1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
|
from __future__ import annotations
import functools
import operator
import os
from collections.abc import Iterable
from contextlib import suppress
from typing import TYPE_CHECKING, Any
import numpy as np
from xarray.backends.common import (
BACKEND_ENTRYPOINTS,
BackendArray,
BackendEntrypoint,
T_PathFileOrDataStore,
WritableCFDataStore,
_normalize_path,
collect_ancestor_dimensions,
datatree_from_dict_with_io_cleanup,
find_root_and_group,
robust_getitem,
)
from xarray.backends.file_manager import CachingFileManager, DummyFileManager
from xarray.backends.locks import (
HDF5_LOCK,
NETCDFC_LOCK,
combine_locks,
ensure_lock,
get_write_lock,
)
from xarray.backends.netcdf3 import encode_nc3_attr_value, encode_nc3_variable
from xarray.backends.store import StoreBackendEntrypoint
from xarray.coding.strings import (
CharacterArrayCoder,
EncodedStringCoder,
create_vlen_dtype,
is_unicode_dtype,
)
from xarray.coding.variables import pop_to
from xarray.core import indexing
from xarray.core.utils import (
FrozenDict,
close_on_error,
is_remote_uri,
try_read_magic_number_from_path,
)
from xarray.core.variable import Variable
if TYPE_CHECKING:
from h5netcdf.core import EnumType as h5EnumType
from netCDF4 import EnumType as ncEnumType
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
# This lookup table maps from dtype.byteorder to a readable endian
# string used by netCDF4.
_endian_lookup = {"=": "native", ">": "big", "<": "little", "|": "native"}
NETCDF4_PYTHON_LOCK = combine_locks([NETCDFC_LOCK, HDF5_LOCK])
class BaseNetCDF4Array(BackendArray):
__slots__ = ("datastore", "dtype", "shape", "variable_name")
def __init__(self, variable_name, datastore):
self.datastore = datastore
self.variable_name = variable_name
array = self.get_array()
self.shape = array.shape
dtype = array.dtype
if dtype is str:
# use object dtype (with additional vlen string metadata) because that's
# the only way in numpy to represent variable length strings and to
# check vlen string dtype in further steps
# it also prevents automatic string concatenation via
# conventions.decode_cf_variable
dtype = create_vlen_dtype(str)
self.dtype = dtype
def __setitem__(self, key, value):
with self.datastore.lock:
data = self.get_array(needs_lock=False)
data[key] = value
if self.datastore.autoclose:
self.datastore.close(needs_lock=False)
def get_array(self, needs_lock=True):
raise NotImplementedError("Virtual Method")
class NetCDF4ArrayWrapper(BaseNetCDF4Array):
__slots__ = ()
def get_array(self, needs_lock=True):
ds = self.datastore._acquire(needs_lock)
variable = ds.variables[self.variable_name]
variable.set_auto_maskandscale(False)
# only added in netCDF4-python v1.2.8
with suppress(AttributeError):
variable.set_auto_chartostring(False)
return variable
def __getitem__(self, key):
return indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER, self._getitem
)
def _getitem(self, key):
if self.datastore.is_remote: # pragma: no cover
getitem = functools.partial(robust_getitem, catch=RuntimeError)
else:
getitem = operator.getitem
try:
with self.datastore.lock:
original_array = self.get_array(needs_lock=False)
array = getitem(original_array, key)
except IndexError as err:
# Catch IndexError in netCDF4 and return a more informative
# error message. This is most often called when an unsorted
# indexer is used before the data is loaded from disk.
msg = (
"The indexing operation you are attempting to perform "
"is not valid on netCDF4.Variable object. Try loading "
"your data into memory first by calling .load()."
)
raise IndexError(msg) from err
return array
def _encode_nc4_variable(var, name=None):
for coder in [
EncodedStringCoder(allows_unicode=True),
CharacterArrayCoder(),
]:
var = coder.encode(var, name=name)
return var
def _check_encoding_dtype_is_vlen_string(dtype):
if dtype is not str:
raise AssertionError( # pragma: no cover
f"unexpected dtype encoding {dtype!r}. This shouldn't happen: please "
"file a bug report at github.com/pydata/xarray"
)
def _get_datatype(
var, nc_format="NETCDF4", raise_on_invalid_encoding=False
) -> np.dtype:
if nc_format == "NETCDF4":
return _nc4_dtype(var)
if "dtype" in var.encoding:
encoded_dtype = var.encoding["dtype"]
_check_encoding_dtype_is_vlen_string(encoded_dtype)
if raise_on_invalid_encoding:
raise ValueError(
"encoding dtype=str for vlen strings is only supported "
"with format='NETCDF4'."
)
return var.dtype
def _nc4_dtype(var):
if "dtype" in var.encoding:
dtype = var.encoding.pop("dtype")
_check_encoding_dtype_is_vlen_string(dtype)
elif is_unicode_dtype(var.dtype):
dtype = str
elif var.dtype.kind in ["i", "u", "f", "c", "S"]:
dtype = var.dtype
else:
raise ValueError(f"unsupported dtype for netCDF4 variable: {var.dtype}")
return dtype
def _netcdf4_create_group(dataset, name):
return dataset.createGroup(name)
def _nc4_require_group(ds, group, mode, create_group=_netcdf4_create_group):
if group in {None, "", "/"}:
# use the root group
return ds
else:
# make sure it's a string
if not isinstance(group, str):
raise ValueError("group must be a string or None")
# support path-like syntax
path = group.strip("/").split("/")
for key in path:
try:
ds = ds.groups[key]
except KeyError as e:
if mode != "r":
ds = create_group(ds, key)
else:
# wrap error to provide slightly more helpful message
raise OSError(f"group not found: {key}", e) from e
return ds
def _ensure_no_forward_slash_in_name(name):
if "/" in name:
raise ValueError(
f"Forward slashes '/' are not allowed in variable and dimension names (got {name!r}). "
"Forward slashes are used as hierarchy-separators for "
"HDF5-based files ('netcdf4'/'h5netcdf')."
)
def _ensure_fill_value_valid(data, attributes):
# work around for netCDF4/scipy issue where _FillValue has the wrong type:
# https://github.com/Unidata/netcdf4-python/issues/271
if data.dtype.kind == "S" and "_FillValue" in attributes:
attributes["_FillValue"] = np.bytes_(attributes["_FillValue"])
def _force_native_endianness(var):
# possible values for byteorder are:
# = native
# < little-endian
# > big-endian
# | not applicable
# Below we check if the data type is not native or NA
if var.dtype.byteorder not in ["=", "|"]:
# if endianness is specified explicitly, convert to the native type
data = var.data.astype(var.dtype.newbyteorder("="))
var = Variable(var.dims, data, var.attrs, var.encoding)
# if endian exists, remove it from the encoding.
var.encoding.pop("endian", None)
# check to see if encoding has a value for endian its 'native'
if var.encoding.get("endian", "native") != "native":
raise NotImplementedError(
"Attempt to write non-native endian type, "
"this is not supported by the netCDF4 "
"python library."
)
return var
def _extract_nc4_variable_encoding(
variable: Variable,
raise_on_invalid=False,
lsd_okay=True,
h5py_okay=False,
backend="netCDF4",
unlimited_dims=None,
) -> dict[str, Any]:
if unlimited_dims is None:
unlimited_dims = ()
encoding = variable.encoding.copy()
safe_to_drop = {"source", "original_shape"}
valid_encodings = {
"zlib",
"complevel",
"fletcher32",
"contiguous",
"chunksizes",
"shuffle",
"_FillValue",
"dtype",
"compression",
"significant_digits",
"quantize_mode",
"blosc_shuffle",
"szip_coding",
"szip_pixels_per_block",
"endian",
}
if lsd_okay:
valid_encodings.add("least_significant_digit")
if h5py_okay:
valid_encodings.add("compression_opts")
if not raise_on_invalid and encoding.get("chunksizes") is not None:
# It's possible to get encoded chunksizes larger than a dimension size
# if the original file had an unlimited dimension. This is problematic
# if the new file no longer has an unlimited dimension.
chunksizes = encoding["chunksizes"]
chunks_too_big = any(
c > d and dim not in unlimited_dims
for c, d, dim in zip(
chunksizes, variable.shape, variable.dims, strict=False
)
)
has_original_shape = "original_shape" in encoding
changed_shape = (
has_original_shape and encoding.get("original_shape") != variable.shape
)
if chunks_too_big or changed_shape:
del encoding["chunksizes"]
var_has_unlim_dim = any(dim in unlimited_dims for dim in variable.dims)
if not raise_on_invalid and var_has_unlim_dim and "contiguous" in encoding.keys():
del encoding["contiguous"]
for k in safe_to_drop:
if k in encoding:
del encoding[k]
if raise_on_invalid:
invalid = [k for k in encoding if k not in valid_encodings]
if invalid:
raise ValueError(
f"unexpected encoding parameters for {backend!r} backend: {invalid!r}. Valid "
f"encodings are: {valid_encodings!r}"
)
else:
for k in list(encoding):
if k not in valid_encodings:
del encoding[k]
return encoding
def _is_list_of_strings(value) -> bool:
arr = np.asarray(value)
return arr.dtype.kind in ["U", "S"] and arr.size > 1
def _build_and_get_enum(
store, var_name: str, dtype: np.dtype, enum_name: str, enum_dict: dict[str, int]
) -> ncEnumType | h5EnumType:
"""
Add or get the netCDF4 Enum based on the dtype in encoding.
The return type should be ``netCDF4.EnumType``,
but we avoid importing netCDF4 globally for performances.
"""
if enum_name not in store.ds.enumtypes:
create_func = (
store.ds.createEnumType
if isinstance(store, NetCDF4DataStore)
else store.ds.create_enumtype
)
return create_func(
dtype,
enum_name,
enum_dict,
)
datatype = store.ds.enumtypes[enum_name]
if datatype.enum_dict != enum_dict:
error_msg = (
f"Cannot save variable `{var_name}` because an enum"
f" `{enum_name}` already exists in the Dataset but has"
" a different definition. To fix this error, make sure"
" all variables have a uniquely named enum in their"
" `encoding['dtype'].metadata` or, if they should share"
" the same enum type, make sure the enums are identical."
)
raise ValueError(error_msg)
return datatype
class NetCDF4DataStore(WritableCFDataStore):
"""Store for reading and writing data via the Python-NetCDF4 library.
This store supports NetCDF3, NetCDF4 and OpenDAP datasets.
"""
__slots__ = (
"_filename",
"_group",
"_manager",
"_mode",
"autoclose",
"format",
"is_remote",
"lock",
)
def __init__(
self, manager, group=None, mode=None, lock=NETCDF4_PYTHON_LOCK, autoclose=False
):
import netCDF4
if isinstance(manager, netCDF4.Dataset):
if group is None:
root, group = find_root_and_group(manager)
else:
if type(manager) is not netCDF4.Dataset:
raise ValueError(
"must supply a root netCDF4.Dataset if the group "
"argument is provided"
)
root = manager
manager = DummyFileManager(root)
self._manager = manager
self._group = group
self._mode = mode
self.format = self.ds.data_model
self._filename = self.ds.filepath()
self.is_remote = is_remote_uri(self._filename)
self.lock = ensure_lock(lock)
self.autoclose = autoclose
@classmethod
def open(
cls,
filename,
mode="r",
format="NETCDF4",
group=None,
clobber=True,
diskless=False,
persist=False,
auto_complex=None,
lock=None,
lock_maker=None,
autoclose=False,
):
import netCDF4
if isinstance(filename, os.PathLike):
filename = os.fspath(filename)
if not isinstance(filename, str):
raise ValueError(
"can only read bytes or file-like objects "
"with engine='scipy' or 'h5netcdf'"
)
if format is None:
format = "NETCDF4"
if lock is None:
if mode == "r":
if is_remote_uri(filename):
lock = NETCDFC_LOCK
else:
lock = NETCDF4_PYTHON_LOCK
else:
if format is None or format.startswith("NETCDF4"):
base_lock = NETCDF4_PYTHON_LOCK
else:
base_lock = NETCDFC_LOCK
lock = combine_locks([base_lock, get_write_lock(filename)])
kwargs = dict(
clobber=clobber,
diskless=diskless,
persist=persist,
format=format,
)
if auto_complex is not None:
kwargs["auto_complex"] = auto_complex
manager = CachingFileManager(
netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
)
return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
def _acquire(self, needs_lock=True):
with self._manager.acquire_context(needs_lock) as root:
ds = _nc4_require_group(root, self._group, self._mode)
return ds
@property
def ds(self):
return self._acquire()
def open_store_variable(self, name: str, var):
import netCDF4
dimensions = var.dimensions
attributes = {k: var.getncattr(k) for k in var.ncattrs()}
data = indexing.LazilyIndexedArray(NetCDF4ArrayWrapper(name, self))
encoding: dict[str, Any] = {}
if isinstance(var.datatype, netCDF4.EnumType):
encoding["dtype"] = np.dtype(
data.dtype,
metadata={
"enum": var.datatype.enum_dict,
"enum_name": var.datatype.name,
},
)
else:
encoding["dtype"] = var.dtype
_ensure_fill_value_valid(data, attributes)
# netCDF4 specific encoding; save _FillValue for later
filters = var.filters()
if filters is not None:
encoding.update(filters)
chunking = var.chunking()
if chunking is not None:
if chunking == "contiguous":
encoding["contiguous"] = True
encoding["chunksizes"] = None
else:
encoding["contiguous"] = False
encoding["chunksizes"] = tuple(chunking)
encoding["preferred_chunks"] = dict(
zip(var.dimensions, chunking, strict=True)
)
# TODO: figure out how to round-trip "endian-ness" without raising
# warnings from netCDF4
# encoding['endian'] = var.endian()
pop_to(attributes, encoding, "least_significant_digit")
# save source so __repr__ can detect if it's local or not
encoding["source"] = self._filename
encoding["original_shape"] = data.shape
return Variable(dimensions, data, attributes, encoding)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
)
def get_attrs(self):
return FrozenDict((k, self.ds.getncattr(k)) for k in self.ds.ncattrs())
def get_dimensions(self):
return FrozenDict((k, len(v)) for k, v in self.ds.dimensions.items())
def get_parent_dimensions(self):
return FrozenDict(collect_ancestor_dimensions(self.ds))
def get_encoding(self):
return {
"unlimited_dims": {
k for k, v in self.ds.dimensions.items() if v.isunlimited()
}
}
def set_dimension(self, name, length, is_unlimited=False):
_ensure_no_forward_slash_in_name(name)
dim_length = length if not is_unlimited else None
self.ds.createDimension(name, size=dim_length)
def set_attribute(self, key, value):
if self.format != "NETCDF4":
value = encode_nc3_attr_value(value)
if _is_list_of_strings(value):
# encode as NC_STRING if attr is list of strings
self.ds.setncattr_string(key, value)
else:
self.ds.setncattr(key, value)
def encode_variable(self, variable, name=None):
variable = _force_native_endianness(variable)
if self.format == "NETCDF4":
variable = _encode_nc4_variable(variable, name=name)
else:
variable = encode_nc3_variable(variable, name=name)
return variable
def prepare_variable(
self, name, variable: Variable, check_encoding=False, unlimited_dims=None
):
_ensure_no_forward_slash_in_name(name)
attrs = variable.attrs.copy()
fill_value = attrs.pop("_FillValue", None)
datatype: np.dtype | ncEnumType | h5EnumType
datatype = _get_datatype(
variable, self.format, raise_on_invalid_encoding=check_encoding
)
# check enum metadata and use netCDF4.EnumType
if (
(meta := np.dtype(datatype).metadata)
and (e_name := meta.get("enum_name"))
and (e_dict := meta.get("enum"))
):
datatype = _build_and_get_enum(self, name, datatype, e_name, e_dict)
encoding = _extract_nc4_variable_encoding(
variable, raise_on_invalid=check_encoding, unlimited_dims=unlimited_dims
)
if name in self.ds.variables:
nc4_var = self.ds.variables[name]
else:
default_args = dict(
varname=name,
datatype=datatype,
dimensions=variable.dims,
zlib=False,
complevel=4,
shuffle=True,
fletcher32=False,
contiguous=False,
chunksizes=None,
endian="native",
least_significant_digit=None,
fill_value=fill_value,
)
default_args.update(encoding)
default_args.pop("_FillValue", None)
nc4_var = self.ds.createVariable(**default_args)
nc4_var.setncatts(attrs)
target = NetCDF4ArrayWrapper(name, self)
return target, variable.data
def sync(self):
self.ds.sync()
def close(self, **kwargs):
self._manager.close(**kwargs)
class NetCDF4BackendEntrypoint(BackendEntrypoint):
"""
Backend for netCDF files based on the netCDF4 package.
It can open ".nc", ".nc4", ".cdf" files and will be chosen
as default for these files.
Additionally it can open valid HDF5 files, see
https://h5netcdf.org/#invalid-netcdf-files for more info.
It will not be detected as valid backend for such files, so make
sure to specify ``engine="netcdf4"`` in ``open_dataset``.
For more information about the underlying library, visit:
https://unidata.github.io/netcdf4-python
See Also
--------
backends.NetCDF4DataStore
backends.H5netcdfBackendEntrypoint
backends.ScipyBackendEntrypoint
"""
description = (
"Open netCDF (.nc, .nc4 and .cdf) and most HDF5 files using netCDF4 in Xarray"
)
url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.NetCDF4BackendEntrypoint.html"
def guess_can_open(self, filename_or_obj: T_PathFileOrDataStore) -> bool:
if isinstance(filename_or_obj, str) and is_remote_uri(filename_or_obj):
return True
magic_number = try_read_magic_number_from_path(filename_or_obj)
if magic_number is not None:
# netcdf 3 or HDF5
return magic_number.startswith((b"CDF", b"\211HDF\r\n\032\n"))
if isinstance(filename_or_obj, str | os.PathLike):
_, ext = os.path.splitext(filename_or_obj)
return ext in {".nc", ".nc4", ".cdf"}
return False
def open_dataset(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
group=None,
mode="r",
format="NETCDF4",
clobber=True,
diskless=False,
persist=False,
auto_complex=None,
lock=None,
autoclose=False,
) -> Dataset:
filename_or_obj = _normalize_path(filename_or_obj)
store = NetCDF4DataStore.open(
filename_or_obj,
mode=mode,
format=format,
group=group,
clobber=clobber,
diskless=diskless,
persist=persist,
auto_complex=auto_complex,
lock=lock,
autoclose=autoclose,
)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(store):
ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
return ds
def open_datatree(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
group: str | None = None,
format="NETCDF4",
clobber=True,
diskless=False,
persist=False,
auto_complex=None,
lock=None,
autoclose=False,
**kwargs,
) -> DataTree:
groups_dict = self.open_groups_as_dict(
filename_or_obj,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
group=group,
format=format,
clobber=clobber,
diskless=diskless,
persist=persist,
lock=lock,
autoclose=autoclose,
**kwargs,
)
return datatree_from_dict_with_io_cleanup(groups_dict)
def open_groups_as_dict(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
group: str | None = None,
format="NETCDF4",
clobber=True,
diskless=False,
persist=False,
auto_complex=None,
lock=None,
autoclose=False,
**kwargs,
) -> dict[str, Dataset]:
from xarray.backends.common import _iter_nc_groups
from xarray.core.treenode import NodePath
filename_or_obj = _normalize_path(filename_or_obj)
store = NetCDF4DataStore.open(
filename_or_obj,
group=group,
format=format,
clobber=clobber,
diskless=diskless,
persist=persist,
lock=lock,
autoclose=autoclose,
)
# Check for a group and make it a parent if it exists
if group:
parent = NodePath("/") / NodePath(group)
else:
parent = NodePath("/")
manager = store._manager
groups_dict = {}
for path_group in _iter_nc_groups(store.ds, parent=parent):
group_store = NetCDF4DataStore(manager, group=path_group, **kwargs)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(group_store):
group_ds = store_entrypoint.open_dataset(
group_store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
if group:
group_name = str(NodePath(path_group).relative_to(parent))
else:
group_name = str(NodePath(path_group))
groups_dict[group_name] = group_ds
return groups_dict
BACKEND_ENTRYPOINTS["netcdf4"] = ("netCDF4", NetCDF4BackendEntrypoint)
|