1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
from __future__ import annotations
import logging
import os
import time
import traceback
from collections.abc import Callable, Hashable, Iterable, Mapping, Sequence
from dataclasses import dataclass
from glob import glob
from typing import (
TYPE_CHECKING,
Any,
ClassVar,
Generic,
TypeVar,
Union,
overload,
)
import numpy as np
import pandas as pd
from xarray.coding import strings, variables
from xarray.coding.variables import SerializationWarning
from xarray.conventions import cf_encoder
from xarray.core import indexing
from xarray.core.datatree import DataTree, Variable
from xarray.core.types import ReadBuffer
from xarray.core.utils import (
FrozenDict,
NdimSizeLenMixin,
attempt_import,
emit_user_level_warning,
is_remote_uri,
)
from xarray.namedarray.parallelcompat import get_chunked_array_type
from xarray.namedarray.pycompat import is_chunked_array
from xarray.namedarray.utils import is_duck_dask_array
if TYPE_CHECKING:
from xarray.core.dataset import Dataset
from xarray.core.types import NestedSequence
T_Name = Union[Hashable, None]
# Create a logger object, but don't add any handlers. Leave that to user code.
logger = logging.getLogger(__name__)
NONE_VAR_NAME = "__values__"
T = TypeVar("T")
@overload
def _normalize_path(path: str | os.PathLike) -> str: ...
@overload
def _normalize_path(path: T) -> T: ...
def _normalize_path(path: str | os.PathLike | T) -> str | T:
"""
Normalize pathlikes to string.
Parameters
----------
path :
Path to file.
Examples
--------
>>> from pathlib import Path
>>> directory = Path(xr.backends.common.__file__).parent
>>> paths_path = Path(directory).joinpath("comm*n.py")
>>> paths_str = xr.backends.common._normalize_path(paths_path)
>>> print([type(p) for p in (paths_str,)])
[<class 'str'>]
"""
if isinstance(path, os.PathLike):
path = os.fspath(path)
if isinstance(path, str) and not is_remote_uri(path):
path = os.path.abspath(os.path.expanduser(path))
return path # type:ignore [return-value]
@overload
def _find_absolute_paths(
paths: str | os.PathLike | Sequence[str | os.PathLike],
**kwargs,
) -> list[str]: ...
@overload
def _find_absolute_paths(
paths: ReadBuffer | Sequence[ReadBuffer],
**kwargs,
) -> list[ReadBuffer]: ...
@overload
def _find_absolute_paths(
paths: NestedSequence[str | os.PathLike], **kwargs
) -> NestedSequence[str]: ...
@overload
def _find_absolute_paths(
paths: NestedSequence[ReadBuffer], **kwargs
) -> NestedSequence[ReadBuffer]: ...
@overload
def _find_absolute_paths(
paths: str
| os.PathLike
| ReadBuffer
| NestedSequence[str | os.PathLike | ReadBuffer],
**kwargs,
) -> NestedSequence[str | ReadBuffer]: ...
def _find_absolute_paths(
paths: str
| os.PathLike
| ReadBuffer
| NestedSequence[str | os.PathLike | ReadBuffer],
**kwargs,
) -> NestedSequence[str | ReadBuffer]:
"""
Find absolute paths from the pattern.
Parameters
----------
paths :
Path(s) to file(s). Can include wildcards like * .
**kwargs :
Extra kwargs. Mainly for fsspec.
Examples
--------
>>> from pathlib import Path
>>> directory = Path(xr.backends.common.__file__).parent
>>> paths = str(Path(directory).joinpath("comm*n.py")) # Find common with wildcard
>>> paths = xr.backends.common._find_absolute_paths(paths)
>>> [Path(p).name for p in paths]
['common.py']
"""
if isinstance(paths, str):
if is_remote_uri(paths) and kwargs.get("engine") == "zarr":
if TYPE_CHECKING:
import fsspec
else:
fsspec = attempt_import("fsspec")
fs, _, _ = fsspec.core.get_fs_token_paths(
paths,
mode="rb",
storage_options=kwargs.get("backend_kwargs", {}).get(
"storage_options", {}
),
expand=False,
)
tmp_paths = fs.glob(fs._strip_protocol(paths)) # finds directories
return [fs.get_mapper(path) for path in tmp_paths]
elif is_remote_uri(paths):
raise ValueError(
"cannot do wild-card matching for paths that are remote URLs "
f"unless engine='zarr' is specified. Got paths: {paths}. "
"Instead, supply paths as an explicit list of strings."
)
else:
return sorted(glob(_normalize_path(paths)))
elif isinstance(paths, os.PathLike):
return [_normalize_path(paths)]
elif isinstance(paths, ReadBuffer):
return [paths]
def _normalize_path_list(
lpaths: NestedSequence[str | os.PathLike | ReadBuffer],
) -> NestedSequence[str | ReadBuffer]:
paths = []
for p in lpaths:
if isinstance(p, str | os.PathLike):
paths.append(_normalize_path(p))
elif isinstance(p, list):
paths.append(_normalize_path_list(p)) # type: ignore[arg-type]
else:
paths.append(p) # type: ignore[arg-type]
return paths
return _normalize_path_list(paths)
BytesOrMemory = TypeVar("BytesOrMemory", bytes, memoryview)
@dataclass
class BytesIOProxy(Generic[BytesOrMemory]):
"""Proxy object for a write that returns either bytes or a memoryview."""
# TODO: remove this in favor of BytesIO when Dataset.to_netcdf() stops
# returning bytes from the scipy engine
getvalue: Callable[[], BytesOrMemory] | None = None
def getvalue_or_getbuffer(self) -> BytesOrMemory:
"""Get the value of this write as bytes or memory."""
if self.getvalue is None:
raise ValueError("must set getvalue before fetching value")
return self.getvalue()
def _open_remote_file(file, mode, storage_options=None):
import fsspec
fs, _, paths = fsspec.get_fs_token_paths(
file, mode=mode, storage_options=storage_options
)
return fs.open(paths[0], mode=mode)
def _encode_variable_name(name):
if name is None:
name = NONE_VAR_NAME
return name
def _decode_variable_name(name):
if name == NONE_VAR_NAME:
name = None
return name
def _iter_nc_groups(root, parent="/"):
from xarray.core.treenode import NodePath
parent = NodePath(parent)
yield str(parent)
for path, group in root.groups.items():
gpath = parent / path
yield from _iter_nc_groups(group, parent=gpath)
def find_root_and_group(ds):
"""Find the root and group name of a netCDF4/h5netcdf dataset."""
hierarchy = ()
while ds.parent is not None:
hierarchy = (ds.name.split("/")[-1],) + hierarchy
ds = ds.parent
group = "/" + "/".join(hierarchy)
return ds, group
def collect_ancestor_dimensions(group) -> dict[str, int]:
"""Returns dimensions defined in parent groups.
If dimensions are defined in multiple ancestors, use the size of the closest
ancestor.
"""
dims = {}
while (group := group.parent) is not None:
for k, v in group.dimensions.items():
if k not in dims:
dims[k] = len(v)
return dims
def datatree_from_dict_with_io_cleanup(groups_dict: Mapping[str, Dataset]) -> DataTree:
"""DataTree.from_dict with file clean-up."""
try:
tree = DataTree.from_dict(groups_dict)
except Exception:
for ds in groups_dict.values():
ds.close()
raise
for path, ds in groups_dict.items():
tree[path].set_close(ds._close)
return tree
def robust_getitem(array, key, catch=Exception, max_retries=6, initial_delay=500):
"""
Robustly index an array, using retry logic with exponential backoff if any
of the errors ``catch`` are raised. The initial_delay is measured in ms.
With the default settings, the maximum delay will be in the range of 32-64
seconds.
"""
assert max_retries >= 0
for n in range(max_retries + 1):
try:
return array[key]
except catch:
if n == max_retries:
raise
base_delay = initial_delay * 2**n
next_delay = base_delay + np.random.randint(base_delay)
msg = (
f"getitem failed, waiting {next_delay} ms before trying again "
f"({max_retries - n} tries remaining). Full traceback: {traceback.format_exc()}"
)
logger.debug(msg)
time.sleep(1e-3 * next_delay)
class BackendArray(NdimSizeLenMixin, indexing.ExplicitlyIndexed):
__slots__ = ()
async def async_getitem(self, key: indexing.ExplicitIndexer) -> np.typing.ArrayLike:
raise NotImplementedError("Backend does not not support asynchronous loading")
def get_duck_array(self, dtype: np.typing.DTypeLike = None):
key = indexing.BasicIndexer((slice(None),) * self.ndim)
return self[key] # type: ignore[index]
async def async_get_duck_array(self, dtype: np.typing.DTypeLike = None):
key = indexing.BasicIndexer((slice(None),) * self.ndim)
return await self.async_getitem(key)
class AbstractDataStore:
__slots__ = ()
def get_dimensions(self): # pragma: no cover
raise NotImplementedError()
def get_parent_dimensions(self): # pragma: no cover
return {}
def get_attrs(self): # pragma: no cover
raise NotImplementedError()
def get_variables(self): # pragma: no cover
raise NotImplementedError()
def get_encoding(self):
return {}
def load(self):
"""
This loads the variables and attributes simultaneously.
A centralized loading function makes it easier to create
data stores that do automatic encoding/decoding.
For example::
class SuffixAppendingDataStore(AbstractDataStore):
def load(self):
variables, attributes = AbstractDataStore.load(self)
variables = {"%s_suffix" % k: v for k, v in variables.items()}
attributes = {"%s_suffix" % k: v for k, v in attributes.items()}
return variables, attributes
This function will be called anytime variables or attributes
are requested, so care should be taken to make sure its fast.
"""
variables = FrozenDict(
(_decode_variable_name(k), v) for k, v in self.get_variables().items()
)
attributes = FrozenDict(self.get_attrs())
return variables, attributes
def close(self):
pass
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
self.close()
T_PathFileOrDataStore = (
str | os.PathLike[Any] | ReadBuffer | bytes | memoryview | AbstractDataStore
)
class ArrayWriter:
__slots__ = ("lock", "regions", "sources", "targets")
def __init__(self, lock=None):
self.sources = []
self.targets = []
self.regions = []
self.lock = lock
def add(self, source, target, region=None):
if is_chunked_array(source):
self.sources.append(source)
self.targets.append(target)
self.regions.append(region)
elif region:
target[region] = source
else:
target[...] = source
def sync(self, compute=True, chunkmanager_store_kwargs=None):
if self.sources:
chunkmanager = get_chunked_array_type(*self.sources)
# TODO: consider wrapping targets with dask.delayed, if this makes
# for any discernible difference in performance, e.g.,
# targets = [dask.delayed(t) for t in self.targets]
if chunkmanager_store_kwargs is None:
chunkmanager_store_kwargs = {}
delayed_store = chunkmanager.store(
self.sources,
self.targets,
lock=self.lock,
compute=compute,
flush=True,
regions=self.regions,
**chunkmanager_store_kwargs,
)
self.sources = []
self.targets = []
self.regions = []
return delayed_store
class AbstractWritableDataStore(AbstractDataStore):
__slots__ = ()
def encode(self, variables, attributes):
"""
Encode the variables and attributes in this store
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
Returns
-------
variables : dict-like
attributes : dict-like
"""
encoded_variables = {}
for k, v in variables.items():
try:
encoded_variables[k] = self.encode_variable(v)
except Exception as e:
e.add_note(f"Raised while encoding variable {k!r} with value {v!r}")
raise
encoded_attributes = {}
for k, v in attributes.items():
try:
encoded_attributes[k] = self.encode_attribute(v)
except Exception as e:
e.add_note(f"Raised while encoding attribute {k!r} with value {v!r}")
raise
return encoded_variables, encoded_attributes
def encode_variable(self, v, name=None):
"""encode one variable"""
return v
def encode_attribute(self, a):
"""encode one attribute"""
return a
def prepare_variable(self, name, variable, check_encoding, unlimited_dims):
raise NotImplementedError()
def set_dimension(self, dim, length, is_unlimited): # pragma: no cover
raise NotImplementedError()
def set_attribute(self, k, v): # pragma: no cover
raise NotImplementedError()
def set_variable(self, k, v): # pragma: no cover
raise NotImplementedError()
def store_dataset(self, dataset):
"""
in stores, variables are all variables AND coordinates
in xarray.Dataset variables are variables NOT coordinates,
so here we pass the whole dataset in instead of doing
dataset.variables
"""
self.store(dataset, dataset.attrs)
def store(
self,
variables,
attributes,
check_encoding_set=frozenset(),
writer=None,
unlimited_dims=None,
):
"""
Top level method for putting data on this store, this method:
- encodes variables/attributes
- sets dimensions
- sets variables
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
if writer is None:
writer = ArrayWriter()
variables, attributes = self.encode(variables, attributes)
self.set_attributes(attributes)
self.set_dimensions(variables, unlimited_dims=unlimited_dims)
self.set_variables(
variables, check_encoding_set, writer, unlimited_dims=unlimited_dims
)
def set_attributes(self, attributes):
"""
This provides a centralized method to set the dataset attributes on the
data store.
Parameters
----------
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
"""
for k, v in attributes.items():
self.set_attribute(k, v)
def set_variables(self, variables, check_encoding_set, writer, unlimited_dims=None):
"""
This provides a centralized method to set the variables on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
for vn, v in variables.items():
name = _encode_variable_name(vn)
check = vn in check_encoding_set
target, source = self.prepare_variable(
name, v, check, unlimited_dims=unlimited_dims
)
writer.add(source, target)
def set_dimensions(self, variables, unlimited_dims=None):
"""
This provides a centralized method to set the dimensions on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
if unlimited_dims is None:
unlimited_dims = set()
parent_dims = self.get_parent_dimensions()
existing_dims = self.get_dimensions()
dims = {}
for v in unlimited_dims: # put unlimited_dims first
dims[v] = None
for v in variables.values():
dims |= v.sizes
for dim, length in dims.items():
if dim in existing_dims and length != existing_dims[dim]:
raise ValueError(
"Unable to update size for existing dimension"
f"{dim!r} ({length} != {existing_dims[dim]})"
)
elif dim not in existing_dims and length != parent_dims.get(dim):
is_unlimited = dim in unlimited_dims
self.set_dimension(dim, length, is_unlimited)
def _infer_dtype(array, name=None):
"""Given an object array with no missing values, infer its dtype from all elements."""
if array.dtype.kind != "O":
raise TypeError("infer_type must be called on a dtype=object array")
if array.size == 0:
return np.dtype(float)
native_dtypes = set(np.vectorize(type, otypes=[object])(array.ravel()))
if len(native_dtypes) > 1 and native_dtypes != {bytes, str}:
native_dtype_names = ", ".join(x.__name__ for x in native_dtypes)
raise ValueError(
f"unable to infer dtype on variable {name!r}; object array "
f"contains mixed native types: {native_dtype_names}"
)
element = array[(0,) * array.ndim]
# We use the base types to avoid subclasses of bytes and str (which might
# not play nice with e.g. hdf5 datatypes), such as those from numpy
if isinstance(element, bytes):
return strings.create_vlen_dtype(bytes)
elif isinstance(element, str):
return strings.create_vlen_dtype(str)
dtype = np.array(element).dtype
if dtype.kind != "O":
return dtype
raise ValueError(
f"unable to infer dtype on variable {name!r}; xarray "
"cannot serialize arbitrary Python objects"
)
def _copy_with_dtype(data, dtype: np.typing.DTypeLike):
"""Create a copy of an array with the given dtype.
We use this instead of np.array() to ensure that custom object dtypes end
up on the resulting array.
"""
result = np.empty(data.shape, dtype)
result[...] = data
return result
def ensure_dtype_not_object(var: Variable, name: T_Name = None) -> Variable:
if var.dtype.kind == "O":
dims, data, attrs, encoding = variables.unpack_for_encoding(var)
# leave vlen dtypes unchanged
if strings.check_vlen_dtype(data.dtype) is not None:
return var
if is_duck_dask_array(data):
emit_user_level_warning(
f"variable {name} has data in the form of a dask array with "
"dtype=object, which means it is being loaded into memory "
"to determine a data type that can be safely stored on disk. "
"To avoid this, coerce this variable to a fixed-size dtype "
"with astype() before saving it.",
category=SerializationWarning,
)
data = data.compute()
missing = pd.isnull(data)
if missing.any():
# nb. this will fail for dask.array data
non_missing_values = data[~missing]
inferred_dtype = _infer_dtype(non_missing_values, name)
# There is no safe bit-pattern for NA in typical binary string
# formats, we so can't set a fill_value. Unfortunately, this means
# we can't distinguish between missing values and empty strings.
fill_value: bytes | str
if strings.is_bytes_dtype(inferred_dtype):
fill_value = b""
elif strings.is_unicode_dtype(inferred_dtype):
fill_value = ""
else:
# insist on using float for numeric values
if not np.issubdtype(inferred_dtype, np.floating):
inferred_dtype = np.dtype(float)
fill_value = inferred_dtype.type(np.nan)
data = _copy_with_dtype(data, dtype=inferred_dtype)
data[missing] = fill_value
else:
data = _copy_with_dtype(data, dtype=_infer_dtype(data, name))
assert data.dtype.kind != "O" or data.dtype.metadata
var = Variable(dims, data, attrs, encoding, fastpath=True)
return var
class WritableCFDataStore(AbstractWritableDataStore):
__slots__ = ()
def encode(self, variables, attributes):
# All NetCDF files get CF encoded by default, without this attempting
# to write times, for example, would fail.
variables, attributes = cf_encoder(variables, attributes)
variables = {
k: ensure_dtype_not_object(v, name=k) for k, v in variables.items()
}
return super().encode(variables, attributes)
class BackendEntrypoint:
"""
``BackendEntrypoint`` is a class container and it is the main interface
for the backend plugins, see :ref:`RST backend_entrypoint`.
It shall implement:
- ``open_dataset`` method: it shall implement reading from file, variables
decoding and it returns an instance of :py:class:`~xarray.Dataset`.
It shall take in input at least ``filename_or_obj`` argument and
``drop_variables`` keyword argument.
For more details see :ref:`RST open_dataset`.
- ``guess_can_open`` method: it shall return ``True`` if the backend is able to open
``filename_or_obj``, ``False`` otherwise. The implementation of this
method is not mandatory.
- ``open_datatree`` method: it shall implement reading from file, variables
decoding and it returns an instance of :py:class:`~datatree.DataTree`.
It shall take in input at least ``filename_or_obj`` argument. The
implementation of this method is not mandatory. For more details see
<reference to open_datatree documentation>.
Attributes
----------
open_dataset_parameters : tuple, default: None
A list of ``open_dataset`` method parameters.
The setting of this attribute is not mandatory.
description : str, default: ""
A short string describing the engine.
The setting of this attribute is not mandatory.
url : str, default: ""
A string with the URL to the backend's documentation.
The setting of this attribute is not mandatory.
"""
open_dataset_parameters: ClassVar[tuple | None] = None
description: ClassVar[str] = ""
url: ClassVar[str] = ""
def __repr__(self) -> str:
txt = f"<{type(self).__name__}>"
if self.description:
txt += f"\n {self.description}"
if self.url:
txt += f"\n Learn more at {self.url}"
return txt
def open_dataset(
self,
filename_or_obj: str
| os.PathLike[Any]
| ReadBuffer
| bytes
| memoryview
| AbstractDataStore,
*,
drop_variables: str | Iterable[str] | None = None,
) -> Dataset:
"""
Backend open_dataset method used by Xarray in :py:func:`~xarray.open_dataset`.
"""
raise NotImplementedError()
def guess_can_open(
self,
filename_or_obj: str
| os.PathLike[Any]
| ReadBuffer
| bytes
| memoryview
| AbstractDataStore,
) -> bool:
"""
Backend open_dataset method used by Xarray in :py:func:`~xarray.open_dataset`.
"""
return False
def open_datatree(
self,
filename_or_obj: str
| os.PathLike[Any]
| ReadBuffer
| bytes
| memoryview
| AbstractDataStore,
*,
drop_variables: str | Iterable[str] | None = None,
) -> DataTree:
"""
Backend open_datatree method used by Xarray in :py:func:`~xarray.open_datatree`.
"""
raise NotImplementedError()
def open_groups_as_dict(
self,
filename_or_obj: str
| os.PathLike[Any]
| ReadBuffer
| bytes
| memoryview
| AbstractDataStore,
*,
drop_variables: str | Iterable[str] | None = None,
) -> dict[str, Dataset]:
"""
Opens a dictionary mapping from group names to Datasets.
Called by :py:func:`~xarray.open_groups`.
This function exists to provide a universal way to open all groups in a file,
before applying any additional consistency checks or requirements necessary
to create a `DataTree` object (typically done using :py:meth:`~xarray.DataTree.from_dict`).
"""
raise NotImplementedError()
# mapping of engine name to (module name, BackendEntrypoint Class)
BACKEND_ENTRYPOINTS: dict[str, tuple[str | None, type[BackendEntrypoint]]] = {}
|