gaussian peaks:
.. jupyter-execute::
def gaussian_2d(coords, a, xc, yc, xalpha, yalpha):
x, y = coords
z = a * np.exp(
-np.square(x - xc) / 2 / np.square(xalpha)
- np.square(y - yc) / 2 / np.square(yalpha)
)
return z
def multi_peak(coords, *args):
z = np.zeros(coords[0].shape)
for i in range(len(args) // 5):
z += gaussian_2d(coords, *args[i * 5 : i * 5 + 5])
return z
x = np.arange(-5, 5, 0.1)
y = np.arange(-5, 5, 0.1)
X, Y = np.meshgrid(x, y)
n_peaks = 2
names = ["a", "xc", "yc", "xalpha", "yalpha"]
names = [f"{name}{i}" for i in range(n_peaks) for name in names]
Z = gaussian_2d((X, Y), 3, 1, 1, 2, 1) + gaussian_2d((X, Y), 2, -1, -2, 1, 1)
Z += np.random.normal(scale=0.1, size=Z.shape)
da = xr.DataArray(Z, dims=["y", "x"], coords={"y": y, "x": x})
da.curvefit(
coords=["x", "y"],
func=multi_peak,
param_names=names,
kwargs={"maxfev": 10000},
)
.. note::
This method replicates the behavior of :py:func:`scipy.optimize.curve_fit`.
.. _compute.broadcasting:
Broadcasting by dimension name
==============================
``DataArray`` objects automatically align themselves ("broadcasting" in
the numpy parlance) by dimension name instead of axis order. With xarray, you
do not need to transpose arrays or insert dimensions of length 1 to get array
operations to work, as commonly done in numpy with :py:func:`numpy.reshape` or
:py:data:`numpy.newaxis`.
This is best illustrated by a few examples. Consider two one-dimensional
arrays with different sizes aligned along different dimensions:
.. jupyter-execute::
a = xr.DataArray([1, 2], [("x", ["a", "b"])])
a
.. jupyter-execute::
b = xr.DataArray([-1, -2, -3], [("y", [10, 20, 30])])
b
With xarray, we can apply binary mathematical operations to these arrays, and
their dimensions are expanded automatically:
.. jupyter-execute::
a * b
Moreover, dimensions are always reordered to the order in which they first
appeared:
.. jupyter-execute::
c = xr.DataArray(np.arange(6).reshape(3, 2), [b["y"], a["x"]])
c
.. jupyter-execute::
a + c
This means, for example, that you always subtract an array from its transpose:
.. jupyter-execute::
c - c.T
You can explicitly broadcast xarray data structures by using the
:py:func:`~xarray.broadcast` function:
.. jupyter-execute::
a2, b2 = xr.broadcast(a, b)
a2
.. jupyter-execute::
b2
.. _math automatic alignment:
Automatic alignment
===================
Xarray enforces alignment between *index* :ref:`coordinates` (that is,
coordinates with the same name as a dimension, marked by ``*``) on objects used
in binary operations.
Similarly to pandas, this alignment is automatic for arithmetic on binary
operations. The default result of a binary operation is by the *intersection*
(not the union) of coordinate labels:
.. jupyter-execute::
arr = xr.DataArray(np.arange(3), [("x", range(3))])
arr + arr[:-1]
If coordinate values for a dimension are missing on either argument, all
matching dimensions must have the same size:
.. jupyter-execute::
:raises:
arr + xr.DataArray([1, 2], dims="x")
However, one can explicitly change this default automatic alignment type ("inner")
via :py:func:`~xarray.set_options()` in context manager:
.. jupyter-execute::
with xr.set_options(arithmetic_join="outer"):
arr + arr[:1]
arr + arr[:1]
Before loops or performance critical code, it's a good idea to align arrays
explicitly (e.g., by putting them in the same Dataset or using
:py:func:`~xarray.align`) to avoid the overhead of repeated alignment with each
operation. See :ref:`align and reindex` for more details.
.. note::
There is no automatic alignment between arguments when performing in-place
arithmetic operations such as ``+=``. You will need to use
:ref:`manual alignment<align and reindex>`. This ensures in-place
arithmetic never needs to modify data types.
.. _coordinates math:
Coordinates
===========
Although index coordinates are aligned, other coordinates are not, and if their
values conflict, they will be dropped. This is necessary, for example, because
indexing turns 1D coordinates into scalar coordinates:
.. jupyter-execute::
arr[0]
.. jupyter-execute::
arr[1]
.. jupyter-execute::
# notice that the scalar coordinate 'x' is silently dropped
arr[1] - arr[0]
Still, xarray will persist other coordinates in arithmetic, as long as there
are no conflicting values:
.. jupyter-execute::
# only one argument has the 'x' coordinate
arr[0] + 1
.. jupyter-execute::
# both arguments have the same 'x' coordinate
arr[0] - arr[0]
Math with datasets
==================
Datasets support arithmetic operations by automatically looping over all data
variables:
.. jupyter-execute::
ds = xr.Dataset(
{
"x_and_y": (("x", "y"), np.random.randn(3, 5)),
"x_only": ("x", np.random.randn(3)),
},
coords=arr.coords,
)
ds > 0
Datasets support most of the same methods found on data arrays:
.. jupyter-execute::
ds.mean(dim="x")
.. jupyter-execute::
abs(ds)
Datasets also support NumPy ufuncs (requires NumPy v1.13 or newer), or
alternatively you can use :py:meth:`~xarray.Dataset.map` to map a function
to each variable in a dataset:
.. jupyter-execute::
np.sin(ds) # equivalent to ds.map(np.sin)
Datasets also use looping over variables for *broadcasting* in binary
arithmetic. You can do arithmetic between any ``DataArray`` and a dataset:
.. jupyter-execute::
ds + arr
Arithmetic between two datasets matches data variables of the same name:
.. jupyter-execute::
ds2 = xr.Dataset({"x_and_y": 0, "x_only": 100})
ds - ds2
Similarly to index based alignment, the result has the intersection of all
matching data variables.
.. _compute.wrapping-custom:
Wrapping custom computation
===========================
It doesn't always make sense to do computation directly with xarray objects:
- In the inner loop of performance limited code, using xarray can add
considerable overhead compared to using NumPy or native Python types.
This is particularly true when working with scalars or small arrays (less
than ~1e6 elements). Keeping track of labels and ensuring their consistency
adds overhead, and xarray's core itself is not especially fast, because it's
written in Python rather than a compiled language like C. Also, xarray's
high level label-based APIs removes low-level control over how operations
are implemented.
- Even if speed doesn't matter, it can be important to wrap existing code, or
to support alternative interfaces that don't use xarray objects.
For these reasons, it is often well-advised to write low-level routines that
work with NumPy arrays, and to wrap these routines to work with xarray objects.
However, adding support for labels on both :py:class:`~xarray.Dataset` and
:py:class:`~xarray.DataArray` can be a bit of a chore.
To make this easier, xarray supplies the :py:func:`~xarray.apply_ufunc` helper
function, designed for wrapping functions that support broadcasting and
vectorization on unlabeled arrays in the style of a NumPy
`universal function <https://numpy.org/doc/stable/reference/ufuncs.html>`_ ("ufunc" for short).
``apply_ufunc`` takes care of everything needed for an idiomatic xarray wrapper,
including alignment, broadcasting, looping over ``Dataset`` variables (if
needed), and merging of coordinates. In fact, many internal xarray
functions/methods are written using ``apply_ufunc``.
Simple functions that act independently on each value should work without
any additional arguments:
.. jupyter-execute::
squared_error = lambda x, y: (x - y) ** 2
arr1 = xr.DataArray([0, 1, 2, 3], dims="x")
xr.apply_ufunc(squared_error, arr1, 1)
For using more complex operations that consider some array values collectively,
it's important to understand the idea of "core dimensions" from NumPy's
`generalized ufuncs <https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html>`_. Core dimensions are defined as dimensions
that should *not* be broadcast over. Usually, they correspond to the fundamental
dimensions over which an operation is defined, e.g., the summed axis in
``np.sum``. A good clue that core dimensions are needed is the presence of an
``axis`` argument on the corresponding NumPy function.
With ``apply_ufunc``, core dimensions are recognized by name, and then moved to
the last dimension of any input arguments before applying the given function.
This means that for functions that accept an ``axis`` argument, you usually need
to set ``axis=-1``. As an example, here is how we would wrap
:py:func:`numpy.linalg.norm` to calculate the vector norm:
.. code-block:: python
def vector_norm(x, dim, ord=None):
return xr.apply_ufunc(
np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1}
)
.. jupyter-execute::
:hide-code:
def vector_norm(x, dim, ord=None):
return xr.apply_ufunc(
np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1}
)
.. jupyter-execute::
vector_norm(arr1, dim="x")
Because ``apply_ufunc`` follows a standard convention for ufuncs, it plays
nicely with tools for building vectorized functions, like
:py:func:`numpy.broadcast_arrays` and :py:class:`numpy.vectorize`. For high performance
needs, consider using :doc:`Numba's vectorize and guvectorize <numba:user/vectorize>`.
In addition to wrapping functions, ``apply_ufunc`` can automatically parallelize
many functions when using dask by setting ``dask='parallelized'``. See
:ref:`dask.automatic-parallelization` for details.
:py:func:`~xarray.apply_ufunc` also supports some advanced options for
controlling alignment of variables and the form of the result. See the
docstring for full details and more examples.
|