1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
|
.. currentmodule:: xarray
.. _io:
Reading and writing files
=========================
Xarray supports direct serialization and IO to several file formats, from
simple :ref:`io.pickle` files to the more flexible :ref:`io.netcdf`
format (recommended).
.. jupyter-execute::
:hide-code:
import os
import iris
import ncdata.iris_xarray
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
You can read different types of files in ``xr.open_dataset`` by specifying the engine to be used:
.. code:: python
xr.open_dataset("example.nc", engine="netcdf4")
The "engine" provides a set of instructions that tells xarray how
to read the data and pack them into a ``Dataset`` (or ``Dataarray``).
These instructions are stored in an underlying "backend".
Xarray comes with several backends that cover many common data formats.
Many more backends are available via external libraries, or you can `write your own <https://docs.xarray.dev/en/stable/internals/how-to-add-new-backend.html>`_.
This diagram aims to help you determine - based on the format of the file you'd like to read -
which type of backend you're using and how to use it.
Text and boxes are clickable for more information.
Following the diagram is detailed information on many popular backends.
You can learn more about using and developing backends in the
`Xarray tutorial JupyterBook <https://tutorial.xarray.dev/advanced/backends/backends.html>`_.
..
_comment: mermaid Flowcharg "link" text gets secondary color background, SVG icon fill gets primary color
.. raw:: html
<style>
/* Ensure PST link colors don't override mermaid text colors */
.mermaid a {
color: white;
}
.mermaid a:hover {
color: magenta;
text-decoration-color: magenta;
}
.mermaid a:visited {
color: white;
text-decoration-color: white;
}
</style>
.. mermaid::
:config: {"theme":"base","themeVariables":{"fontSize":"20px","primaryColor":"#fff","primaryTextColor":"#fff","primaryBorderColor":"#59c7d6","lineColor":"#e28126","secondaryColor":"#767985"}}
:alt: Flowchart illustrating how to choose the right backend engine to read your data
flowchart LR
built-in-eng["`**Is your data stored in one of these formats?**
- netCDF4
- netCDF3
- Zarr
- DODS/OPeNDAP
- HDF5
`"]
built-in("`**You're in luck!** Xarray bundles a backend to automatically read these formats.
Open data using <code>xr.open_dataset()</code>. We recommend
explicitly setting engine='xxxx' for faster loading.`")
installed-eng["""<b>One of these formats?</b>
- <a href='https://github.com/ecmwf/cfgrib'>GRIB</a>
- <a href='https://tiledb-inc.github.io/TileDB-CF-Py/documentation'>TileDB</a>
- <a href='https://corteva.github.io/rioxarray/stable/getting_started/getting_started.html#rioxarray'>GeoTIFF, JPEG-2000, etc. (via GDAL)</a>
- <a href='https://www.bopen.eu/xarray-sentinel-open-source-library/'>Sentinel-1 SAFE</a>
"""]
installed("""Install the linked backend library and use it with
<code>xr.open_dataset(file, engine='xxxx')</code>.""")
other["`**Options:**
- Look around to see if someone has created an Xarray backend for your format!
- <a href='https://docs.xarray.dev/en/stable/internals/how-to-add-new-backend.html'>Create your own backend</a>
- Convert your data to a supported format
`"]
built-in-eng -->|Yes| built-in
built-in-eng -->|No| installed-eng
installed-eng -->|Yes| installed
installed-eng -->|No| other
click built-in-eng "https://docs.xarray.dev/en/stable/get-help/faq.html#how-do-i-open-format-x-file-as-an-xarray-dataset"
classDef quesNodefmt font-size:12pt,fill:#0e4666,stroke:#59c7d6,stroke-width:3
class built-in-eng,installed-eng quesNodefmt
classDef ansNodefmt font-size:12pt,fill:#4a4a4a,stroke:#17afb4,stroke-width:3
class built-in,installed,other ansNodefmt
linkStyle default font-size:18pt,stroke-width:4
.. _io.netcdf:
netCDF
------
The recommended way to store xarray data structures is `netCDF`__, which
is a binary file format for self-described datasets that originated
in the geosciences. Xarray is based on the netCDF data model, so netCDF files
on disk directly correspond to :py:class:`Dataset` objects (more accurately,
a group in a netCDF file directly corresponds to a :py:class:`Dataset` object.
See :ref:`io.netcdf_groups` for more.)
NetCDF is supported on almost all platforms, and parsers exist
for the vast majority of scientific programming languages. Recent versions of
netCDF are based on the even more widely used HDF5 file-format.
__ https://www.unidata.ucar.edu/software/netcdf/
.. tip::
If you aren't familiar with this data format, the `netCDF FAQ`_ is a good
place to start.
.. _netCDF FAQ: https://www.unidata.ucar.edu/software/netcdf/docs/faq.html#What-Is-netCDF
Reading and writing netCDF files with xarray requires scipy, h5netcdf, or the
`netCDF4-Python`__ library to be installed. SciPy only supports reading and writing
of netCDF V3 files.
__ https://github.com/Unidata/netcdf4-python
We can save a Dataset to disk using the
:py:meth:`Dataset.to_netcdf` method:
.. jupyter-execute::
ds = xr.Dataset(
{"foo": (("x", "y"), np.random.rand(4, 5))},
coords={
"x": [10, 20, 30, 40],
"y": pd.date_range("2000-01-01", periods=5),
"z": ("x", list("abcd")),
},
)
ds.to_netcdf("saved_on_disk.nc")
By default, the file is saved as netCDF4 (assuming netCDF4-Python is
installed). You can control the format and engine used to write the file with
the ``format`` and ``engine`` arguments.
.. tip::
Using the `h5netcdf <https://github.com/h5netcdf/h5netcdf>`_ package
by passing ``engine='h5netcdf'`` to :py:meth:`open_dataset` can
sometimes be quicker than the default ``engine='netcdf4'`` that uses the
`netCDF4 <https://github.com/Unidata/netcdf4-python>`_ package.
We can load netCDF files to create a new Dataset using
:py:func:`open_dataset`:
.. jupyter-execute::
ds_disk = xr.open_dataset("saved_on_disk.nc")
ds_disk
.. jupyter-execute::
:hide-code:
# Close "saved_on_disk.nc", but retain the file until after closing or deleting other
# datasets that will refer to it.
ds_disk.close()
Similarly, a DataArray can be saved to disk using the
:py:meth:`DataArray.to_netcdf` method, and loaded
from disk using the :py:func:`open_dataarray` function. As netCDF files
correspond to :py:class:`Dataset` objects, these functions internally
convert the ``DataArray`` to a ``Dataset`` before saving, and then convert back
when loading, ensuring that the ``DataArray`` that is loaded is always exactly
the same as the one that was saved.
A dataset can also be loaded or written to a specific group within a netCDF
file. To load from a group, pass a ``group`` keyword argument to the
``open_dataset`` function. The group can be specified as a path-like
string, e.g., to access subgroup 'bar' within group 'foo' pass
'/foo/bar' as the ``group`` argument. When writing multiple groups in one file,
pass ``mode='a'`` to ``to_netcdf`` to ensure that each call does not delete the
file.
.. tip::
It is recommended to use :py:class:`~xarray.DataTree` to represent
hierarchical data, and to use the :py:meth:`xarray.DataTree.to_netcdf` method
when writing hierarchical data to a netCDF file.
Data is *always* loaded lazily from netCDF files. You can manipulate, slice and subset
Dataset and DataArray objects, and no array values are loaded into memory until
you try to perform some sort of actual computation. For an example of how these
lazy arrays work, see the OPeNDAP section below.
There may be minor differences in the :py:class:`Dataset` object returned
when reading a NetCDF file with different engines.
It is important to note that when you modify values of a Dataset, even one
linked to files on disk, only the in-memory copy you are manipulating in xarray
is modified: the original file on disk is never touched.
.. tip::
Xarray's lazy loading of remote or on-disk datasets is often but not always
desirable. Before performing computationally intense operations, it is
often a good idea to load a Dataset (or DataArray) entirely into memory by
invoking the :py:meth:`Dataset.load` method.
Datasets have a :py:meth:`Dataset.close` method to close the associated
netCDF file. However, it's often cleaner to use a ``with`` statement:
.. jupyter-execute::
# this automatically closes the dataset after use
with xr.open_dataset("saved_on_disk.nc") as ds:
print(ds.keys())
Although xarray provides reasonable support for incremental reads of files on
disk, it does not support incremental writes, which can be a useful strategy
for dealing with datasets too big to fit into memory. Instead, xarray integrates
with dask.array (see :ref:`dask`), which provides a fully featured engine for
streaming computation.
It is possible to append or overwrite netCDF variables using the ``mode='a'``
argument. When using this option, all variables in the dataset will be written
to the original netCDF file, regardless if they exist in the original dataset.
.. _io.netcdf_groups:
Groups
~~~~~~
Whilst netCDF groups can only be loaded individually as ``Dataset`` objects, a
whole file of many nested groups can be loaded as a single
:py:class:`xarray.DataTree` object. To open a whole netCDF file as a tree of groups
use the :py:func:`xarray.open_datatree` function. To save a DataTree object as a
netCDF file containing many groups, use the :py:meth:`xarray.DataTree.to_netcdf` method.
.. _netcdf.root_group.note:
.. note::
Due to file format specifications the on-disk root group name is always ``"/"``,
overriding any given ``DataTree`` root node name.
.. _netcdf.group.warning:
.. warning::
``DataTree`` objects do not follow the exact same data model as netCDF
files, which means that perfect round-tripping is not always possible.
In particular in the netCDF data model dimensions are entities that can
exist regardless of whether any variable possesses them. This is in contrast
to `xarray's data model <https://docs.xarray.dev/en/stable/user-guide/data-structures.html>`_
(and hence :ref:`DataTree's data model <data structures>`) in which the
dimensions of a (Dataset/Tree) object are simply the set of dimensions
present across all variables in that dataset.
This means that if a netCDF file contains dimensions but no variables which
possess those dimensions, these dimensions will not be present when that
file is opened as a DataTree object.
Saving this DataTree object to file will therefore not preserve these
"unused" dimensions.
.. _io.encoding:
Reading encoded data
~~~~~~~~~~~~~~~~~~~~
NetCDF files follow some conventions for encoding datetime arrays (as numbers
with a "units" attribute) and for packing and unpacking data (as
described by the "scale_factor" and "add_offset" attributes). If the argument
``decode_cf=True`` (default) is given to :py:func:`open_dataset`, xarray will attempt
to automatically decode the values in the netCDF objects according to
`CF conventions`_. Sometimes this will fail, for example, if a variable
has an invalid "units" or "calendar" attribute. For these cases, you can
turn this decoding off manually.
.. _CF conventions: https://cfconventions.org/
You can view this encoding information (among others) in the
:py:attr:`DataArray.encoding` and
:py:attr:`DataArray.encoding` attributes:
.. jupyter-execute::
ds_disk["y"].encoding
.. jupyter-execute::
ds_disk.encoding
Note that all operations that manipulate variables other than indexing
will remove encoding information.
In some cases it is useful to intentionally reset a dataset's original encoding values.
This can be done with either the :py:meth:`Dataset.drop_encoding` or
:py:meth:`DataArray.drop_encoding` methods.
.. jupyter-execute::
ds_no_encoding = ds_disk.drop_encoding()
ds_no_encoding.encoding
.. _combining multiple files:
Reading multi-file datasets
...........................
NetCDF files are often encountered in collections, e.g., with different files
corresponding to different model runs or one file per timestamp.
Xarray can straightforwardly combine such files into a single Dataset by making use of
:py:func:`concat`, :py:func:`merge`, :py:func:`combine_nested` and
:py:func:`combine_by_coords`. For details on the difference between these
functions see :ref:`combining data`.
Xarray includes support for manipulating datasets that don't fit into memory
with dask_. If you have dask installed, you can open multiple files
simultaneously in parallel using :py:func:`open_mfdataset`::
xr.open_mfdataset('my/files/*.nc', parallel=True)
This function automatically concatenates and merges multiple files into a
single xarray dataset.
It is the recommended way to open multiple files with xarray.
For more details on parallel reading, see :ref:`combining.multi`, :ref:`dask.io` and a
`blog post`_ by Stephan Hoyer.
:py:func:`open_mfdataset` takes many kwargs that allow you to
control its behaviour (for e.g. ``parallel``, ``combine``, ``compat``, ``join``, ``concat_dim``).
See its docstring for more details.
.. note::
A common use-case involves a dataset distributed across a large number of files with
each file containing a large number of variables. Commonly, a few of these variables
need to be concatenated along a dimension (say ``"time"``), while the rest are equal
across the datasets (ignoring floating point differences). The following command
with suitable modifications (such as ``parallel=True``) works well with such datasets::
xr.open_mfdataset('my/files/*.nc', concat_dim="time", combine="nested",
data_vars='minimal', coords='minimal', compat='override')
This command concatenates variables along the ``"time"`` dimension, but only those that
already contain the ``"time"`` dimension (``data_vars='minimal', coords='minimal'``).
Variables that lack the ``"time"`` dimension are taken from the first dataset
(``compat='override'``).
.. _dask: https://www.dask.org
.. _blog post: https://stephanhoyer.com/2015/06/11/xray-dask-out-of-core-labeled-arrays/
Sometimes multi-file datasets are not conveniently organized for easy use of :py:func:`open_mfdataset`.
One can use the ``preprocess`` argument to provide a function that takes a dataset
and returns a modified Dataset.
:py:func:`open_mfdataset` will call ``preprocess`` on every dataset
(corresponding to each file) prior to combining them.
If :py:func:`open_mfdataset` does not meet your needs, other approaches are possible.
The general pattern for parallel reading of multiple files
using dask, modifying those datasets and then combining into a single ``Dataset`` is::
def modify(ds):
# modify ds here
return ds
# this is basically what open_mfdataset does
open_kwargs = dict(decode_cf=True, decode_times=False)
open_tasks = [dask.delayed(xr.open_dataset)(f, **open_kwargs) for f in file_names]
tasks = [dask.delayed(modify)(task) for task in open_tasks]
datasets = dask.compute(tasks) # get a list of xarray.Datasets
combined = xr.combine_nested(datasets) # or some combination of concat, merge
As an example, here's how we could approximate ``MFDataset`` from the netCDF4
library::
from glob import glob
import xarray as xr
def read_netcdfs(files, dim):
# glob expands paths with * to a list of files, like the unix shell
paths = sorted(glob(files))
datasets = [xr.open_dataset(p) for p in paths]
combined = xr.concat(datasets, dim)
return combined
combined = read_netcdfs('/all/my/files/*.nc', dim='time')
This function will work in many cases, but it's not very robust. First, it
never closes files, which means it will fail if you need to load more than
a few thousand files. Second, it assumes that you want all the data from each
file and that it can all fit into memory. In many situations, you only need
a small subset or an aggregated summary of the data from each file.
Here's a slightly more sophisticated example of how to remedy these
deficiencies::
def read_netcdfs(files, dim, transform_func=None):
def process_one_path(path):
# use a context manager, to ensure the file gets closed after use
with xr.open_dataset(path) as ds:
# transform_func should do some sort of selection or
# aggregation
if transform_func is not None:
ds = transform_func(ds)
# load all data from the transformed dataset, to ensure we can
# use it after closing each original file
ds.load()
return ds
paths = sorted(glob(files))
datasets = [process_one_path(p) for p in paths]
combined = xr.concat(datasets, dim)
return combined
# here we suppose we only care about the combined mean of each file;
# you might also use indexing operations like .sel to subset datasets
combined = read_netcdfs('/all/my/files/*.nc', dim='time',
transform_func=lambda ds: ds.mean())
This pattern works well and is very robust. We've used similar code to process
tens of thousands of files constituting 100s of GB of data.
.. _io.netcdf.writing_encoded:
Writing encoded data
~~~~~~~~~~~~~~~~~~~~
Conversely, you can customize how xarray writes netCDF files on disk by
providing explicit encodings for each dataset variable. The ``encoding``
argument takes a dictionary with variable names as keys and variable specific
encodings as values. These encodings are saved as attributes on the netCDF
variables on disk, which allows xarray to faithfully read encoded data back into
memory.
It is important to note that using encodings is entirely optional: if you do not
supply any of these encoding options, xarray will write data to disk using a
default encoding, or the options in the ``encoding`` attribute, if set.
This works perfectly fine in most cases, but encoding can be useful for
additional control, especially for enabling compression.
In the file on disk, these encodings are saved as attributes on each variable, which
allow xarray and other CF-compliant tools for working with netCDF files to correctly
read the data.
Scaling and type conversions
............................
These encoding options (based on `CF Conventions on packed data`_) work on any
version of the netCDF file format:
- ``dtype``: Any valid NumPy dtype or string convertible to a dtype, e.g., ``'int16'``
or ``'float32'``. This controls the type of the data written on disk.
- ``_FillValue``: Values of ``NaN`` in xarray variables are remapped to this value when
saved on disk. This is important when converting floating point with missing values
to integers on disk, because ``NaN`` is not a valid value for integer dtypes. By
default, variables with float types are attributed a ``_FillValue`` of ``NaN`` in the
output file, unless explicitly disabled with an encoding ``{'_FillValue': None}``.
- ``scale_factor`` and ``add_offset``: Used to convert from encoded data on disk to
to the decoded data in memory, according to the formula
``decoded = scale_factor * encoded + add_offset``. Please note that ``scale_factor``
and ``add_offset`` must be of same type and determine the type of the decoded data.
These parameters can be fruitfully combined to compress discretized data on disk. For
example, to save the variable ``foo`` with a precision of 0.1 in 16-bit integers while
converting ``NaN`` to ``-9999``, we would use
``encoding={'foo': {'dtype': 'int16', 'scale_factor': 0.1, '_FillValue': -9999}}``.
Compression and decompression with such discretization is extremely fast.
.. _CF Conventions on packed data: https://cfconventions.org/cf-conventions/cf-conventions.html#packed-data
.. _io.string-encoding:
String encoding
...............
Xarray can write unicode strings to netCDF files in two ways:
- As variable length strings. This is only supported on netCDF4 (HDF5) files.
- By encoding strings into bytes, and writing encoded bytes as a character
array. The default encoding is UTF-8.
By default, we use variable length strings for compatible files and fall-back
to using encoded character arrays. Character arrays can be selected even for
netCDF4 files by setting the ``dtype`` field in ``encoding`` to ``S1``
(corresponding to NumPy's single-character bytes dtype).
If character arrays are used:
- The string encoding that was used is stored on
disk in the ``_Encoding`` attribute, which matches an ad-hoc convention
`adopted by the netCDF4-Python library <https://github.com/Unidata/netcdf4-python/pull/665>`_.
At the time of this writing (October 2017), a standard convention for indicating
string encoding for character arrays in netCDF files was
`still under discussion <https://github.com/Unidata/netcdf-c/issues/402>`_.
Technically, you can use
`any string encoding recognized by Python <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ if you feel the need to deviate from UTF-8,
by setting the ``_Encoding`` field in ``encoding``. But
`we don't recommend it <https://utf8everywhere.org/>`_.
- The character dimension name can be specified by the ``char_dim_name`` field of a variable's
``encoding``. If the name of the character dimension is not specified, the default is
``f'string{data.shape[-1]}'``. When decoding character arrays from existing files, the
``char_dim_name`` is added to the variables ``encoding`` to preserve if encoding happens, but
the field can be edited by the user.
.. warning::
Missing values in bytes or unicode string arrays (represented by ``NaN`` in
xarray) are currently written to disk as empty strings ``''``. This means
missing values will not be restored when data is loaded from disk.
This behavior is likely to change in the future (:issue:`1647`).
Unfortunately, explicitly setting a ``_FillValue`` for string arrays to handle
missing values doesn't work yet either, though we also hope to fix this in the
future.
Chunk based compression
.......................
``zlib``, ``complevel``, ``fletcher32``, ``contiguous`` and ``chunksizes``
can be used for enabling netCDF4/HDF5's chunk based compression, as described
in the `documentation for createVariable`_ for netCDF4-Python. This only works
for netCDF4 files and thus requires using ``format='netCDF4'`` and either
``engine='netcdf4'`` or ``engine='h5netcdf'``.
.. _documentation for createVariable: https://unidata.github.io/netcdf4-python/#netCDF4.Dataset.createVariable
Chunk based gzip compression can yield impressive space savings, especially
for sparse data, but it comes with significant performance overhead. HDF5
libraries can only read complete chunks back into memory, and maximum
decompression speed is in the range of 50-100 MB/s. Worse, HDF5's compression
and decompression currently cannot be parallelized with dask. For these reasons, we
recommend trying discretization based compression (described above) first.
Time units
..........
The ``units`` and ``calendar`` attributes control how xarray serializes ``datetime64`` and
``timedelta64`` arrays to datasets on disk as numeric values. The ``units`` encoding
should be a string like ``'days since 1900-01-01'`` for ``datetime64`` data or a string
like ``'days'`` for ``timedelta64`` data. ``calendar`` should be one of the calendar types
supported by netCDF4-python: ``'standard'``, ``'gregorian'``, ``'proleptic_gregorian'``, ``'noleap'``,
``'365_day'``, ``'360_day'``, ``'julian'``, ``'all_leap'``, ``'366_day'``.
By default, xarray uses the ``'proleptic_gregorian'`` calendar and units of the smallest time
difference between values, with a reference time of the first time value.
.. _io.coordinates:
Coordinates
...........
You can control the ``coordinates`` attribute written to disk by specifying ``DataArray.encoding["coordinates"]``.
If not specified, xarray automatically sets ``DataArray.encoding["coordinates"]`` to a space-delimited list
of names of coordinate variables that share dimensions with the ``DataArray`` being written.
This allows perfect roundtripping of xarray datasets but may not be desirable.
When an xarray ``Dataset`` contains non-dimensional coordinates that do not share dimensions with any of
the variables, these coordinate variable names are saved under a "global" ``"coordinates"`` attribute.
This is not CF-compliant but again facilitates roundtripping of xarray datasets.
Invalid netCDF files
~~~~~~~~~~~~~~~~~~~~
The library ``h5netcdf`` allows writing some dtypes that aren't
allowed in netCDF4 (see
`h5netcdf documentation <https://github.com/h5netcdf/h5netcdf#invalid-netcdf-files>`_).
This feature is available through :py:meth:`DataArray.to_netcdf` and
:py:meth:`Dataset.to_netcdf` when used with ``engine="h5netcdf"``
and currently raises a warning unless ``invalid_netcdf=True`` is set.
.. warning::
Note that this produces a file that is likely to be not readable by other netCDF
libraries!
.. _io.hdf5:
HDF5
----
`HDF5`_ is both a file format and a data model for storing information. HDF5 stores
data hierarchically, using groups to create a nested structure. HDF5 is a more
general version of the netCDF4 data model, so the nested structure is one of many
similarities between the two data formats.
Reading HDF5 files in xarray requires the ``h5netcdf`` engine, which can be installed
with ``conda install h5netcdf``. Once installed we can use xarray to open HDF5 files:
.. code:: python
xr.open_dataset("/path/to/my/file.h5")
The similarities between HDF5 and netCDF4 mean that HDF5 data can be written with the
same :py:meth:`Dataset.to_netcdf` method as used for netCDF4 data:
.. jupyter-execute::
ds = xr.Dataset(
{"foo": (("x", "y"), np.random.rand(4, 5))},
coords={
"x": [10, 20, 30, 40],
"y": pd.date_range("2000-01-01", periods=5),
"z": ("x", list("abcd")),
},
)
ds.to_netcdf("saved_on_disk.h5")
Groups
~~~~~~
If you have multiple or highly nested groups, xarray by default may not read the group
that you want. A particular group of an HDF5 file can be specified using the ``group``
argument:
.. code:: python
xr.open_dataset("/path/to/my/file.h5", group="/my/group")
While xarray cannot interrogate an HDF5 file to determine which groups are available,
the HDF5 Python reader `h5py`_ can be used instead.
Natively the xarray data structures can only handle one level of nesting, organized as
DataArrays inside of Datasets. If your HDF5 file has additional levels of hierarchy you
can only access one group and a time and will need to specify group names.
.. _HDF5: https://hdfgroup.github.io/hdf5/index.html
.. _h5py: https://www.h5py.org/
.. _io.zarr:
Zarr
----
`Zarr`_ is a Python package that provides an implementation of chunked, compressed,
N-dimensional arrays.
Zarr has the ability to store arrays in a range of ways, including in memory,
in files, and in cloud-based object storage such as `Amazon S3`_ and
`Google Cloud Storage`_.
Xarray's Zarr backend allows xarray to leverage these capabilities, including
the ability to store and analyze datasets far too large fit onto disk
(particularly :ref:`in combination with dask <dask>`).
Xarray can't open just any zarr dataset, because xarray requires special
metadata (attributes) describing the dataset dimensions and coordinates.
At this time, xarray can only open zarr datasets with these special attributes,
such as zarr datasets written by xarray,
`netCDF <https://docs.unidata.ucar.edu/nug/current/nczarr_head.html>`_,
or `GDAL <https://gdal.org/drivers/raster/zarr.html>`_.
For implementation details, see :ref:`zarr_encoding`.
To write a dataset with zarr, we use the :py:meth:`Dataset.to_zarr` method.
To write to a local directory, we pass a path to a directory:
.. jupyter-execute::
:hide-code:
! rm -rf path/to/directory.zarr
.. jupyter-execute::
:stderr:
ds = xr.Dataset(
{"foo": (("x", "y"), np.random.rand(4, 5))},
coords={
"x": [10, 20, 30, 40],
"y": pd.date_range("2000-01-01", periods=5),
"z": ("x", list("abcd")),
},
)
ds.to_zarr("path/to/directory.zarr", zarr_format=2, consolidated=False)
(The suffix ``.zarr`` is optional--just a reminder that a zarr store lives
there.) If the directory does not exist, it will be created. If a zarr
store is already present at that path, an error will be raised, preventing it
from being overwritten. To override this behavior and overwrite an existing
store, add ``mode='w'`` when invoking :py:meth:`~Dataset.to_zarr`.
DataArrays can also be saved to disk using the :py:meth:`DataArray.to_zarr` method,
and loaded from disk using the :py:func:`open_dataarray` function with ``engine='zarr'``.
Similar to :py:meth:`DataArray.to_netcdf`, :py:meth:`DataArray.to_zarr` will
convert the ``DataArray`` to a ``Dataset`` before saving, and then convert back
when loading, ensuring that the ``DataArray`` that is loaded is always exactly
the same as the one that was saved.
.. note::
xarray does not write `NCZarr <https://docs.unidata.ucar.edu/nug/current/nczarr_head.html>`_ attributes.
Therefore, NCZarr data must be opened in read-only mode.
To store variable length strings, convert them to object arrays first with
``dtype=object``.
To read back a zarr dataset that has been created this way, we use the
:py:func:`open_zarr` method:
.. jupyter-execute::
ds_zarr = xr.open_zarr("path/to/directory.zarr", consolidated=False)
ds_zarr
Cloud Storage Buckets
~~~~~~~~~~~~~~~~~~~~~
It is possible to read and write xarray datasets directly from / to cloud
storage buckets using zarr. This example uses the `gcsfs`_ package to provide
an interface to `Google Cloud Storage`_.
General `fsspec`_ URLs, those that begin with ``s3://`` or ``gcs://`` for example,
are parsed and the store set up for you automatically when reading.
You should include any arguments to the storage backend as the
key ```storage_options``, part of ``backend_kwargs``.
.. code:: python
ds_gcs = xr.open_dataset(
"gcs://<bucket-name>/path.zarr",
backend_kwargs={
"storage_options": {"project": "<project-name>", "token": None}
},
engine="zarr",
)
This also works with ``open_mfdataset``, allowing you to pass a list of paths or
a URL to be interpreted as a glob string.
For writing, you may either specify a bucket URL or explicitly set up a
``zarr.abc.store.Store`` instance, as follows:
.. tab:: URL
.. code:: python
# write to the bucket via GCS URL
ds.to_zarr("gs://<bucket/path/to/data.zarr>")
# read it back
ds_gcs = xr.open_zarr("gs://<bucket/path/to/data.zarr>")
.. tab:: fsspec
.. code:: python
import gcsfs
import zarr
# manually manage the cloud filesystem connection -- useful, for example,
# when you need to manage permissions to cloud resources
fs = gcsfs.GCSFileSystem(project="<project-name>", token=None)
zstore = zarr.storage.FsspecStore(fs, path="<bucket/path/to/data.zarr>")
# write to the bucket
ds.to_zarr(store=zstore)
# read it back
ds_gcs = xr.open_zarr(zstore)
.. tab:: obstore
.. code:: python
import obstore
import zarr
# alternatively, obstore offers a modern, performant interface for
# cloud buckets
gcsstore = obstore.store.GCSStore(
"<bucket>", prefix="<path/to/data.zarr>", skip_signature=True
)
zstore = zarr.store.ObjectStore(gcsstore)
# write to the bucket
ds.to_zarr(store=zstore)
# read it back
ds_gcs = xr.open_zarr(zstore)
.. _fsspec: https://filesystem-spec.readthedocs.io/en/latest/
.. _obstore: https://developmentseed.org/obstore/latest/
.. _Zarr: https://zarr.readthedocs.io/
.. _Amazon S3: https://aws.amazon.com/s3/
.. _Google Cloud Storage: https://cloud.google.com/storage/
.. _gcsfs: https://github.com/fsspec/gcsfs
.. _io.zarr.distributed_writes:
Distributed writes
~~~~~~~~~~~~~~~~~~
Xarray will natively use dask to write in parallel to a zarr store, which should
satisfy most moderately sized datasets. For more flexible parallelization, we
can use ``region`` to write to limited regions of arrays in an existing Zarr
store.
To scale this up to writing large datasets, first create an initial Zarr store
without writing all of its array data. This can be done by first creating a
``Dataset`` with dummy values stored in :ref:`dask <dask>`, and then calling
``to_zarr`` with ``compute=False`` to write only metadata (including ``attrs``)
to Zarr:
.. jupyter-execute::
:hide-code:
! rm -rf path/to/directory.zarr
.. jupyter-execute::
import dask.array
# The values of this dask array are entirely irrelevant; only the dtype,
# shape and chunks are used
dummies = dask.array.zeros(30, chunks=10)
ds = xr.Dataset({"foo": ("x", dummies)}, coords={"x": np.arange(30)})
path = "path/to/directory.zarr"
# Now we write the metadata without computing any array values
ds.to_zarr(path, compute=False, consolidated=False)
Now, a Zarr store with the correct variable shapes and attributes exists that
can be filled out by subsequent calls to ``to_zarr``.
Setting ``region="auto"`` will open the existing store and determine the
correct alignment of the new data with the existing dimensions, or as an
explicit mapping from dimension names to Python ``slice`` objects indicating
where the data should be written (in index space, not label space), e.g.,
.. jupyter-execute::
# For convenience, we'll slice a single dataset, but in the real use-case
# we would create them separately possibly even from separate processes.
ds = xr.Dataset({"foo": ("x", np.arange(30))}, coords={"x": np.arange(30)})
# Any of the following region specifications are valid
ds.isel(x=slice(0, 10)).to_zarr(path, region="auto", consolidated=False)
ds.isel(x=slice(10, 20)).to_zarr(path, region={"x": "auto"}, consolidated=False)
ds.isel(x=slice(20, 30)).to_zarr(path, region={"x": slice(20, 30)}, consolidated=False)
Concurrent writes with ``region`` are safe as long as they modify distinct
chunks in the underlying Zarr arrays (or use an appropriate ``lock``).
As a safety check to make it harder to inadvertently override existing values,
if you set ``region`` then *all* variables included in a Dataset must have
dimensions included in ``region``. Other variables (typically coordinates)
need to be explicitly dropped and/or written in a separate calls to ``to_zarr``
with ``mode='a'``.
Zarr Compressors and Filters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are many different `options for compression and filtering possible with
zarr <https://zarr.readthedocs.io/en/stable/user-guide/arrays.html#compressors>`_.
These options can be passed to the ``to_zarr`` method as variable encoding.
For example:
.. jupyter-execute::
:hide-code:
! rm -rf foo.zarr
.. jupyter-execute::
import zarr
from zarr.codecs import BloscCodec
compressor = BloscCodec(cname="zstd", clevel=3, shuffle="shuffle")
ds.to_zarr("foo.zarr", consolidated=False, encoding={"foo": {"compressors": [compressor]}})
.. note::
Not all native zarr compression and filtering options have been tested with
xarray.
.. _io.zarr.appending:
Modifying existing Zarr stores
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Xarray supports several ways of incrementally writing variables to a Zarr
store. These options are useful for scenarios when it is infeasible or
undesirable to write your entire dataset at once.
1. Use ``mode='a'`` to add or overwrite entire variables,
2. Use ``append_dim`` to resize and append to existing variables, and
3. Use ``region`` to write to limited regions of existing arrays.
.. tip::
For ``Dataset`` objects containing dask arrays, a
single call to ``to_zarr()`` will write all of your data in parallel.
.. warning::
Alignment of coordinates is currently not checked when modifying an
existing Zarr store. It is up to the user to ensure that coordinates are
consistent.
To add or overwrite entire variables, simply call :py:meth:`~Dataset.to_zarr`
with ``mode='a'`` on a Dataset containing the new variables, passing in an
existing Zarr store or path to a Zarr store.
To resize and then append values along an existing dimension in a store, set
``append_dim``. This is a good option if data always arrives in a particular
order, e.g., for time-stepping a simulation:
.. jupyter-execute::
:hide-code:
! rm -rf path/to/directory.zarr
.. jupyter-execute::
ds1 = xr.Dataset(
{"foo": (("x", "y", "t"), np.random.rand(4, 5, 2))},
coords={
"x": [10, 20, 30, 40],
"y": [1, 2, 3, 4, 5],
"t": pd.date_range("2001-01-01", periods=2),
},
)
ds1.to_zarr("path/to/directory.zarr", consolidated=False)
.. jupyter-execute::
ds2 = xr.Dataset(
{"foo": (("x", "y", "t"), np.random.rand(4, 5, 2))},
coords={
"x": [10, 20, 30, 40],
"y": [1, 2, 3, 4, 5],
"t": pd.date_range("2001-01-03", periods=2),
},
)
ds2.to_zarr("path/to/directory.zarr", append_dim="t", consolidated=False)
.. _io.zarr.writing_chunks:
Specifying chunks in a zarr store
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Chunk sizes may be specified in one of three ways when writing to a zarr store:
1. Manual chunk sizing through the use of the ``encoding`` argument in :py:meth:`Dataset.to_zarr`:
2. Automatic chunking based on chunks in dask arrays
3. Default chunk behavior determined by the zarr library
The resulting chunks will be determined based on the order of the above list; dask
chunks will be overridden by manually-specified chunks in the encoding argument,
and the presence of either dask chunks or chunks in the ``encoding`` attribute will
supersede the default chunking heuristics in zarr.
Importantly, this logic applies to every array in the zarr store individually,
including coordinate arrays. Therefore, if a dataset contains one or more dask
arrays, it may still be desirable to specify a chunk size for the coordinate arrays
(for example, with a chunk size of ``-1`` to include the full coordinate).
To specify chunks manually using the ``encoding`` argument, provide a nested
dictionary with the structure ``{'variable_or_coord_name': {'chunks': chunks_tuple}}``.
.. note::
The positional ordering of the chunks in the encoding argument must match the
positional ordering of the dimensions in each array. Watch out for arrays with
differently-ordered dimensions within a single Dataset.
For example, let's say we're working with a dataset with dimensions
``('time', 'x', 'y')``, a variable ``Tair`` which is chunked in ``x`` and ``y``,
and two multi-dimensional coordinates ``xc`` and ``yc``:
.. jupyter-execute::
ds = xr.tutorial.open_dataset("rasm")
ds["Tair"] = ds["Tair"].chunk({"x": 100, "y": 100})
ds
These multi-dimensional coordinates are only two-dimensional and take up very little
space on disk or in memory, yet when writing to disk the default zarr behavior is to
split them into chunks:
.. jupyter-execute::
ds.to_zarr("path/to/directory.zarr", consolidated=False, mode="w")
!tree -I zarr.json path/to/directory.zarr
This may cause unwanted overhead on some systems, such as when reading from a cloud
storage provider. To disable this chunking, we can specify a chunk size equal to the
shape of each coordinate array in the ``encoding`` argument:
.. jupyter-execute::
ds.to_zarr(
"path/to/directory.zarr",
encoding={"xc": {"chunks": ds.xc.shape}, "yc": {"chunks": ds.yc.shape}},
consolidated=False,
mode="w",
)
!tree -I zarr.json path/to/directory.zarr
The number of chunks on Tair matches our dask chunks, while there is now only a single
chunk in the directory stores of each coordinate.
Groups
~~~~~~
Nested groups in zarr stores can be represented by loading the store as a
:py:class:`xarray.DataTree` object, similarly to netCDF. To open a whole zarr store as
a tree of groups use the :py:func:`open_datatree` function. To save a
``DataTree`` object as a zarr store containing many groups, use the
:py:meth:`xarray.DataTree.to_zarr()` method.
.. note::
Note that perfect round-tripping should always be possible with a zarr
store (:ref:`unlike for netCDF files <netcdf.group.warning>`), as zarr does
not support "unused" dimensions.
For the root group the same restrictions (:ref:`as for netCDF files <netcdf.root_group.note>`) apply.
Due to file format specifications the on-disk root group name is always ``"/"``
overriding any given ``DataTree`` root node name.
.. _io.zarr.consolidated_metadata:
Consolidated Metadata
~~~~~~~~~~~~~~~~~~~~~
Xarray needs to read all of the zarr metadata when it opens a dataset.
In some storage mediums, such as with cloud object storage (e.g. `Amazon S3`_),
this can introduce significant overhead, because two separate HTTP calls to the
object store must be made for each variable in the dataset.
By default Xarray uses a feature called
*consolidated metadata*, storing all metadata for the entire dataset with a
single key (by default called ``.zmetadata``). This typically drastically speeds
up opening the store. (For more information on this feature, consult the
`zarr docs on consolidating metadata <https://zarr.readthedocs.io/en/latest/user-guide/consolidated_metadata.html>`_.)
By default, xarray writes consolidated metadata and attempts to read stores
with consolidated metadata, falling back to use non-consolidated metadata for
reads. Because this fall-back option is so much slower, xarray issues a
``RuntimeWarning`` with guidance when reading with consolidated metadata fails:
Failed to open Zarr store with consolidated metadata, falling back to try
reading non-consolidated metadata. This is typically much slower for
opening a dataset. To silence this warning, consider:
1. Consolidating metadata in this existing store with
:py:func:`zarr.consolidate_metadata`.
2. Explicitly setting ``consolidated=False``, to avoid trying to read
consolidate metadata.
3. Explicitly setting ``consolidated=True``, to raise an error in this case
instead of falling back to try reading non-consolidated metadata.
Fill Values
~~~~~~~~~~~
Zarr arrays have a ``fill_value`` that is used for chunks that were never written to disk.
For the Zarr version 2 format, Xarray will set ``fill_value`` to be equal to the CF/NetCDF ``"_FillValue"``.
This is ``np.nan`` by default for floats, and unset otherwise. Note that the Zarr library will set a
default ``fill_value`` if not specified (usually ``0``).
For the Zarr version 3 format, ``_FillValue`` and ```fill_value`` are decoupled.
So you can set ``fill_value`` in ``encoding`` as usual.
Note that at read-time, you can control whether ``_FillValue`` is masked using the
``mask_and_scale`` kwarg; and whether Zarr's ``fill_value`` is treated as synonymous
with ``_FillValue`` using the ``use_zarr_fill_value_as_mask`` kwarg to :py:func:`xarray.open_zarr`.
.. _io.kerchunk:
Kerchunk
--------
`Kerchunk <https://fsspec.github.io/kerchunk>`_ is a Python library
that allows you to access chunked and compressed data formats (such as NetCDF3, NetCDF4, HDF5, GRIB2, TIFF & FITS),
many of which are primary data formats for many data archives, by viewing the
whole archive as an ephemeral `Zarr`_ dataset which allows for parallel, chunk-specific access.
Instead of creating a new copy of the dataset in the Zarr spec/format or
downloading the files locally, Kerchunk reads through the data archive and extracts the
byte range and compression information of each chunk and saves as a ``reference``.
These references are then saved as ``json`` files or ``parquet`` (more efficient)
for later use. You can view some of these stored in the ``references``
directory `here <https://github.com/pydata/xarray-data>`_.
.. note::
These references follow this `specification <https://fsspec.github.io/kerchunk/spec.html>`_.
Packages like `kerchunk`_ and `virtualizarr <https://github.com/zarr-developers/VirtualiZarr>`_
help in creating and reading these references.
Reading these data archives becomes really easy with ``kerchunk`` in combination
with ``xarray``, especially when these archives are large in size. A single combined
reference can refer to thousands of the original data files present in these archives.
You can view the whole dataset with from this combined reference using the above packages.
The following example shows opening a single ``json`` reference to the ``saved_on_disk.h5`` file created above.
If the file were instead stored remotely (e.g. ``s3://saved_on_disk.h5``) you can use ``storage_options``
that are used to `configure fsspec <https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.implementations.reference.ReferenceFileSystem.__init__>`_:
.. jupyter-execute::
ds_kerchunked = xr.open_dataset(
"./combined.json",
engine="kerchunk",
storage_options={},
)
ds_kerchunked
.. note::
You can refer to the `project pythia kerchunk cookbook <https://projectpythia.org/kerchunk-cookbook/README.html>`_
and the `pangeo guide on kerchunk <https://guide.cloudnativegeo.org/kerchunk/intro.html>`_ for more information.
.. _io.iris:
Iris
----
The Iris_ tool allows easy reading of common meteorological and climate model formats
(including GRIB and UK MetOffice PP files) into ``Cube`` objects which are in many ways very
similar to ``DataArray`` objects, while enforcing a CF-compliant data model.
DataArray ``to_iris`` and ``from_iris``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If iris is installed, xarray can convert a ``DataArray`` into a ``Cube`` using
:py:meth:`DataArray.to_iris`:
.. jupyter-execute::
da = xr.DataArray(
np.random.rand(4, 5),
dims=["x", "y"],
coords=dict(x=[10, 20, 30, 40], y=pd.date_range("2000-01-01", periods=5)),
)
cube = da.to_iris()
print(cube)
Conversely, we can create a new ``DataArray`` object from a ``Cube`` using
:py:meth:`DataArray.from_iris`:
.. jupyter-execute::
da_cube = xr.DataArray.from_iris(cube)
da_cube
Ncdata
~~~~~~
Ncdata_ provides more sophisticated means of transferring data, including entire
datasets. It uses the file saving and loading functions in both projects to provide a
more "correct" translation between them, but still with very low overhead and not
using actual disk files.
Here we load an xarray dataset and convert it to Iris cubes:
.. jupyter-execute::
:stderr:
ds = xr.tutorial.open_dataset("air_temperature_gradient")
cubes = ncdata.iris_xarray.cubes_from_xarray(ds)
print(cubes)
.. jupyter-execute::
print(cubes[1])
And we can convert the cubes back to an xarray dataset:
.. jupyter-execute::
# ensure dataset-level and variable-level attributes loaded correctly
iris.FUTURE.save_split_attrs = True
ds = ncdata.iris_xarray.cubes_to_xarray(cubes)
ds
Ncdata can also adjust file data within load and save operations, to fix data loading
problems or provide exact save formatting without needing to modify files on disk.
See for example : `ncdata usage examples`_
.. _Iris: https://scitools.org.uk/iris
.. _Ncdata: https://ncdata.readthedocs.io/en/latest/index.html
.. _ncdata usage examples: https://github.com/pp-mo/ncdata/tree/v0.1.2?tab=readme-ov-file#correct-a-miscoded-attribute-in-iris-input
OPeNDAP
-------
Xarray includes support for `OPeNDAP`__ (via the netCDF4 library or Pydap), which
lets us access large datasets over HTTP.
__ https://www.opendap.org/
For example, we can open a connection to GBs of weather data produced by the
`PRISM`__ project, and hosted by `IRI`__ at Columbia:
__ https://www.prism.oregonstate.edu/
__ https://iri.columbia.edu/
.. jupyter-input::
remote_data = xr.open_dataset(
"http://iridl.ldeo.columbia.edu/SOURCES/.OSU/.PRISM/.monthly/dods",
decode_times=False,
)
remote_data
.. jupyter-output::
<xarray.Dataset>
Dimensions: (T: 1422, X: 1405, Y: 621)
Coordinates:
* X (X) float32 -125.0 -124.958 -124.917 -124.875 -124.833 -124.792 -124.75 ...
* T (T) float32 -779.5 -778.5 -777.5 -776.5 -775.5 -774.5 -773.5 -772.5 -771.5 ...
* Y (Y) float32 49.9167 49.875 49.8333 49.7917 49.75 49.7083 49.6667 49.625 ...
Data variables:
ppt (T, Y, X) float64 ...
tdmean (T, Y, X) float64 ...
tmax (T, Y, X) float64 ...
tmin (T, Y, X) float64 ...
Attributes:
Conventions: IRIDL
expires: 1375315200
.. TODO: update this example to show off decode_cf?
.. note::
Like many real-world datasets, this dataset does not entirely follow
`CF conventions`_. Unexpected formats will usually cause xarray's automatic
decoding to fail. The way to work around this is to either set
``decode_cf=False`` in ``open_dataset`` to turn off all use of CF
conventions, or by only disabling the troublesome parser.
In this case, we set ``decode_times=False`` because the time axis here
provides the calendar attribute in a format that xarray does not expect
(the integer ``360`` instead of a string like ``'360_day'``).
We can select and slice this data any number of times, and nothing is loaded
over the network until we look at particular values:
.. jupyter-input::
tmax = remote_data["tmax"][:500, ::3, ::3]
tmax
.. jupyter-output::
<xarray.DataArray 'tmax' (T: 500, Y: 207, X: 469)>
[48541500 values with dtype=float64]
Coordinates:
* Y (Y) float32 49.9167 49.7917 49.6667 49.5417 49.4167 49.2917 ...
* X (X) float32 -125.0 -124.875 -124.75 -124.625 -124.5 -124.375 ...
* T (T) float32 -779.5 -778.5 -777.5 -776.5 -775.5 -774.5 -773.5 ...
Attributes:
pointwidth: 120
standard_name: air_temperature
units: Celsius_scale
expires: 1443657600
.. jupyter-input::
# the data is downloaded automatically when we make the plot
tmax[0].plot()
.. image:: ../_static/opendap-prism-tmax.png
Some servers require authentication before we can access the data. Pydap uses
a `Requests`__ session object (which the user can pre-define), and this
session object can recover `authentication`__` credentials from a locally stored
``.netrc`` file. For example, to connect to a server that requires NASA's
URS authentication, with the username/password credentials stored on a locally
accessible ``.netrc``, access to OPeNDAP data should be as simple as this::
import xarray as xr
import requests
my_session = requests.Session()
ds_url = 'https://gpm1.gesdisc.eosdis.nasa.gov/opendap/hyrax/example.nc'
ds = xr.open_dataset(ds_url, session=my_session, engine="pydap")
Moreover, a bearer token header can be included in a `Requests`__ session
object, allowing for token-based authentication which OPeNDAP servers can use
to avoid some redirects.
Lastly, OPeNDAP servers may provide endpoint URLs for different OPeNDAP protocols,
DAP2 and DAP4. To specify which protocol between the two options to use, you can
replace the scheme of the url with the name of the protocol. For example::
# dap2 url
ds_url = 'dap2://gpm1.gesdisc.eosdis.nasa.gov/opendap/hyrax/example.nc'
# dap4 url
ds_url = 'dap4://gpm1.gesdisc.eosdis.nasa.gov/opendap/hyrax/example.nc'
While most OPeNDAP servers implement DAP2, not all servers implement DAP4. It
is recommended to check if the URL you are using `supports DAP4`__ by checking the
URL on a browser.
__ https://docs.python-requests.org
__ https://pydap.github.io/pydap/en/notebooks/Authentication.html
__ https://pydap.github.io/pydap/en/faqs/dap2_or_dap4_url.html
.. _io.pickle:
Pickle
------
The simplest way to serialize an xarray object is to use Python's built-in pickle
module:
.. jupyter-execute::
import pickle
# use the highest protocol (-1) because it is way faster than the default
# text based pickle format
pkl = pickle.dumps(ds, protocol=-1)
pickle.loads(pkl)
Pickling is important because it doesn't require any external libraries
and lets you use xarray objects with Python modules like
:py:mod:`multiprocessing` or :ref:`Dask <dask>`. However, pickling is
**not recommended for long-term storage**.
Restoring a pickle requires that the internal structure of the types for the
pickled data remain unchanged. Because the internal design of xarray is still
being refined, we make no guarantees (at this point) that objects pickled with
this version of xarray will work in future versions.
.. note::
When pickling an object opened from a NetCDF file, the pickle file will
contain a reference to the file on disk. If you want to store the actual
array values, load it into memory first with :py:meth:`Dataset.load`
or :py:meth:`Dataset.compute`.
.. _dictionary io:
Dictionary
----------
We can convert a ``Dataset`` (or a ``DataArray``) to a dict using
:py:meth:`Dataset.to_dict`:
.. jupyter-execute::
ds = xr.Dataset({"foo": ("x", np.arange(30))})
d = ds.to_dict()
d
We can create a new xarray object from a dict using
:py:meth:`Dataset.from_dict`:
.. jupyter-execute::
ds_dict = xr.Dataset.from_dict(d)
ds_dict
Dictionary support allows for flexible use of xarray objects. It doesn't
require external libraries and dicts can easily be pickled, or converted to
json, or geojson. All the values are converted to lists, so dicts might
be quite large.
To export just the dataset schema without the data itself, use the
``data=False`` option:
.. jupyter-execute::
ds.to_dict(data=False)
.. jupyter-execute::
:hide-code:
# We're now done with the dataset named `ds`. Although the `with` statement closed
# the dataset, displaying the unpickled pickle of `ds` re-opened "saved_on_disk.nc".
# However, `ds` (rather than the unpickled dataset) refers to the open file. Delete
# `ds` to close the file.
del ds
for f in ["saved_on_disk.nc", "saved_on_disk.h5"]:
if os.path.exists(f):
os.remove(f)
This can be useful for generating indices of dataset contents to expose to
search indices or other automated data discovery tools.
.. _io.rasterio:
Rasterio
--------
GDAL readable raster data using `rasterio`_ such as GeoTIFFs can be opened using the `rioxarray`_ extension.
`rioxarray`_ can also handle geospatial related tasks such as re-projecting and clipping.
.. jupyter-input::
import rioxarray
rds = rioxarray.open_rasterio("RGB.byte.tif")
rds
.. jupyter-output::
<xarray.DataArray (band: 3, y: 718, x: 791)>
[1703814 values with dtype=uint8]
Coordinates:
* band (band) int64 1 2 3
* y (y) float64 2.827e+06 2.826e+06 ... 2.612e+06 2.612e+06
* x (x) float64 1.021e+05 1.024e+05 ... 3.389e+05 3.392e+05
spatial_ref int64 0
Attributes:
STATISTICS_MAXIMUM: 255
STATISTICS_MEAN: 29.947726688477
STATISTICS_MINIMUM: 0
STATISTICS_STDDEV: 52.340921626611
transform: (300.0379266750948, 0.0, 101985.0, 0.0, -300.0417827...
_FillValue: 0.0
scale_factor: 1.0
add_offset: 0.0
grid_mapping: spatial_ref
.. jupyter-input::
rds.rio.crs
# CRS.from_epsg(32618)
rds4326 = rds.rio.reproject("epsg:4326")
rds4326.rio.crs
# CRS.from_epsg(4326)
rds4326.rio.to_raster("RGB.byte.4326.tif")
.. _rasterio: https://rasterio.readthedocs.io/en/latest/
.. _rioxarray: https://corteva.github.io/rioxarray/stable/
.. _test files: https://github.com/rasterio/rasterio/blob/master/tests/data/RGB.byte.tif
.. _pyproj: https://github.com/pyproj4/pyproj
.. _io.cfgrib:
.. jupyter-execute::
:hide-code:
import shutil
shutil.rmtree("foo.zarr")
shutil.rmtree("path/to/directory.zarr")
GRIB format via cfgrib
----------------------
Xarray supports reading GRIB files via ECMWF cfgrib_ python driver,
if it is installed. To open a GRIB file supply ``engine='cfgrib'``
to :py:func:`open_dataset` after installing cfgrib_:
.. jupyter-input::
ds_grib = xr.open_dataset("example.grib", engine="cfgrib")
We recommend installing cfgrib via conda::
conda install -c conda-forge cfgrib
.. _cfgrib: https://github.com/ecmwf/cfgrib
CSV and other formats supported by pandas
-----------------------------------------
For more options (tabular formats and CSV files in particular), consider
exporting your objects to pandas and using its broad range of `IO tools`_.
For CSV files, one might also consider `xarray_extras`_.
.. _xarray_extras: https://xarray-extras.readthedocs.io/en/latest/api/csv.html
.. _IO tools: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
Third party libraries
---------------------
More formats are supported by extension libraries:
- `xarray-mongodb <https://xarray-mongodb.readthedocs.io/en/latest/>`_: Store xarray objects on MongoDB
|