1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
from __future__ import annotations
import functools
import inspect
import itertools
import warnings
from collections.abc import Callable
from importlib.metadata import entry_points
from typing import TYPE_CHECKING, Any
from xarray.backends.common import BACKEND_ENTRYPOINTS, BackendEntrypoint
from xarray.core.utils import module_available
if TYPE_CHECKING:
import os
from importlib.metadata import EntryPoint, EntryPoints
from xarray.backends.common import AbstractDataStore
from xarray.core.types import ReadBuffer
STANDARD_BACKENDS_ORDER = ["netcdf4", "h5netcdf", "scipy"]
def remove_duplicates(entrypoints: EntryPoints) -> list[EntryPoint]:
# sort and group entrypoints by name
entrypoints_sorted = sorted(entrypoints, key=lambda ep: ep.name)
entrypoints_grouped = itertools.groupby(entrypoints_sorted, key=lambda ep: ep.name)
# check if there are multiple entrypoints for the same name
unique_entrypoints = []
for name, _matches in entrypoints_grouped:
# remove equal entrypoints
matches = list(set(_matches))
unique_entrypoints.append(matches[0])
matches_len = len(matches)
if matches_len > 1:
all_module_names = [e.value.split(":")[0] for e in matches]
selected_module_name = all_module_names[0]
warnings.warn(
f"Found {matches_len} entrypoints for the engine name {name}:"
f"\n {all_module_names}.\n "
f"The entrypoint {selected_module_name} will be used.",
RuntimeWarning,
stacklevel=2,
)
return unique_entrypoints
def detect_parameters(open_dataset: Callable) -> tuple[str, ...]:
signature = inspect.signature(open_dataset)
parameters = signature.parameters
parameters_list = []
for name, param in parameters.items():
if param.kind in (
inspect.Parameter.VAR_KEYWORD,
inspect.Parameter.VAR_POSITIONAL,
):
raise TypeError(
f"All the parameters in {open_dataset!r} signature should be explicit. "
"*args and **kwargs is not supported"
)
if name != "self":
parameters_list.append(name)
return tuple(parameters_list)
def backends_dict_from_pkg(
entrypoints: list[EntryPoint],
) -> dict[str, type[BackendEntrypoint]]:
backend_entrypoints = {}
for entrypoint in entrypoints:
name = entrypoint.name
try:
backend = entrypoint.load()
backend_entrypoints[name] = backend
except Exception as ex:
warnings.warn(
f"Engine {name!r} loading failed:\n{ex}", RuntimeWarning, stacklevel=2
)
return backend_entrypoints
def set_missing_parameters(
backend_entrypoints: dict[str, type[BackendEntrypoint]],
) -> None:
for backend in backend_entrypoints.values():
if backend.open_dataset_parameters is None:
open_dataset = backend.open_dataset
backend.open_dataset_parameters = detect_parameters(open_dataset)
def sort_backends(
backend_entrypoints: dict[str, type[BackendEntrypoint]],
) -> dict[str, type[BackendEntrypoint]]:
ordered_backends_entrypoints = {}
for be_name in STANDARD_BACKENDS_ORDER:
if backend_entrypoints.get(be_name) is not None:
ordered_backends_entrypoints[be_name] = backend_entrypoints.pop(be_name)
ordered_backends_entrypoints.update(
{name: backend_entrypoints[name] for name in sorted(backend_entrypoints)}
)
return ordered_backends_entrypoints
def build_engines(entrypoints: EntryPoints) -> dict[str, BackendEntrypoint]:
backend_entrypoints: dict[str, type[BackendEntrypoint]] = {}
for backend_name, (module_name, backend) in BACKEND_ENTRYPOINTS.items():
if module_name is None or module_available(module_name):
backend_entrypoints[backend_name] = backend
entrypoints_unique = remove_duplicates(entrypoints)
external_backend_entrypoints = backends_dict_from_pkg(entrypoints_unique)
backend_entrypoints.update(external_backend_entrypoints)
backend_entrypoints = sort_backends(backend_entrypoints)
set_missing_parameters(backend_entrypoints)
return {name: backend() for name, backend in backend_entrypoints.items()}
@functools.lru_cache(maxsize=1)
def list_engines() -> dict[str, BackendEntrypoint]:
"""
Return a dictionary of available engines and their BackendEntrypoint objects.
Returns
-------
dictionary
Notes
-----
This function lives in the backends namespace (``engs=xr.backends.list_engines()``).
If available, more information is available about each backend via ``engs["eng_name"]``.
"""
entrypoints = entry_points(group="xarray.backends")
return build_engines(entrypoints)
def refresh_engines() -> None:
"""Refreshes the backend engines based on installed packages."""
list_engines.cache_clear()
def guess_engine(
store_spec: str
| os.PathLike[Any]
| ReadBuffer
| bytes
| memoryview
| AbstractDataStore,
) -> str | type[BackendEntrypoint]:
engines = list_engines()
for engine, backend in engines.items():
try:
if backend.guess_can_open(store_spec):
return engine
except PermissionError:
raise
except Exception:
warnings.warn(
f"{engine!r} fails while guessing", RuntimeWarning, stacklevel=2
)
compatible_engines = []
for engine, (_, backend_cls) in BACKEND_ENTRYPOINTS.items():
try:
backend = backend_cls()
if backend.guess_can_open(store_spec):
compatible_engines.append(engine)
except Exception:
warnings.warn(
f"{engine!r} fails while guessing", RuntimeWarning, stacklevel=2
)
installed_engines = [k for k in engines if k != "store"]
if not compatible_engines:
if installed_engines:
error_msg = (
"did not find a match in any of xarray's currently installed IO "
f"backends {installed_engines}. Consider explicitly selecting one of the "
"installed engines via the ``engine`` parameter, or installing "
"additional IO dependencies, see:\n"
"https://docs.xarray.dev/en/stable/getting-started-guide/installing.html\n"
"https://docs.xarray.dev/en/stable/user-guide/io.html"
)
else:
error_msg = (
"xarray is unable to open this file because it has no currently "
"installed IO backends. Xarray's read/write support requires "
"installing optional IO dependencies, see:\n"
"https://docs.xarray.dev/en/stable/getting-started-guide/installing.html\n"
"https://docs.xarray.dev/en/stable/user-guide/io"
)
else:
error_msg = (
"found the following matches with the input file in xarray's IO "
f"backends: {compatible_engines}. But their dependencies may not be installed, see:\n"
"https://docs.xarray.dev/en/stable/user-guide/io.html \n"
"https://docs.xarray.dev/en/stable/getting-started-guide/installing.html"
)
raise ValueError(error_msg)
def get_backend(engine: str | type[BackendEntrypoint]) -> BackendEntrypoint:
"""Select open_dataset method based on current engine."""
if isinstance(engine, str):
engines = list_engines()
if engine not in engines:
raise ValueError(
f"unrecognized engine '{engine}' must be one of your download engines: {list(engines)}. "
"To install additional dependencies, see:\n"
"https://docs.xarray.dev/en/stable/user-guide/io.html \n"
"https://docs.xarray.dev/en/stable/getting-started-guide/installing.html"
)
backend = engines[engine]
elif issubclass(engine, BackendEntrypoint):
backend = engine()
else:
raise TypeError(
"engine must be a string or a subclass of "
f"xarray.backends.BackendEntrypoint: {engine}"
)
return backend
|