1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
import itertools
import warnings
import numpy as np
import pytest
import xarray as xr
from xarray import Dataset
from xarray.testing import _assert_internal_invariants
pytest.importorskip("hypothesis")
pytestmark = pytest.mark.slow_hypothesis
import hypothesis.extra.numpy as npst
import hypothesis.strategies as st
from hypothesis import note, settings
from hypothesis.stateful import (
RuleBasedStateMachine,
initialize,
invariant,
precondition,
rule,
)
import xarray.testing.strategies as xrst
@st.composite
def unique(draw, strategy):
# https://stackoverflow.com/questions/73737073/create-hypothesis-strategy-that-returns-unique-values
seen = draw(st.shared(st.builds(set), key="key-for-unique-elems"))
return draw(
strategy.filter(lambda x: x not in seen).map(lambda x: seen.add(x) or x)
)
# Share to ensure we get unique names on each draw,
# so we don't try to add two variables with the same name
# or stack to a dimension with a name that already exists in the Dataset.
UNIQUE_NAME = unique(strategy=xrst.names())
DIM_NAME = xrst.dimension_names(name_strategy=UNIQUE_NAME, min_dims=1, max_dims=1)
index_variables = st.builds(
xr.Variable,
data=npst.arrays(
dtype=xrst.pandas_index_dtypes(),
shape=npst.array_shapes(min_dims=1, max_dims=1),
elements=dict(allow_nan=False, allow_infinity=False, allow_subnormal=False),
unique=True,
),
dims=DIM_NAME,
attrs=xrst.attrs(),
)
def add_dim_coord_and_data_var(ds, var):
(name,) = var.dims
# dim coord
ds[name] = var
# non-dim coord of same size; this allows renaming
ds[name + "_"] = var
class DatasetStateMachine(RuleBasedStateMachine):
# Can't use bundles because we'd need pre-conditions on consumes(bundle)
# indexed_dims = Bundle("indexed_dims")
# multi_indexed_dims = Bundle("multi_indexed_dims")
def __init__(self):
super().__init__()
self.dataset = Dataset()
self.check_default_indexes = True
# We track these separately as lists so we can guarantee order of iteration over them.
# Order of iteration over Dataset.dims is not guaranteed
self.indexed_dims = []
self.multi_indexed_dims = []
@initialize(var=index_variables)
def init_ds(self, var):
"""Initialize the Dataset so that at least one rule will always fire."""
(name,) = var.dims
add_dim_coord_and_data_var(self.dataset, var)
self.indexed_dims.append(name)
# TODO: stacking with a timedelta64 index and unstacking converts it to object
@rule(var=index_variables)
def add_dim_coord(self, var):
(name,) = var.dims
note(f"adding dimension coordinate {name}")
add_dim_coord_and_data_var(self.dataset, var)
self.indexed_dims.append(name)
@rule(var=index_variables)
def assign_coords(self, var):
(name,) = var.dims
note(f"assign_coords: {name}")
self.dataset = self.dataset.assign_coords({name: var})
self.indexed_dims.append(name)
@property
def has_indexed_dims(self) -> bool:
return bool(self.indexed_dims + self.multi_indexed_dims)
@rule(data=st.data())
@precondition(lambda self: self.has_indexed_dims)
def reset_index(self, data):
dim = data.draw(st.sampled_from(self.indexed_dims + self.multi_indexed_dims))
self.check_default_indexes = False
note(f"> resetting {dim}")
self.dataset = self.dataset.reset_index(dim)
if dim in self.indexed_dims:
del self.indexed_dims[self.indexed_dims.index(dim)]
elif dim in self.multi_indexed_dims:
del self.multi_indexed_dims[self.multi_indexed_dims.index(dim)]
@rule(newname=UNIQUE_NAME, data=st.data(), create_index=st.booleans())
@precondition(lambda self: bool(self.indexed_dims))
def stack(self, newname, data, create_index):
oldnames = data.draw(
st.lists(
st.sampled_from(self.indexed_dims),
min_size=1,
max_size=3 if create_index else None,
unique=True,
)
)
note(f"> stacking {oldnames} as {newname}")
self.dataset = self.dataset.stack(
{newname: oldnames}, create_index=create_index
)
if create_index:
self.multi_indexed_dims += [newname]
# if create_index is False, then we just drop these
for dim in oldnames:
del self.indexed_dims[self.indexed_dims.index(dim)]
@rule(data=st.data())
@precondition(lambda self: bool(self.multi_indexed_dims))
def unstack(self, data):
# TODO: add None
dim = data.draw(st.sampled_from(self.multi_indexed_dims))
note(f"> unstacking {dim}")
if dim is not None:
pd_index = self.dataset.xindexes[dim].index
self.dataset = self.dataset.unstack(dim)
del self.multi_indexed_dims[self.multi_indexed_dims.index(dim)]
if dim is not None:
self.indexed_dims.extend(pd_index.names)
else:
# TODO: fix this
pass
@rule(newname=UNIQUE_NAME, data=st.data())
@precondition(lambda self: bool(self.dataset.variables))
def rename_vars(self, newname, data):
dim = data.draw(st.sampled_from(sorted(self.dataset.variables)))
# benbovy: "skip the default indexes invariant test when the name of an
# existing dimension coordinate is passed as input kwarg or dict key
# to .rename_vars()."
self.check_default_indexes = False
note(f"> renaming {dim} to {newname}")
self.dataset = self.dataset.rename_vars({dim: newname})
if dim in self.indexed_dims:
del self.indexed_dims[self.indexed_dims.index(dim)]
elif dim in self.multi_indexed_dims:
del self.multi_indexed_dims[self.multi_indexed_dims.index(dim)]
@precondition(lambda self: bool(self.dataset.dims))
@rule(data=st.data())
def drop_dims(self, data):
dims = data.draw(
st.lists(
st.sampled_from(sorted(self.dataset.dims)),
min_size=1,
unique=True,
)
)
note(f"> drop_dims: {dims}")
# TODO: dropping a multi-index dimension raises a DeprecationWarning
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=DeprecationWarning)
self.dataset = self.dataset.drop_dims(dims)
for dim in dims:
if dim in self.indexed_dims:
del self.indexed_dims[self.indexed_dims.index(dim)]
elif dim in self.multi_indexed_dims:
del self.multi_indexed_dims[self.multi_indexed_dims.index(dim)]
@precondition(lambda self: bool(self.indexed_dims))
@rule(data=st.data())
def drop_indexes(self, data):
self.check_default_indexes = False
dims = data.draw(
st.lists(st.sampled_from(self.indexed_dims), min_size=1, unique=True)
)
note(f"> drop_indexes: {dims}")
self.dataset = self.dataset.drop_indexes(dims)
for dim in dims:
if dim in self.indexed_dims:
del self.indexed_dims[self.indexed_dims.index(dim)]
elif dim in self.multi_indexed_dims:
del self.multi_indexed_dims[self.multi_indexed_dims.index(dim)]
@property
def swappable_dims(self):
ds = self.dataset
options = []
for dim in self.indexed_dims:
choices = [
name
for name, var in ds._variables.items()
if var.dims == (dim,)
# TODO: Avoid swapping a dimension to itself
and name != dim
]
options.extend(
(a, b) for a, b in itertools.zip_longest((dim,), choices, fillvalue=dim)
)
return options
@rule(data=st.data())
# TODO: swap_dims is basically all broken if a multiindex is present
# TODO: Avoid swapping from Index to a MultiIndex level
# TODO: Avoid swapping from MultiIndex to a level of the same MultiIndex
# TODO: Avoid swapping when a MultiIndex is present
@precondition(lambda self: not bool(self.multi_indexed_dims))
@precondition(lambda self: bool(self.swappable_dims))
def swap_dims(self, data):
ds = self.dataset
options = self.swappable_dims
dim, to = data.draw(st.sampled_from(options))
note(
f"> swapping {dim} to {to}, found swappable dims: {options}, all_dims: {tuple(self.dataset.dims)}"
)
self.dataset = ds.swap_dims({dim: to})
del self.indexed_dims[self.indexed_dims.index(dim)]
self.indexed_dims += [to]
@invariant()
def assert_invariants(self):
# note(f"> ===\n\n {self.dataset!r} \n===\n\n")
_assert_internal_invariants(self.dataset, self.check_default_indexes)
DatasetStateMachine.TestCase.settings = settings(max_examples=300, deadline=None)
DatasetTest = DatasetStateMachine.TestCase
@pytest.mark.skip(reason="failure detected by hypothesis")
def test_unstack_object():
ds = xr.Dataset()
ds["0"] = np.array(["", "\x000"], dtype=object)
ds.stack({"1": ["0"]}).unstack()
@pytest.mark.skip(reason="failure detected by hypothesis")
def test_unstack_timedelta_index():
ds = xr.Dataset()
ds["0"] = np.array([0, 1, 2, 3], dtype="timedelta64[ns]")
ds.stack({"1": ["0"]}).unstack()
|