1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
.. _testing:
Testing your code
=================
.. jupyter-execute::
:hide-code:
import numpy as np
import pandas as pd
import xarray as xr
np.random.seed(123456)
.. _testing.hypothesis:
Hypothesis testing
------------------
.. note::
Testing with hypothesis is a fairly advanced topic. Before reading this section it is recommended that you take a look
at our guide to xarray's :ref:`data structures`, are familiar with conventional unit testing in
`pytest <https://docs.pytest.org/>`_, and have seen the
`hypothesis library documentation <https://hypothesis.readthedocs.io/>`_.
`The hypothesis library <https://hypothesis.readthedocs.io/>`_ is a powerful tool for property-based testing.
Instead of writing tests for one example at a time, it allows you to write tests parameterized by a source of many
dynamically generated examples. For example you might have written a test which you wish to be parameterized by the set
of all possible integers via :py:func:`hypothesis.strategies.integers()`.
Property-based testing is extremely powerful, because (unlike more conventional example-based testing) it can find bugs
that you did not even think to look for!
Strategies
~~~~~~~~~~
Each source of examples is called a "strategy", and xarray provides a range of custom strategies which produce xarray
data structures containing arbitrary data. You can use these to efficiently test downstream code,
quickly ensuring that your code can handle xarray objects of all possible structures and contents.
These strategies are accessible in the :py:mod:`xarray.testing.strategies` module, which provides
.. currentmodule:: xarray
.. autosummary::
testing.strategies.supported_dtypes
testing.strategies.names
testing.strategies.dimension_names
testing.strategies.dimension_sizes
testing.strategies.attrs
testing.strategies.variables
testing.strategies.unique_subset_of
These build upon the numpy and array API strategies offered in :py:mod:`hypothesis.extra.numpy` and :py:mod:`hypothesis.extra.array_api`:
.. jupyter-execute::
import hypothesis.extra.numpy as npst
Generating Examples
~~~~~~~~~~~~~~~~~~~
To see an example of what each of these strategies might produce, you can call one followed by the ``.example()`` method,
which is a general hypothesis method valid for all strategies.
.. jupyter-execute::
import xarray.testing.strategies as xrst
xrst.variables().example()
.. jupyter-execute::
xrst.variables().example()
.. jupyter-execute::
xrst.variables().example()
You can see that calling ``.example()`` multiple times will generate different examples, giving you an idea of the wide
range of data that the xarray strategies can generate.
In your tests however you should not use ``.example()`` - instead you should parameterize your tests with the
:py:func:`hypothesis.given` decorator:
.. jupyter-execute::
from hypothesis import given
.. jupyter-execute::
@given(xrst.variables())
def test_function_that_acts_on_variables(var):
assert func(var) == ...
Chaining Strategies
~~~~~~~~~~~~~~~~~~~
Xarray's strategies can accept other strategies as arguments, allowing you to customise the contents of the generated
examples.
.. jupyter-execute::
# generate a Variable containing an array with a complex number dtype, but all other details still arbitrary
from hypothesis.extra.numpy import complex_number_dtypes
xrst.variables(dtype=complex_number_dtypes()).example()
This also works with custom strategies, or strategies defined in other packages.
For example you could imagine creating a ``chunks`` strategy to specify particular chunking patterns for a dask-backed array.
Fixing Arguments
~~~~~~~~~~~~~~~~
If you want to fix one aspect of the data structure, whilst allowing variation in the generated examples
over all other aspects, then use :py:func:`hypothesis.strategies.just()`.
.. jupyter-execute::
import hypothesis.strategies as st
# Generates only variable objects with dimensions ["x", "y"]
xrst.variables(dims=st.just(["x", "y"])).example()
(This is technically another example of chaining strategies - :py:func:`hypothesis.strategies.just()` is simply a
special strategy that just contains a single example.)
To fix the length of dimensions you can instead pass ``dims`` as a mapping of dimension names to lengths
(i.e. following xarray objects' ``.sizes()`` property), e.g.
.. jupyter-execute::
# Generates only variables with dimensions ["x", "y"], of lengths 2 & 3 respectively
xrst.variables(dims=st.just({"x": 2, "y": 3})).example()
You can also use this to specify that you want examples which are missing some part of the data structure, for instance
.. jupyter-execute::
# Generates a Variable with no attributes
xrst.variables(attrs=st.just({})).example()
Through a combination of chaining strategies and fixing arguments, you can specify quite complicated requirements on the
objects your chained strategy will generate.
.. jupyter-execute::
fixed_x_variable_y_maybe_z = st.fixed_dictionaries(
{"x": st.just(2), "y": st.integers(3, 4)}, optional={"z": st.just(2)}
)
fixed_x_variable_y_maybe_z.example()
.. jupyter-execute::
special_variables = xrst.variables(dims=fixed_x_variable_y_maybe_z)
special_variables.example()
.. jupyter-execute::
special_variables.example()
Here we have used one of hypothesis' built-in strategies :py:func:`hypothesis.strategies.fixed_dictionaries` to create a
strategy which generates mappings of dimension names to lengths (i.e. the ``size`` of the xarray object we want).
This particular strategy will always generate an ``x`` dimension of length 2, and a ``y`` dimension of
length either 3 or 4, and will sometimes also generate a ``z`` dimension of length 2.
By feeding this strategy for dictionaries into the ``dims`` argument of xarray's :py:func:`~st.variables` strategy,
we can generate arbitrary :py:class:`~xarray.Variable` objects whose dimensions will always match these specifications.
Generating Duck-type Arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Xarray objects don't have to wrap numpy arrays, in fact they can wrap any array type which presents the same API as a
numpy array (so-called "duck array wrapping", see :ref:`wrapping numpy-like arrays <internals.duckarrays>`).
Imagine we want to write a strategy which generates arbitrary ``Variable`` objects, each of which wraps a
:py:class:`sparse.COO` array instead of a ``numpy.ndarray``. How could we do that? There are two ways:
1. Create a xarray object with numpy data and use the hypothesis' ``.map()`` method to convert the underlying array to a
different type:
.. jupyter-execute::
import sparse
.. jupyter-execute::
def convert_to_sparse(var):
return var.copy(data=sparse.COO.from_numpy(var.to_numpy()))
.. jupyter-execute::
sparse_variables = xrst.variables(dims=xrst.dimension_names(min_dims=1)).map(
convert_to_sparse
)
sparse_variables.example()
.. jupyter-execute::
sparse_variables.example()
2. Pass a function which returns a strategy which generates the duck-typed arrays directly to the ``array_strategy_fn`` argument of the xarray strategies:
.. jupyter-execute::
def sparse_random_arrays(shape: tuple[int, ...]) -> sparse._coo.core.COO:
"""Strategy which generates random sparse.COO arrays"""
if shape is None:
shape = npst.array_shapes()
else:
shape = st.just(shape)
density = st.integers(min_value=0, max_value=1)
# note sparse.random does not accept a dtype kwarg
return st.builds(sparse.random, shape=shape, density=density)
def sparse_random_arrays_fn(
*, shape: tuple[int, ...], dtype: np.dtype
) -> st.SearchStrategy[sparse._coo.core.COO]:
return sparse_random_arrays(shape=shape)
.. jupyter-execute::
sparse_random_variables = xrst.variables(
array_strategy_fn=sparse_random_arrays_fn, dtype=st.just(np.dtype("float64"))
)
sparse_random_variables.example()
Either approach is fine, but one may be more convenient than the other depending on the type of the duck array which you
want to wrap.
Compatibility with the Python Array API Standard
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Xarray aims to be compatible with any duck-array type that conforms to the `Python Array API Standard <https://data-apis.org/array-api/latest/>`_
(see our :ref:`docs on Array API Standard support <internals.duckarrays.array_api_standard>`).
.. warning::
The strategies defined in :py:mod:`testing.strategies` are **not** guaranteed to use array API standard-compliant
dtypes by default.
For example arrays with the dtype ``np.dtype('float16')`` may be generated by :py:func:`testing.strategies.variables`
(assuming the ``dtype`` kwarg was not explicitly passed), despite ``np.dtype('float16')`` not being in the
array API standard.
If the array type you want to generate has an array API-compliant top-level namespace
(e.g. that which is conventionally imported as ``xp`` or similar),
you can use this neat trick:
.. jupyter-execute::
import numpy as xp # compatible in numpy 2.0
# use `import numpy.array_api as xp` in numpy>=1.23,<2.0
from hypothesis.extra.array_api import make_strategies_namespace
xps = make_strategies_namespace(xp)
xp_variables = xrst.variables(
array_strategy_fn=xps.arrays,
dtype=xps.scalar_dtypes(),
)
xp_variables.example()
Another array API-compliant duck array library would replace the import, e.g. ``import cupy as cp`` instead.
Testing over Subsets of Dimensions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A common task when testing xarray user code is checking that your function works for all valid input dimensions.
We can chain strategies to achieve this, for which the helper strategy :py:func:`~testing.strategies.unique_subset_of`
is useful.
It works for lists of dimension names
.. jupyter-execute::
dims = ["x", "y", "z"]
xrst.unique_subset_of(dims).example()
.. jupyter-execute::
xrst.unique_subset_of(dims).example()
as well as for mappings of dimension names to sizes
.. jupyter-execute::
dim_sizes = {"x": 2, "y": 3, "z": 4}
xrst.unique_subset_of(dim_sizes).example()
.. jupyter-execute::
xrst.unique_subset_of(dim_sizes).example()
This is useful because operations like reductions can be performed over any subset of the xarray object's dimensions.
For example we can write a pytest test that tests that a reduction gives the expected result when applying that reduction
along any possible valid subset of the Variable's dimensions.
.. code-block:: python
import numpy.testing as npt
@given(st.data(), xrst.variables(dims=xrst.dimension_names(min_dims=1)))
def test_mean(data, var):
"""Test that the mean of an xarray Variable is always equal to the mean of the underlying array."""
# specify arbitrary reduction along at least one dimension
reduction_dims = data.draw(xrst.unique_subset_of(var.dims, min_size=1))
# create expected result (using nanmean because arrays with Nans will be generated)
reduction_axes = tuple(var.get_axis_num(dim) for dim in reduction_dims)
expected = np.nanmean(var.data, axis=reduction_axes)
# assert property is always satisfied
result = var.mean(dim=reduction_dims).data
npt.assert_equal(expected, result)
|