File: h5netcdf_.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (645 lines) | stat: -rw-r--r-- 20,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
from __future__ import annotations

import functools
import io
import os
from collections.abc import Iterable
from typing import TYPE_CHECKING, Any

import numpy as np

from xarray.backends.common import (
    BACKEND_ENTRYPOINTS,
    BackendEntrypoint,
    BytesIOProxy,
    T_PathFileOrDataStore,
    WritableCFDataStore,
    _normalize_path,
    _open_remote_file,
    collect_ancestor_dimensions,
    datatree_from_dict_with_io_cleanup,
    find_root_and_group,
)
from xarray.backends.file_manager import (
    CachingFileManager,
    DummyFileManager,
    FileManager,
)
from xarray.backends.locks import HDF5_LOCK, combine_locks, ensure_lock, get_write_lock
from xarray.backends.netCDF4_ import (
    BaseNetCDF4Array,
    _build_and_get_enum,
    _encode_nc4_variable,
    _ensure_no_forward_slash_in_name,
    _extract_nc4_variable_encoding,
    _get_datatype,
    _nc4_require_group,
)
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.utils import (
    FrozenDict,
    emit_user_level_warning,
    is_remote_uri,
    read_magic_number_from_file,
    try_read_magic_number_from_file_or_path,
)
from xarray.core.variable import Variable

if TYPE_CHECKING:
    import h5netcdf

    from xarray.backends.common import AbstractDataStore
    from xarray.core.dataset import Dataset
    from xarray.core.datatree import DataTree
    from xarray.core.types import ReadBuffer


class H5NetCDFArrayWrapper(BaseNetCDF4Array):
    def get_array(self, needs_lock=True):
        ds = self.datastore._acquire(needs_lock)
        return ds.variables[self.variable_name]

    def __getitem__(self, key):
        return indexing.explicit_indexing_adapter(
            key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
        )

    def _getitem(self, key):
        with self.datastore.lock:
            array = self.get_array(needs_lock=False)
            return array[key]


def _read_attributes(h5netcdf_var):
    # GH451
    # to ensure conventions decoding works properly on Python 3, decode all
    # bytes attributes to strings
    attrs = {}
    for k, v in h5netcdf_var.attrs.items():
        if k not in ["_FillValue", "missing_value"] and isinstance(v, bytes):
            try:
                v = v.decode("utf-8")
            except UnicodeDecodeError:
                emit_user_level_warning(
                    f"'utf-8' codec can't decode bytes for attribute "
                    f"{k!r} of h5netcdf object {h5netcdf_var.name!r}, "
                    f"returning bytes undecoded.",
                    UnicodeWarning,
                )
        attrs[k] = v
    return attrs


_extract_h5nc_encoding = functools.partial(
    _extract_nc4_variable_encoding,
    lsd_okay=False,
    h5py_okay=True,
    backend="h5netcdf",
    unlimited_dims=None,
)


def _h5netcdf_create_group(dataset, name):
    return dataset.create_group(name)


class H5NetCDFStore(WritableCFDataStore):
    """Store for reading and writing data via h5netcdf"""

    __slots__ = (
        "_filename",
        "_group",
        "_manager",
        "_mode",
        "autoclose",
        "format",
        "is_remote",
        "lock",
    )

    def __init__(
        self,
        manager: FileManager | h5netcdf.File | h5netcdf.Group,
        group=None,
        mode=None,
        lock=HDF5_LOCK,
        autoclose=False,
    ):
        import h5netcdf

        if isinstance(manager, h5netcdf.File | h5netcdf.Group):
            if group is None:
                root, group = find_root_and_group(manager)
            else:
                if type(manager) is not h5netcdf.File:
                    raise ValueError(
                        "must supply a h5netcdf.File if the group argument is provided"
                    )
                root = manager
            manager = DummyFileManager(root)

        self._manager = manager
        self._group = group
        self._mode = mode
        self.format = None
        # todo: utilizing find_root_and_group seems a bit clunky
        #  making filename available on h5netcdf.Group seems better
        self._filename = find_root_and_group(self.ds)[0].filename
        self.is_remote = is_remote_uri(self._filename)
        self.lock = ensure_lock(lock)
        self.autoclose = autoclose

    @classmethod
    def open(
        cls,
        filename,
        mode="r",
        format=None,
        group=None,
        lock=None,
        autoclose=False,
        invalid_netcdf=None,
        phony_dims=None,
        decode_vlen_strings=True,
        driver=None,
        driver_kwds=None,
        storage_options: dict[str, Any] | None = None,
    ):
        import h5netcdf

        if isinstance(filename, str) and is_remote_uri(filename) and driver is None:
            mode_ = "rb" if mode == "r" else mode
            filename = _open_remote_file(
                filename, mode=mode_, storage_options=storage_options
            )

        if isinstance(filename, BytesIOProxy):
            source = filename
            filename = io.BytesIO()
            source.getvalue = filename.getbuffer

        if isinstance(filename, io.IOBase) and mode == "r":
            magic_number = read_magic_number_from_file(filename)
            if not magic_number.startswith(b"\211HDF\r\n\032\n"):
                raise ValueError(
                    f"{magic_number!r} is not the signature of a valid netCDF4 file"
                )

        if format not in [None, "NETCDF4"]:
            raise ValueError("invalid format for h5netcdf backend")

        kwargs = {
            "invalid_netcdf": invalid_netcdf,
            "decode_vlen_strings": decode_vlen_strings,
            "driver": driver,
        }
        if driver_kwds is not None:
            kwargs.update(driver_kwds)
        if phony_dims is not None:
            kwargs["phony_dims"] = phony_dims

        if lock is None:
            if mode == "r":
                lock = HDF5_LOCK
            else:
                lock = combine_locks([HDF5_LOCK, get_write_lock(filename)])

        manager = (
            CachingFileManager(h5netcdf.File, filename, mode=mode, kwargs=kwargs)
            if isinstance(filename, str)
            else h5netcdf.File(filename, mode=mode, **kwargs)
        )
        return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)

    def _acquire(self, needs_lock=True):
        with self._manager.acquire_context(needs_lock) as root:
            ds = _nc4_require_group(
                root, self._group, self._mode, create_group=_h5netcdf_create_group
            )
        return ds

    @property
    def ds(self):
        return self._acquire()

    def open_store_variable(self, name, var):
        import h5netcdf
        import h5py

        dimensions = var.dimensions
        data = indexing.LazilyIndexedArray(H5NetCDFArrayWrapper(name, self))
        attrs = _read_attributes(var)

        # netCDF4 specific encoding
        encoding = {
            "chunksizes": var.chunks,
            "fletcher32": var.fletcher32,
            "shuffle": var.shuffle,
        }
        if var.chunks:
            encoding["preferred_chunks"] = dict(
                zip(var.dimensions, var.chunks, strict=True)
            )
        # Convert h5py-style compression options to NetCDF4-Python
        # style, if possible
        if var.compression == "gzip":
            encoding["zlib"] = True
            encoding["complevel"] = var.compression_opts
        elif var.compression is not None:
            encoding["compression"] = var.compression
            encoding["compression_opts"] = var.compression_opts

        # save source so __repr__ can detect if it's local or not
        encoding["source"] = self._filename
        encoding["original_shape"] = data.shape

        vlen_dtype = h5py.check_dtype(vlen=var.dtype)
        if vlen_dtype is str:
            encoding["dtype"] = str
        elif vlen_dtype is not None:  # pragma: no cover
            # xarray doesn't support writing arbitrary vlen dtypes yet.
            pass
        # just check if datatype is available and create dtype
        # this check can be removed if h5netcdf >= 1.4.0 for any environment
        elif (datatype := getattr(var, "datatype", None)) and isinstance(
            datatype, h5netcdf.core.EnumType
        ):
            encoding["dtype"] = np.dtype(
                data.dtype,
                metadata={
                    "enum": datatype.enum_dict,
                    "enum_name": datatype.name,
                },
            )
        else:
            encoding["dtype"] = var.dtype

        return Variable(dimensions, data, attrs, encoding)

    def get_variables(self):
        return FrozenDict(
            (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
        )

    def get_attrs(self):
        return FrozenDict(_read_attributes(self.ds))

    def get_dimensions(self):
        return FrozenDict((k, len(v)) for k, v in self.ds.dimensions.items())

    def get_parent_dimensions(self):
        return FrozenDict(collect_ancestor_dimensions(self.ds))

    def get_encoding(self):
        return {
            "unlimited_dims": {
                k for k, v in self.ds.dimensions.items() if v.isunlimited()
            }
        }

    def set_dimension(self, name, length, is_unlimited=False):
        _ensure_no_forward_slash_in_name(name)
        if is_unlimited:
            self.ds.dimensions[name] = None
            self.ds.resize_dimension(name, length)
        else:
            self.ds.dimensions[name] = length

    def set_attribute(self, key, value):
        self.ds.attrs[key] = value

    def encode_variable(self, variable, name=None):
        return _encode_nc4_variable(variable, name=name)

    def prepare_variable(
        self, name, variable, check_encoding=False, unlimited_dims=None
    ):
        import h5py

        _ensure_no_forward_slash_in_name(name)
        attrs = variable.attrs.copy()
        dtype = _get_datatype(variable, raise_on_invalid_encoding=check_encoding)

        fillvalue = attrs.pop("_FillValue", None)

        if dtype is str:
            dtype = h5py.special_dtype(vlen=str)

        # check enum metadata and use h5netcdf.core.EnumType
        if (
            hasattr(self.ds, "enumtypes")
            and (meta := np.dtype(dtype).metadata)
            and (e_name := meta.get("enum_name"))
            and (e_dict := meta.get("enum"))
        ):
            dtype = _build_and_get_enum(self, name, dtype, e_name, e_dict)
        encoding = _extract_h5nc_encoding(variable, raise_on_invalid=check_encoding)
        kwargs = {}

        # Convert from NetCDF4-Python style compression settings to h5py style
        # If both styles are used together, h5py takes precedence
        # If set_encoding=True, raise ValueError in case of mismatch
        if encoding.pop("zlib", False):
            if check_encoding and encoding.get("compression") not in (None, "gzip"):
                raise ValueError("'zlib' and 'compression' encodings mismatch")
            encoding.setdefault("compression", "gzip")

        if (
            check_encoding
            and "complevel" in encoding
            and "compression_opts" in encoding
            and encoding["complevel"] != encoding["compression_opts"]
        ):
            raise ValueError("'complevel' and 'compression_opts' encodings mismatch")
        complevel = encoding.pop("complevel", 0)
        if complevel != 0:
            encoding.setdefault("compression_opts", complevel)

        encoding["chunks"] = encoding.pop("chunksizes", None)

        # Do not apply compression, filters or chunking to scalars.
        if variable.shape:
            for key in [
                "compression",
                "compression_opts",
                "shuffle",
                "chunks",
                "fletcher32",
            ]:
                if key in encoding:
                    kwargs[key] = encoding[key]
        if name not in self.ds:
            nc4_var = self.ds.create_variable(
                name,
                dtype=dtype,
                dimensions=variable.dims,
                fillvalue=fillvalue,
                **kwargs,
            )
        else:
            nc4_var = self.ds[name]

        for k, v in attrs.items():
            nc4_var.attrs[k] = v

        target = H5NetCDFArrayWrapper(name, self)

        return target, variable.data

    def sync(self):
        self.ds.sync()

    def close(self, **kwargs):
        self._manager.close(**kwargs)


def _check_phony_dims(phony_dims):
    emit_phony_dims_warning = False
    if phony_dims is None:
        emit_phony_dims_warning = True
        phony_dims = "access"
    return emit_phony_dims_warning, phony_dims


def _emit_phony_dims_warning():
    emit_user_level_warning(
        "The 'phony_dims' kwarg now defaults to 'access'. "
        "Previously 'phony_dims=None' would raise an error. "
        "For full netcdf equivalence please use phony_dims='sort'.",
        UserWarning,
    )


def _normalize_filename_or_obj(
    filename_or_obj: T_PathFileOrDataStore,
) -> str | ReadBuffer | AbstractDataStore:
    if isinstance(filename_or_obj, bytes | memoryview):
        return io.BytesIO(filename_or_obj)
    else:
        return _normalize_path(filename_or_obj)


class H5netcdfBackendEntrypoint(BackendEntrypoint):
    """
    Backend for netCDF files based on the h5netcdf package.

    It can open ".nc", ".nc4", ".cdf" files but will only be
    selected as the default if the "netcdf4" engine is not available.

    Additionally it can open valid HDF5 files, see
    https://h5netcdf.org/#invalid-netcdf-files for more info.
    It will not be detected as valid backend for such files, so make
    sure to specify ``engine="h5netcdf"`` in ``open_dataset``.

    For more information about the underlying library, visit:
    https://h5netcdf.org

    See Also
    --------
    backends.H5NetCDFStore
    backends.NetCDF4BackendEntrypoint
    backends.ScipyBackendEntrypoint
    """

    description = (
        "Open netCDF (.nc, .nc4 and .cdf) and most HDF5 files using h5netcdf in Xarray"
    )
    url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.H5netcdfBackendEntrypoint.html"

    def guess_can_open(self, filename_or_obj: T_PathFileOrDataStore) -> bool:
        filename_or_obj = _normalize_filename_or_obj(filename_or_obj)
        magic_number = try_read_magic_number_from_file_or_path(filename_or_obj)
        if magic_number is not None:
            return magic_number.startswith(b"\211HDF\r\n\032\n")

        if isinstance(filename_or_obj, str | os.PathLike):
            _, ext = os.path.splitext(filename_or_obj)
            return ext in {".nc", ".nc4", ".cdf"}

        return False

    def open_dataset(
        self,
        filename_or_obj: T_PathFileOrDataStore,
        *,
        mask_and_scale=True,
        decode_times=True,
        concat_characters=True,
        decode_coords=True,
        drop_variables: str | Iterable[str] | None = None,
        use_cftime=None,
        decode_timedelta=None,
        format=None,
        group=None,
        lock=None,
        invalid_netcdf=None,
        phony_dims=None,
        decode_vlen_strings=True,
        driver=None,
        driver_kwds=None,
        storage_options: dict[str, Any] | None = None,
    ) -> Dataset:
        # Keep this message for some versions
        # remove and set phony_dims="access" above
        emit_phony_dims_warning, phony_dims = _check_phony_dims(phony_dims)

        filename_or_obj = _normalize_filename_or_obj(filename_or_obj)
        store = H5NetCDFStore.open(
            filename_or_obj,
            format=format,
            group=group,
            lock=lock,
            invalid_netcdf=invalid_netcdf,
            phony_dims=phony_dims,
            decode_vlen_strings=decode_vlen_strings,
            driver=driver,
            driver_kwds=driver_kwds,
            storage_options=storage_options,
        )

        store_entrypoint = StoreBackendEntrypoint()

        ds = store_entrypoint.open_dataset(
            store,
            mask_and_scale=mask_and_scale,
            decode_times=decode_times,
            concat_characters=concat_characters,
            decode_coords=decode_coords,
            drop_variables=drop_variables,
            use_cftime=use_cftime,
            decode_timedelta=decode_timedelta,
        )

        # only warn if phony_dims exist in file
        # remove together with the above check
        # after some versions
        if store.ds._root._phony_dim_count > 0 and emit_phony_dims_warning:
            _emit_phony_dims_warning()

        return ds

    def open_datatree(
        self,
        filename_or_obj: T_PathFileOrDataStore,
        *,
        mask_and_scale=True,
        decode_times=True,
        concat_characters=True,
        decode_coords=True,
        drop_variables: str | Iterable[str] | None = None,
        use_cftime=None,
        decode_timedelta=None,
        format=None,
        group: str | None = None,
        lock=None,
        invalid_netcdf=None,
        phony_dims=None,
        decode_vlen_strings=True,
        driver=None,
        driver_kwds=None,
        **kwargs,
    ) -> DataTree:
        groups_dict = self.open_groups_as_dict(
            filename_or_obj,
            mask_and_scale=mask_and_scale,
            decode_times=decode_times,
            concat_characters=concat_characters,
            decode_coords=decode_coords,
            drop_variables=drop_variables,
            use_cftime=use_cftime,
            decode_timedelta=decode_timedelta,
            format=format,
            group=group,
            lock=lock,
            invalid_netcdf=invalid_netcdf,
            phony_dims=phony_dims,
            decode_vlen_strings=decode_vlen_strings,
            driver=driver,
            driver_kwds=driver_kwds,
            **kwargs,
        )

        return datatree_from_dict_with_io_cleanup(groups_dict)

    def open_groups_as_dict(
        self,
        filename_or_obj: T_PathFileOrDataStore,
        *,
        mask_and_scale=True,
        decode_times=True,
        concat_characters=True,
        decode_coords=True,
        drop_variables: str | Iterable[str] | None = None,
        use_cftime=None,
        decode_timedelta=None,
        format=None,
        group: str | None = None,
        lock=None,
        invalid_netcdf=None,
        phony_dims=None,
        decode_vlen_strings=True,
        driver=None,
        driver_kwds=None,
        **kwargs,
    ) -> dict[str, Dataset]:
        from xarray.backends.common import _iter_nc_groups
        from xarray.core.treenode import NodePath
        from xarray.core.utils import close_on_error

        # Keep this message for some versions
        # remove and set phony_dims="access" above
        emit_phony_dims_warning, phony_dims = _check_phony_dims(phony_dims)

        filename_or_obj = _normalize_filename_or_obj(filename_or_obj)
        store = H5NetCDFStore.open(
            filename_or_obj,
            format=format,
            group=group,
            lock=lock,
            invalid_netcdf=invalid_netcdf,
            phony_dims=phony_dims,
            decode_vlen_strings=decode_vlen_strings,
            driver=driver,
            driver_kwds=driver_kwds,
        )

        # Check for a group and make it a parent if it exists
        if group:
            parent = NodePath("/") / NodePath(group)
        else:
            parent = NodePath("/")

        manager = store._manager
        groups_dict = {}
        for path_group in _iter_nc_groups(store.ds, parent=parent):
            group_store = H5NetCDFStore(manager, group=path_group, **kwargs)
            store_entrypoint = StoreBackendEntrypoint()
            with close_on_error(group_store):
                group_ds = store_entrypoint.open_dataset(
                    group_store,
                    mask_and_scale=mask_and_scale,
                    decode_times=decode_times,
                    concat_characters=concat_characters,
                    decode_coords=decode_coords,
                    drop_variables=drop_variables,
                    use_cftime=use_cftime,
                    decode_timedelta=decode_timedelta,
                )

            if group:
                group_name = str(NodePath(path_group).relative_to(parent))
            else:
                group_name = str(NodePath(path_group))
            groups_dict[group_name] = group_ds

        # only warn if phony_dims exist in file
        # remove together with the above check
        # after some versions
        if store.ds._phony_dim_count > 0 and emit_phony_dims_warning:
            _emit_phony_dims_warning()

        return groups_dict


BACKEND_ENTRYPOINTS["h5netcdf"] = ("h5netcdf", H5netcdfBackendEntrypoint)