1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
from __future__ import annotations
import gzip
import io
import os
from collections.abc import Iterable
from typing import TYPE_CHECKING, Any
import numpy as np
from xarray.backends.common import (
BACKEND_ENTRYPOINTS,
BackendArray,
BackendEntrypoint,
BytesIOProxy,
T_PathFileOrDataStore,
WritableCFDataStore,
_normalize_path,
)
from xarray.backends.file_manager import CachingFileManager, DummyFileManager
from xarray.backends.locks import ensure_lock, get_write_lock
from xarray.backends.netcdf3 import (
encode_nc3_attr_value,
encode_nc3_variable,
is_valid_nc3_name,
)
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.utils import (
Frozen,
FrozenDict,
close_on_error,
emit_user_level_warning,
module_available,
try_read_magic_number_from_file_or_path,
)
from xarray.core.variable import Variable
if TYPE_CHECKING:
import scipy.io
from xarray.backends.common import AbstractDataStore
from xarray.core.dataset import Dataset
from xarray.core.types import ReadBuffer
HAS_NUMPY_2_0 = module_available("numpy", minversion="2.0.0.dev0")
def _decode_string(s):
if isinstance(s, bytes):
return s.decode("utf-8", "replace")
return s
def _decode_attrs(d):
# don't decode _FillValue from bytes -> unicode, because we want to ensure
# that its type matches the data exactly
return {k: v if k == "_FillValue" else _decode_string(v) for (k, v) in d.items()}
class ScipyArrayWrapper(BackendArray):
def __init__(self, variable_name, datastore):
self.datastore = datastore
self.variable_name = variable_name
array = self.get_variable().data
self.shape = array.shape
self.dtype = np.dtype(array.dtype.kind + str(array.dtype.itemsize))
def get_variable(self, needs_lock=True):
ds = self.datastore._manager.acquire(needs_lock)
return ds.variables[self.variable_name]
def _getitem(self, key):
with self.datastore.lock:
data = self.get_variable(needs_lock=False).data
return data[key]
def __getitem__(self, key):
data = indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
)
# Copy data if the source file is mmapped. This makes things consistent
# with the netCDF4 library by ensuring we can safely read arrays even
# after closing associated files.
copy = self.datastore.ds.use_mmap
# adapt handling of copy-kwarg to numpy 2.0
# see https://github.com/numpy/numpy/issues/25916
# and https://github.com/numpy/numpy/pull/25922
copy = None if HAS_NUMPY_2_0 and copy is False else copy
return np.array(data, dtype=self.dtype, copy=copy)
def __setitem__(self, key, value):
with self.datastore.lock:
data = self.get_variable(needs_lock=False)
try:
data[key] = value
except TypeError:
if key is Ellipsis:
# workaround for GH: scipy/scipy#6880
data[:] = value
else:
raise
def _open_scipy_netcdf(filename, mode, mmap, version):
import scipy.io
# if the string ends with .gz, then gunzip and open as netcdf file
if isinstance(filename, str) and filename.endswith(".gz"):
try:
return scipy.io.netcdf_file(
gzip.open(filename), mode=mode, mmap=mmap, version=version
)
except TypeError as e:
# TODO: gzipped loading only works with NetCDF3 files.
errmsg = e.args[0]
if "is not a valid NetCDF 3 file" in errmsg:
raise ValueError(
"gzipped file loading only supports NetCDF 3 files."
) from e
else:
raise
try:
return scipy.io.netcdf_file(filename, mode=mode, mmap=mmap, version=version)
except TypeError as e: # netcdf3 message is obscure in this case
errmsg = e.args[0]
if "is not a valid NetCDF 3 file" in errmsg:
msg = """
If this is a NetCDF4 file, you may need to install the
netcdf4 library, e.g.,
$ pip install netcdf4
"""
errmsg += msg
raise TypeError(errmsg) from e
else:
raise
class ScipyDataStore(WritableCFDataStore):
"""Store for reading and writing data via scipy.io.netcdf_file.
This store has the advantage of being able to be initialized with a
StringIO object, allow for serialization without writing to disk.
It only supports the NetCDF3 file-format.
"""
def __init__(
self, filename_or_obj, mode="r", format=None, group=None, mmap=None, lock=None
):
if group is not None:
raise ValueError("cannot save to a group with the scipy.io.netcdf backend")
if format is None or format == "NETCDF3_64BIT":
version = 2
elif format == "NETCDF3_CLASSIC":
version = 1
else:
raise ValueError(f"invalid format for scipy.io.netcdf backend: {format!r}")
if lock is None and mode != "r" and isinstance(filename_or_obj, str):
lock = get_write_lock(filename_or_obj)
self.lock = ensure_lock(lock)
if isinstance(filename_or_obj, BytesIOProxy):
emit_user_level_warning(
"return value of to_netcdf() without a target for "
"engine='scipy' is currently bytes, but will switch to "
"memoryview in a future version of Xarray. To silence this "
"warning, use the following pattern or switch to "
"to_netcdf(engine='h5netcdf'):\n"
" target = io.BytesIO()\n"
" dataset.to_netcdf(target)\n"
" result = target.getbuffer()",
FutureWarning,
)
source = filename_or_obj
filename_or_obj = io.BytesIO()
source.getvalue = filename_or_obj.getvalue
if isinstance(filename_or_obj, str): # path
manager = CachingFileManager(
_open_scipy_netcdf,
filename_or_obj,
mode=mode,
lock=lock,
kwargs=dict(mmap=mmap, version=version),
)
elif hasattr(filename_or_obj, "seek"): # file object
# Note: checking for .seek matches the check for file objects
# in scipy.io.netcdf_file
scipy_dataset = _open_scipy_netcdf(
filename_or_obj, mode=mode, mmap=mmap, version=version
)
# scipy.io.netcdf_file.close() incorrectly closes file objects that
# were passed in as constructor arguments:
# https://github.com/scipy/scipy/issues/13905
# Instead of closing such files, only call flush(), which is
# equivalent as long as the netcdf_file object is not mmapped.
# This suffices to keep BytesIO objects open long enough to read
# their contents from to_netcdf(), but underlying files still get
# closed when the netcdf_file is garbage collected (via __del__),
# and will need to be fixed upstream in scipy.
assert not scipy_dataset.use_mmap # no mmap for file objects
manager = DummyFileManager(scipy_dataset, close=scipy_dataset.flush)
else:
raise ValueError(
f"cannot open {filename_or_obj=} with scipy.io.netcdf_file"
)
self._manager = manager
@property
def ds(self) -> scipy.io.netcdf_file:
return self._manager.acquire()
def open_store_variable(self, name, var):
return Variable(
var.dimensions,
indexing.LazilyIndexedArray(ScipyArrayWrapper(name, self)),
_decode_attrs(var._attributes),
)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
)
def get_attrs(self):
return Frozen(_decode_attrs(self.ds._attributes))
def get_dimensions(self):
return Frozen(self.ds.dimensions)
def get_encoding(self):
return {
"unlimited_dims": {k for k, v in self.ds.dimensions.items() if v is None}
}
def set_dimension(self, name, length, is_unlimited=False):
if name in self.ds.dimensions:
raise ValueError(
f"{type(self).__name__} does not support modifying dimensions"
)
dim_length = length if not is_unlimited else None
self.ds.createDimension(name, dim_length)
def _validate_attr_key(self, key):
if not is_valid_nc3_name(key):
raise ValueError("Not a valid attribute name")
def set_attribute(self, key, value):
self._validate_attr_key(key)
value = encode_nc3_attr_value(value)
setattr(self.ds, key, value)
def encode_variable(self, variable, name=None):
variable = encode_nc3_variable(variable, name=name)
return variable
def prepare_variable(
self, name, variable, check_encoding=False, unlimited_dims=None
):
if (
check_encoding
and variable.encoding
and variable.encoding != {"_FillValue": None}
):
raise ValueError(
f"unexpected encoding for scipy backend: {list(variable.encoding)}"
)
data = variable.data
# nb. this still creates a numpy array in all memory, even though we
# don't write the data yet; scipy.io.netcdf does not not support
# incremental writes.
if name not in self.ds.variables:
self.ds.createVariable(name, data.dtype, variable.dims)
scipy_var = self.ds.variables[name]
for k, v in variable.attrs.items():
self._validate_attr_key(k)
setattr(scipy_var, k, v)
target = ScipyArrayWrapper(name, self)
return target, data
def sync(self):
self.ds.sync()
def close(self):
self._manager.close()
def _normalize_filename_or_obj(
filename_or_obj: str
| os.PathLike[Any]
| ReadBuffer
| bytes
| memoryview
| AbstractDataStore,
) -> str | ReadBuffer | AbstractDataStore:
if isinstance(filename_or_obj, bytes | memoryview):
return io.BytesIO(filename_or_obj)
else:
return _normalize_path(filename_or_obj) # type: ignore[return-value]
class ScipyBackendEntrypoint(BackendEntrypoint):
"""
Backend for netCDF files based on the scipy package.
It can open ".nc", ".nc4", ".cdf" and ".gz" files but will only be
selected as the default if the "netcdf4" and "h5netcdf" engines are
not available. It has the advantage that is is a lightweight engine
that has no system requirements (unlike netcdf4 and h5netcdf).
Additionally it can open gizp compressed (".gz") files.
For more information about the underlying library, visit:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.html
See Also
--------
backends.ScipyDataStore
backends.NetCDF4BackendEntrypoint
backends.H5netcdfBackendEntrypoint
"""
description = "Open netCDF files (.nc, .nc4, .cdf and .gz) using scipy in Xarray"
url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.ScipyBackendEntrypoint.html"
def guess_can_open(
self,
filename_or_obj: T_PathFileOrDataStore,
) -> bool:
filename_or_obj = _normalize_filename_or_obj(filename_or_obj)
magic_number = try_read_magic_number_from_file_or_path(filename_or_obj)
if magic_number is not None and magic_number.startswith(b"\x1f\x8b"):
with gzip.open(filename_or_obj) as f: # type: ignore[arg-type]
magic_number = try_read_magic_number_from_file_or_path(f)
if magic_number is not None:
return magic_number.startswith(b"CDF")
if isinstance(filename_or_obj, str | os.PathLike):
_, ext = os.path.splitext(filename_or_obj)
return ext in {".nc", ".nc4", ".cdf", ".gz"}
return False
def open_dataset(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
mode="r",
format=None,
group=None,
mmap=None,
lock=None,
) -> Dataset:
filename_or_obj = _normalize_filename_or_obj(filename_or_obj)
store = ScipyDataStore(
filename_or_obj, mode=mode, format=format, group=group, mmap=mmap, lock=lock
)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(store):
ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
return ds
BACKEND_ENTRYPOINTS["scipy"] = ("scipy", ScipyBackendEntrypoint)
|