1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
|
from __future__ import annotations
import base64
import json
import os
import struct
from collections.abc import Hashable, Iterable, Mapping
from typing import TYPE_CHECKING, Any, Literal, cast
import numpy as np
import pandas as pd
from xarray import coding, conventions
from xarray.backends.chunks import grid_rechunk, validate_grid_chunks_alignment
from xarray.backends.common import (
BACKEND_ENTRYPOINTS,
AbstractWritableDataStore,
BackendArray,
BackendEntrypoint,
T_PathFileOrDataStore,
_encode_variable_name,
_normalize_path,
datatree_from_dict_with_io_cleanup,
ensure_dtype_not_object,
)
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.treenode import NodePath
from xarray.core.types import ZarrWriteModes
from xarray.core.utils import (
FrozenDict,
HiddenKeyDict,
attempt_import,
close_on_error,
emit_user_level_warning,
)
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import guess_chunkmanager
from xarray.namedarray.pycompat import integer_types
from xarray.namedarray.utils import module_available
if TYPE_CHECKING:
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
from xarray.core.types import ZarrArray, ZarrGroup
def _get_mappers(*, storage_options, store, chunk_store):
# expand str and path-like arguments
store = _normalize_path(store)
chunk_store = _normalize_path(chunk_store)
kwargs = {}
if storage_options is None:
mapper = store
chunk_mapper = chunk_store
else:
if not isinstance(store, str):
raise ValueError(
f"store must be a string to use storage_options. Got {type(store)}"
)
if _zarr_v3():
kwargs["storage_options"] = storage_options
mapper = store
chunk_mapper = chunk_store
else:
from fsspec import get_mapper
mapper = get_mapper(store, **storage_options)
if chunk_store is not None:
chunk_mapper = get_mapper(chunk_store, **storage_options)
else:
chunk_mapper = chunk_store
return kwargs, mapper, chunk_mapper
def _choose_default_mode(
*,
mode: ZarrWriteModes | None,
append_dim: Hashable | None,
region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None,
) -> ZarrWriteModes:
if mode is None:
if append_dim is not None:
mode = "a"
elif region is not None:
mode = "r+"
else:
mode = "w-"
if mode not in ["a", "a-"] and append_dim is not None:
raise ValueError("cannot set append_dim unless mode='a' or mode=None")
if mode not in ["a", "a-", "r+"] and region is not None:
raise ValueError(
"cannot set region unless mode='a', mode='a-', mode='r+' or mode=None"
)
if mode not in ["w", "w-", "a", "a-", "r+"]:
raise ValueError(
"The only supported options for mode are 'w', "
f"'w-', 'a', 'a-', and 'r+', but mode={mode!r}"
)
return mode
def _zarr_v3() -> bool:
return module_available("zarr", minversion="3")
# need some special secret attributes to tell us the dimensions
DIMENSION_KEY = "_ARRAY_DIMENSIONS"
ZarrFormat = Literal[2, 3]
class FillValueCoder:
"""Handle custom logic to safely encode and decode fill values in Zarr.
Possibly redundant with logic in xarray/coding/variables.py but needs to be
isolated from NetCDF-specific logic.
"""
@classmethod
def encode(cls, value: int | float | str | bytes, dtype: np.dtype[Any]) -> Any:
if dtype.kind in "S":
# byte string, this implies that 'value' must also be `bytes` dtype.
assert isinstance(value, bytes)
return base64.standard_b64encode(value).decode()
elif dtype.kind in "b":
# boolean
return bool(value)
elif dtype.kind in "iu":
# todo: do we want to check for decimals?
return int(value)
elif dtype.kind in "f":
return base64.standard_b64encode(struct.pack("<d", float(value))).decode()
elif dtype.kind in "U":
return str(value)
else:
raise ValueError(f"Failed to encode fill_value. Unsupported dtype {dtype}")
@classmethod
def decode(cls, value: int | float | str | bytes, dtype: str | np.dtype[Any]):
if dtype == "string":
# zarr V3 string type
return str(value)
elif dtype == "bytes":
# zarr V3 bytes type
assert isinstance(value, str | bytes)
return base64.standard_b64decode(value)
np_dtype = np.dtype(dtype)
if np_dtype.kind in "f":
assert isinstance(value, str | bytes)
return struct.unpack("<d", base64.standard_b64decode(value))[0]
elif np_dtype.kind in "b":
return bool(value)
elif np_dtype.kind in "iu":
return int(value)
else:
raise ValueError(f"Failed to decode fill_value. Unsupported dtype {dtype}")
def encode_zarr_attr_value(value):
"""
Encode a attribute value as something that can be serialized as json
Many xarray datasets / variables have numpy arrays and values. This
function handles encoding / decoding of such items.
ndarray -> list
scalar array -> scalar
other -> other (no change)
"""
if isinstance(value, np.ndarray):
encoded = value.tolist()
elif isinstance(value, np.generic):
encoded = value.item()
else:
encoded = value
return encoded
def has_zarr_async_index() -> bool:
try:
import zarr
return hasattr(zarr.AsyncArray, "oindex")
except (ImportError, AttributeError):
return False
class ZarrArrayWrapper(BackendArray):
__slots__ = ("_array", "dtype", "shape")
def __init__(self, zarr_array):
# some callers attempt to evaluate an array if an `array` property exists on the object.
# we prefix with _ to avoid this inference.
# TODO type hint this?
self._array = zarr_array
self.shape = self._array.shape
# preserve vlen string object dtype (GH 7328)
if (
not _zarr_v3()
and self._array.filters is not None
and any(filt.codec_id == "vlen-utf8" for filt in self._array.filters)
):
dtype = coding.strings.create_vlen_dtype(str)
else:
dtype = self._array.dtype
self.dtype = dtype
def get_array(self):
return self._array
def _oindex(self, key):
return self._array.oindex[key]
def _vindex(self, key):
return self._array.vindex[key]
def _getitem(self, key):
return self._array[key]
async def _async_getitem(self, key):
if not _zarr_v3():
raise NotImplementedError(
"For lazy basic async indexing with zarr, zarr-python=>v3.0.0 is required"
)
async_array = self._array._async_array
return await async_array.getitem(key)
async def _async_oindex(self, key):
if not has_zarr_async_index():
raise NotImplementedError(
"For lazy orthogonal async indexing with zarr, zarr-python=>v3.1.2 is required"
)
async_array = self._array._async_array
return await async_array.oindex.getitem(key)
async def _async_vindex(self, key):
if not has_zarr_async_index():
raise NotImplementedError(
"For lazy vectorized async indexing with zarr, zarr-python=>v3.1.2 is required"
)
async_array = self._array._async_array
return await async_array.vindex.getitem(key)
def __getitem__(self, key):
array = self._array
if isinstance(key, indexing.BasicIndexer):
method = self._getitem
elif isinstance(key, indexing.VectorizedIndexer):
method = self._vindex
elif isinstance(key, indexing.OuterIndexer):
method = self._oindex
return indexing.explicit_indexing_adapter(
key, array.shape, indexing.IndexingSupport.VECTORIZED, method
)
# if self.ndim == 0:
# could possibly have a work-around for 0d data here
async def async_getitem(self, key):
array = self._array
if isinstance(key, indexing.BasicIndexer):
method = self._async_getitem
elif isinstance(key, indexing.VectorizedIndexer):
method = self._async_vindex
elif isinstance(key, indexing.OuterIndexer):
method = self._async_oindex
return await indexing.async_explicit_indexing_adapter(
key, array.shape, indexing.IndexingSupport.VECTORIZED, method
)
def _determine_zarr_chunks(enc_chunks, var_chunks, ndim, name):
"""
Given encoding chunks (possibly None or []) and variable chunks
(possibly None or []).
"""
# zarr chunk spec:
# chunks : int or tuple of ints, optional
# Chunk shape. If not provided, will be guessed from shape and dtype.
# if there are no chunks in encoding and the variable data is a numpy
# array, then we let zarr use its own heuristics to pick the chunks
if not var_chunks and not enc_chunks:
return None
# if there are no chunks in encoding but there are dask chunks, we try to
# use the same chunks in zarr
# However, zarr chunks needs to be uniform for each array
# https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html#chunks
# while dask chunks can be variable sized
# https://dask.pydata.org/en/latest/array-design.html#chunks
if var_chunks and not enc_chunks:
if any(len(set(chunks[:-1])) > 1 for chunks in var_chunks):
raise ValueError(
"Zarr requires uniform chunk sizes except for final chunk. "
f"Variable named {name!r} has incompatible dask chunks: {var_chunks!r}. "
"Consider rechunking using `chunk()`."
)
if any((chunks[0] < chunks[-1]) for chunks in var_chunks):
raise ValueError(
"Final chunk of Zarr array must be the same size or smaller "
f"than the first. Variable named {name!r} has incompatible Dask chunks {var_chunks!r}."
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
# return the first chunk for each dimension
return tuple(chunk[0] for chunk in var_chunks)
# From here on, we are dealing with user-specified chunks in encoding
# zarr allows chunks to be an integer, in which case it uses the same chunk
# size on each dimension.
# Here we re-implement this expansion ourselves. That makes the logic of
# checking chunk compatibility easier
if isinstance(enc_chunks, integer_types):
enc_chunks_tuple = ndim * (enc_chunks,)
else:
enc_chunks_tuple = tuple(enc_chunks)
if len(enc_chunks_tuple) != ndim:
# throw away encoding chunks, start over
return _determine_zarr_chunks(
None,
var_chunks,
ndim,
name,
)
for x in enc_chunks_tuple:
if not isinstance(x, int):
raise TypeError(
"zarr chunk sizes specified in `encoding['chunks']` "
"must be an int or a tuple of ints. "
f"Instead found encoding['chunks']={enc_chunks_tuple!r} "
f"for variable named {name!r}."
)
# if there are chunks in encoding and the variable data is a numpy array,
# we use the specified chunks
if not var_chunks:
return enc_chunks_tuple
return enc_chunks_tuple
def _get_zarr_dims_and_attrs(zarr_obj, dimension_key, try_nczarr):
# Zarr V3 explicitly stores the dimension names in the metadata
try:
# if this exists, we are looking at a Zarr V3 array
# convert None to empty tuple
dimensions = zarr_obj.metadata.dimension_names or ()
except AttributeError:
# continue to old code path
pass
else:
attributes = dict(zarr_obj.attrs)
if len(zarr_obj.shape) != len(dimensions):
raise KeyError(
"Zarr object is missing the `dimension_names` metadata which is "
"required for xarray to determine variable dimensions."
)
return dimensions, attributes
# Zarr arrays do not have dimensions. To get around this problem, we add
# an attribute that specifies the dimension. We have to hide this attribute
# when we send the attributes to the user.
# zarr_obj can be either a zarr group or zarr array
try:
# Xarray-Zarr
dimensions = zarr_obj.attrs[dimension_key]
except KeyError as e:
if not try_nczarr:
raise KeyError(
f"Zarr object is missing the attribute `{dimension_key}`, which is "
"required for xarray to determine variable dimensions."
) from e
# NCZarr defines dimensions through metadata in .zarray
zarray_path = os.path.join(zarr_obj.path, ".zarray")
if _zarr_v3():
import asyncio
zarray_str = asyncio.run(zarr_obj.store.get(zarray_path)).to_bytes()
else:
zarray_str = zarr_obj.store.get(zarray_path)
zarray = json.loads(zarray_str)
try:
# NCZarr uses Fully Qualified Names
dimensions = [
os.path.basename(dim) for dim in zarray["_NCZARR_ARRAY"]["dimrefs"]
]
except KeyError as e:
raise KeyError(
f"Zarr object is missing the attribute `{dimension_key}` and the NCZarr metadata, "
"which are required for xarray to determine variable dimensions."
) from e
nc_attrs = [attr for attr in zarr_obj.attrs if attr.lower().startswith("_nc")]
attributes = HiddenKeyDict(zarr_obj.attrs, [dimension_key] + nc_attrs)
return dimensions, attributes
def extract_zarr_variable_encoding(
variable,
raise_on_invalid=False,
name=None,
*,
zarr_format: ZarrFormat,
):
"""
Extract zarr encoding dictionary from xarray Variable
Parameters
----------
variable : Variable
raise_on_invalid : bool, optional
name: str | Hashable, optional
zarr_format: Literal[2,3]
Returns
-------
encoding : dict
Zarr encoding for `variable`
"""
encoding = variable.encoding.copy()
safe_to_drop = {"source", "original_shape", "preferred_chunks"}
valid_encodings = {
"chunks",
"shards",
"compressor", # TODO: delete when min zarr >=3
"compressors",
"filters",
"serializer",
"cache_metadata",
"write_empty_chunks",
"chunk_key_encoding",
}
if zarr_format == 3:
valid_encodings.add("fill_value")
for k in safe_to_drop:
if k in encoding:
del encoding[k]
if raise_on_invalid:
invalid = [k for k in encoding if k not in valid_encodings]
if "fill_value" in invalid and zarr_format == 2:
msg = " Use `_FillValue` to set the Zarr array `fill_value`"
else:
msg = ""
if invalid:
raise ValueError(
f"unexpected encoding parameters for zarr backend: {invalid!r}." + msg
)
else:
for k in list(encoding):
if k not in valid_encodings:
del encoding[k]
chunks = _determine_zarr_chunks(
enc_chunks=encoding.get("chunks"),
var_chunks=variable.chunks,
ndim=variable.ndim,
name=name,
)
if _zarr_v3() and chunks is None:
chunks = "auto"
encoding["chunks"] = chunks
return encoding
# Function below is copied from conventions.encode_cf_variable.
# The only change is to raise an error for object dtypes.
def encode_zarr_variable(var, needs_copy=True, name=None):
"""
Converts an Variable into an Variable which follows some
of the CF conventions:
- Nans are masked using _FillValue (or the deprecated missing_value)
- Rescaling via: scale_factor and add_offset
- datetimes are converted to the CF 'units since time' format
- dtype encodings are enforced.
Parameters
----------
var : Variable
A variable holding un-encoded data.
Returns
-------
out : Variable
A variable which has been encoded as described above.
"""
var = conventions.encode_cf_variable(var, name=name)
var = ensure_dtype_not_object(var, name=name)
# zarr allows unicode, but not variable-length strings, so it's both
# simpler and more compact to always encode as UTF-8 explicitly.
# TODO: allow toggling this explicitly via dtype in encoding.
# TODO: revisit this now that Zarr _does_ allow variable-length strings
coder = coding.strings.EncodedStringCoder(allows_unicode=True)
var = coder.encode(var, name=name)
var = coding.strings.ensure_fixed_length_bytes(var)
return var
def _validate_datatypes_for_zarr_append(vname, existing_var, new_var):
"""If variable exists in the store, confirm dtype of the data to append is compatible with
existing dtype.
"""
if (
np.issubdtype(new_var.dtype, np.number)
or np.issubdtype(new_var.dtype, np.datetime64)
or np.issubdtype(new_var.dtype, np.bool_)
or new_var.dtype == object
or (new_var.dtype.kind in ("S", "U") and existing_var.dtype == object)
):
# We can skip dtype equality checks under two conditions: (1) if the var to append is
# new to the dataset, because in this case there is no existing var to compare it to;
# or (2) if var to append's dtype is known to be easy-to-append, because in this case
# we can be confident appending won't cause problems. Examples of dtypes which are not
# easy-to-append include length-specified strings of type `|S*` or `<U*` (where * is a
# positive integer character length). For these dtypes, appending dissimilar lengths
# can result in truncation of appended data. Therefore, variables which already exist
# in the dataset, and with dtypes which are not known to be easy-to-append, necessitate
# exact dtype equality, as checked below.
pass
elif new_var.dtype != existing_var.dtype:
raise ValueError(
f"Mismatched dtypes for variable {vname} between Zarr store on disk "
f"and dataset to append. Store has dtype {existing_var.dtype} but "
f"dataset to append has dtype {new_var.dtype}."
)
def _validate_and_transpose_existing_dims(
var_name, new_var, existing_var, region, append_dim
):
if new_var.dims != existing_var.dims:
if set(existing_var.dims) == set(new_var.dims):
new_var = new_var.transpose(*existing_var.dims)
else:
raise ValueError(
f"variable {var_name!r} already exists with different "
f"dimension names {existing_var.dims} != "
f"{new_var.dims}, but changing variable "
f"dimensions is not supported by to_zarr()."
)
existing_sizes = {}
for dim, size in existing_var.sizes.items():
if region is not None and dim in region:
start, stop, stride = region[dim].indices(size)
assert stride == 1 # region was already validated
size = stop - start
if dim != append_dim:
existing_sizes[dim] = size
new_sizes = {dim: size for dim, size in new_var.sizes.items() if dim != append_dim}
if existing_sizes != new_sizes:
raise ValueError(
f"variable {var_name!r} already exists with different "
f"dimension sizes: {existing_sizes} != {new_sizes}. "
f"to_zarr() only supports changing dimension sizes when "
f"explicitly appending, but append_dim={append_dim!r}. "
f"If you are attempting to write to a subset of the "
f"existing store without changing dimension sizes, "
f"consider using the region argument in to_zarr()."
)
return new_var
def _put_attrs(zarr_obj, attrs):
"""Raise a more informative error message for invalid attrs."""
try:
zarr_obj.attrs.put(attrs)
except TypeError as e:
raise TypeError("Invalid attribute in Dataset.attrs.") from e
return zarr_obj
class ZarrStore(AbstractWritableDataStore):
"""Store for reading and writing data via zarr"""
__slots__ = (
"_align_chunks",
"_append_dim",
"_cache_members",
"_close_store_on_close",
"_consolidate_on_close",
"_group",
"_members",
"_mode",
"_read_only",
"_safe_chunks",
"_synchronizer",
"_use_zarr_fill_value_as_mask",
"_write_empty",
"_write_region",
"zarr_group",
)
@classmethod
def open_store(
cls,
store,
mode: ZarrWriteModes = "r",
synchronizer=None,
group=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
storage_options=None,
append_dim=None,
write_region=None,
safe_chunks=True,
align_chunks=False,
zarr_version=None,
zarr_format=None,
use_zarr_fill_value_as_mask=None,
write_empty: bool | None = None,
cache_members: bool = True,
):
(
zarr_group,
consolidate_on_close,
close_store_on_close,
use_zarr_fill_value_as_mask,
) = _get_open_params(
store=store,
mode=mode,
synchronizer=synchronizer,
group=group,
consolidated=consolidated,
consolidate_on_close=consolidate_on_close,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
zarr_format=zarr_format,
)
from zarr import Group
group_members: dict[str, Group] = {}
group_paths = list(_iter_zarr_groups(zarr_group, parent=group))
for path in group_paths:
if path == group:
group_members[path] = zarr_group
else:
rel_path = path.removeprefix(f"{group}/")
group_members[path] = zarr_group[rel_path.removeprefix("/")]
out = {
group: cls(
group_store,
mode,
consolidate_on_close,
append_dim,
write_region,
safe_chunks,
write_empty,
close_store_on_close,
use_zarr_fill_value_as_mask,
align_chunks=align_chunks,
cache_members=cache_members,
)
for group, group_store in group_members.items()
}
return out
@classmethod
def open_group(
cls,
store,
mode: ZarrWriteModes = "r",
synchronizer=None,
group=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
storage_options=None,
append_dim=None,
write_region=None,
safe_chunks=True,
align_chunks=False,
zarr_version=None,
zarr_format=None,
use_zarr_fill_value_as_mask=None,
write_empty: bool | None = None,
cache_members: bool = True,
):
(
zarr_group,
consolidate_on_close,
close_store_on_close,
use_zarr_fill_value_as_mask,
) = _get_open_params(
store=store,
mode=mode,
synchronizer=synchronizer,
group=group,
consolidated=consolidated,
consolidate_on_close=consolidate_on_close,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
zarr_format=zarr_format,
)
return cls(
zarr_group,
mode,
consolidate_on_close,
append_dim,
write_region,
safe_chunks,
write_empty,
close_store_on_close,
use_zarr_fill_value_as_mask,
align_chunks=align_chunks,
cache_members=cache_members,
)
def __init__(
self,
zarr_group,
mode=None,
consolidate_on_close=False,
append_dim=None,
write_region=None,
safe_chunks=True,
write_empty: bool | None = None,
close_store_on_close: bool = False,
use_zarr_fill_value_as_mask=None,
align_chunks: bool = False,
cache_members: bool = True,
):
if align_chunks:
# Disabled the safe_chunks validations if the alignment is going to be applied
safe_chunks = False
self.zarr_group = zarr_group
self._read_only = self.zarr_group.read_only
self._synchronizer = self.zarr_group.synchronizer
self._group = self.zarr_group.path
self._mode = mode
self._consolidate_on_close = consolidate_on_close
self._append_dim = append_dim
self._write_region = write_region
self._align_chunks = align_chunks
self._safe_chunks = safe_chunks
self._write_empty = write_empty
self._close_store_on_close = close_store_on_close
self._use_zarr_fill_value_as_mask = use_zarr_fill_value_as_mask
self._cache_members: bool = cache_members
self._members: dict[str, ZarrArray | ZarrGroup] = {}
if self._cache_members:
# initialize the cache
# this cache is created here and never updated.
# If the `ZarrStore` instance creates a new zarr array, or if an external process
# removes an existing zarr array, then the cache will be invalid.
# We use this cache only to record any pre-existing arrays when the group was opened
# create a new ZarrStore instance if you want to
# capture the current state of the zarr group, or create a ZarrStore with
# `cache_members` set to `False` to disable this cache and instead fetch members
# on demand.
self._members = self._fetch_members()
@property
def members(self) -> dict[str, ZarrArray | ZarrGroup]:
"""
Model the arrays and groups contained in self.zarr_group as a dict. If `self._cache_members`
is true, the dict is cached. Otherwise, it is retrieved from storage.
"""
if not self._cache_members:
return self._fetch_members()
else:
return self._members
def _fetch_members(self) -> dict[str, ZarrArray | ZarrGroup]:
"""
Get the arrays and groups defined in the zarr group modelled by this Store
"""
import zarr
if zarr.__version__ >= "3":
return dict(self.zarr_group.members())
else:
return dict(self.zarr_group.items())
def array_keys(self) -> tuple[str, ...]:
from zarr import Array as ZarrArray
return tuple(
key for (key, node) in self.members.items() if isinstance(node, ZarrArray)
)
def arrays(self) -> tuple[tuple[str, ZarrArray], ...]:
from zarr import Array as ZarrArray
return tuple(
(key, node)
for (key, node) in self.members.items()
if isinstance(node, ZarrArray)
)
@property
def ds(self):
# TODO: consider deprecating this in favor of zarr_group
return self.zarr_group
def open_store_variable(self, name):
zarr_array = self.members[name]
data = indexing.LazilyIndexedArray(ZarrArrayWrapper(zarr_array))
try_nczarr = self._mode == "r"
dimensions, attributes = _get_zarr_dims_and_attrs(
zarr_array, DIMENSION_KEY, try_nczarr
)
attributes = dict(attributes)
encoding = {
"chunks": zarr_array.chunks,
"preferred_chunks": dict(zip(dimensions, zarr_array.chunks, strict=True)),
}
if _zarr_v3():
encoding.update(
{
"compressors": zarr_array.compressors,
"filters": zarr_array.filters,
"shards": zarr_array.shards,
}
)
if self.zarr_group.metadata.zarr_format == 3:
encoding.update({"serializer": zarr_array.serializer})
else:
encoding.update(
{
"compressor": zarr_array.compressor,
"filters": zarr_array.filters,
}
)
if self._use_zarr_fill_value_as_mask:
# Setting this attribute triggers CF decoding for missing values
# by interpreting Zarr's fill_value to mean the same as netCDF's _FillValue
if zarr_array.fill_value is not None:
attributes["_FillValue"] = zarr_array.fill_value
elif "_FillValue" in attributes:
attributes["_FillValue"] = FillValueCoder.decode(
attributes["_FillValue"], zarr_array.dtype
)
return Variable(dimensions, data, attributes, encoding)
def get_variables(self):
return FrozenDict((k, self.open_store_variable(k)) for k in self.array_keys())
def get_attrs(self):
return {
k: v
for k, v in self.zarr_group.attrs.asdict().items()
if not k.lower().startswith("_nc")
}
def get_dimensions(self):
try_nczarr = self._mode == "r"
dimensions = {}
for _k, v in self.arrays():
dim_names, _ = _get_zarr_dims_and_attrs(v, DIMENSION_KEY, try_nczarr)
for d, s in zip(dim_names, v.shape, strict=True):
if d in dimensions and dimensions[d] != s:
raise ValueError(
f"found conflicting lengths for dimension {d} "
f"({s} != {dimensions[d]})"
)
dimensions[d] = s
return dimensions
def set_dimensions(self, variables, unlimited_dims=None):
if unlimited_dims is not None:
raise NotImplementedError(
"Zarr backend doesn't know how to handle unlimited dimensions"
)
def set_attributes(self, attributes):
_put_attrs(self.zarr_group, attributes)
def encode_variable(self, variable, name=None):
variable = encode_zarr_variable(variable, name=name)
return variable
def encode_attribute(self, a):
return encode_zarr_attr_value(a)
def store(
self,
variables,
attributes,
check_encoding_set=frozenset(),
writer=None,
unlimited_dims=None,
):
"""
Top level method for putting data on this store, this method:
- encodes variables/attributes
- sets dimensions
- sets variables
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
dimension on which the zarray will be appended
only needed in append mode
"""
if TYPE_CHECKING:
import zarr
else:
zarr = attempt_import("zarr")
if self._mode == "w":
# always overwrite, so we don't care about existing names,
# and consistency of encoding
new_variable_names = set(variables)
existing_keys = {}
existing_variable_names = {}
else:
existing_keys = self.array_keys()
existing_variable_names = {
vn for vn in variables if _encode_variable_name(vn) in existing_keys
}
new_variable_names = set(variables) - existing_variable_names
if self._mode == "r+" and (
new_names := [k for k in variables if k not in existing_keys]
):
raise ValueError(
f"dataset contains non-pre-existing variables {new_names!r}, "
"which is not allowed in ``xarray.Dataset.to_zarr()`` with "
"``mode='r+'``. To allow writing new variables, set ``mode='a'``."
)
if self._append_dim is not None and self._append_dim not in existing_keys:
# For dimensions without coordinate values, we must parse
# the _ARRAY_DIMENSIONS attribute on *all* arrays to check if it
# is a valid existing dimension name.
# TODO: This `get_dimensions` method also does shape checking
# which isn't strictly necessary for our check.
existing_dims = self.get_dimensions()
if self._append_dim not in existing_dims:
raise ValueError(
f"append_dim={self._append_dim!r} does not match any existing "
f"dataset dimensions {existing_dims}"
)
variables_encoded, attributes = self.encode(
{vn: variables[vn] for vn in new_variable_names}, attributes
)
if existing_variable_names:
# We make sure that values to be appended are encoded *exactly*
# as the current values in the store.
# To do so, we decode variables directly to access the proper encoding,
# without going via xarray.Dataset to avoid needing to load
# index variables into memory.
existing_vars, _, _ = conventions.decode_cf_variables(
variables={
k: self.open_store_variable(name=k) for k in existing_variable_names
},
# attributes = {} since we don't care about parsing the global
# "coordinates" attribute
attributes={},
)
# Modified variables must use the same encoding as the store.
vars_with_encoding = {}
for vn in existing_variable_names:
_validate_datatypes_for_zarr_append(
vn, existing_vars[vn], variables[vn]
)
vars_with_encoding[vn] = variables[vn].copy(deep=False)
vars_with_encoding[vn].encoding = existing_vars[vn].encoding
vars_with_encoding, _ = self.encode(vars_with_encoding, {})
variables_encoded.update(vars_with_encoding)
for var_name in existing_variable_names:
variables_encoded[var_name] = _validate_and_transpose_existing_dims(
var_name,
variables_encoded[var_name],
existing_vars[var_name],
self._write_region,
self._append_dim,
)
if self._mode not in ["r", "r+"]:
self.set_attributes(attributes)
self.set_dimensions(variables_encoded, unlimited_dims=unlimited_dims)
# if we are appending to an append_dim, only write either
# - new variables not already present, OR
# - variables with the append_dim in their dimensions
# We do NOT overwrite other variables.
if self._mode == "a-" and self._append_dim is not None:
variables_to_set = {
k: v
for k, v in variables_encoded.items()
if (k not in existing_variable_names) or (self._append_dim in v.dims)
}
else:
variables_to_set = variables_encoded
self.set_variables(
variables_to_set, check_encoding_set, writer, unlimited_dims=unlimited_dims
)
if self._consolidate_on_close:
kwargs = {}
if _zarr_v3():
kwargs["zarr_format"] = self.zarr_group.metadata.zarr_format
zarr.consolidate_metadata(self.zarr_group.store, **kwargs)
def sync(self):
pass
def _open_existing_array(self, *, name) -> ZarrArray:
import zarr
from zarr import Array as ZarrArray
# TODO: if mode="a", consider overriding the existing variable
# metadata. This would need some case work properly with region
# and append_dim.
if self._write_empty is not None:
# Write to zarr_group.chunk_store instead of zarr_group.store
# See https://github.com/pydata/xarray/pull/8326#discussion_r1365311316 for a longer explanation
# The open_consolidated() enforces a mode of r or r+
# (and to_zarr with region provided enforces a read mode of r+),
# and this function makes sure the resulting Group has a store of type ConsolidatedMetadataStore
# and a 'normal Store subtype for chunk_store.
# The exact type depends on if a local path was used, or a URL of some sort,
# but the point is that it's not a read-only ConsolidatedMetadataStore.
# It is safe to write chunk data to the chunk_store because no metadata would be changed by
# to_zarr with the region parameter:
# - Because the write mode is enforced to be r+, no new variables can be added to the store
# (this is also checked and enforced in xarray.backends.api.py::to_zarr()).
# - Existing variables already have their attrs included in the consolidated metadata file.
# - The size of dimensions can not be expanded, that would require a call using `append_dim`
# which is mutually exclusive with `region`
empty: dict[str, bool] | dict[str, dict[str, bool]]
if _zarr_v3():
empty = dict(config={"write_empty_chunks": self._write_empty})
else:
empty = dict(write_empty_chunks=self._write_empty)
zarr_array = zarr.open(
store=(
self.zarr_group.store if _zarr_v3() else self.zarr_group.chunk_store
),
# TODO: see if zarr should normalize these strings.
path="/".join([self.zarr_group.name.rstrip("/"), name]).lstrip("/"),
**empty,
)
else:
zarr_array = self.zarr_group[name]
return cast(ZarrArray, zarr_array)
def _create_new_array(
self, *, name, shape, dtype, fill_value, encoding, attrs
) -> ZarrArray:
if coding.strings.check_vlen_dtype(dtype) is str:
dtype = str
if self._write_empty is not None:
if (
"write_empty_chunks" in encoding
and encoding["write_empty_chunks"] != self._write_empty
):
raise ValueError(
'Differing "write_empty_chunks" values in encoding and parameters'
f'Got {encoding["write_empty_chunks"] = } and {self._write_empty = }'
)
else:
encoding["write_empty_chunks"] = self._write_empty
if _zarr_v3():
# zarr v3 deprecated origin and write_empty_chunks
# instead preferring to pass them via the config argument
encoding["config"] = {}
for c in ("write_empty_chunks", "order"):
if c in encoding:
encoding["config"][c] = encoding.pop(c)
zarr_array = self.zarr_group.create(
name,
shape=shape,
dtype=dtype,
fill_value=fill_value,
**encoding,
)
zarr_array = _put_attrs(zarr_array, attrs)
return zarr_array
def set_variables(
self,
variables: dict[str, Variable],
check_encoding_set,
writer,
unlimited_dims=None,
):
"""
This provides a centralized method to set the variables on the data
store.
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
"""
existing_keys = self.array_keys()
is_zarr_v3_format = _zarr_v3() and self.zarr_group.metadata.zarr_format == 3
for vn, v in variables.items():
name = _encode_variable_name(vn)
attrs = v.attrs.copy()
dims = v.dims
dtype = v.dtype
shape = v.shape
if self._use_zarr_fill_value_as_mask:
fill_value = attrs.pop("_FillValue", None)
else:
fill_value = v.encoding.pop("fill_value", None)
if "_FillValue" in attrs:
# replace with encoded fill value
fv = attrs.pop("_FillValue")
if fv is not None:
attrs["_FillValue"] = FillValueCoder.encode(fv, dtype)
# _FillValue is never a valid encoding for Zarr
# TODO: refactor this logic so we don't need to check this here
if "_FillValue" in v.encoding:
if v.encoding.get("_FillValue") is not None:
raise ValueError("Zarr does not support _FillValue in encoding.")
else:
del v.encoding["_FillValue"]
zarr_shape = None
write_region = self._write_region if self._write_region is not None else {}
write_region = {dim: write_region.get(dim, slice(None)) for dim in dims}
if self._mode != "w" and name in existing_keys:
# existing variable
zarr_array = self._open_existing_array(name=name)
if self._append_dim is not None and self._append_dim in dims:
# resize existing variable
append_axis = dims.index(self._append_dim)
assert write_region[self._append_dim] == slice(None)
write_region[self._append_dim] = slice(
zarr_array.shape[append_axis], None
)
new_shape = (
zarr_array.shape[:append_axis]
+ (zarr_array.shape[append_axis] + v.shape[append_axis],)
+ zarr_array.shape[append_axis + 1 :]
)
zarr_array.resize(new_shape)
zarr_shape = zarr_array.shape
region = tuple(write_region[dim] for dim in dims)
# We need to do this for both new and existing variables to ensure we're not
# writing to a partial chunk, even though we don't use the `encoding` value
# when writing to an existing variable. See
# https://github.com/pydata/xarray/issues/8371 for details.
# Note: Ideally there should be two functions, one for validating the chunks and
# another one for extracting the encoding.
encoding = extract_zarr_variable_encoding(
v,
raise_on_invalid=vn in check_encoding_set,
name=vn,
zarr_format=3 if is_zarr_v3_format else 2,
)
if self._align_chunks and isinstance(encoding["chunks"], tuple):
v = grid_rechunk(
v=v,
enc_chunks=encoding["chunks"],
region=region,
)
if self._safe_chunks and isinstance(encoding["chunks"], tuple):
# the hard case
# DESIGN CHOICE: do not allow multiple dask chunks on a single zarr chunk
# this avoids the need to get involved in zarr synchronization / locking
# From zarr docs:
# "If each worker in a parallel computation is writing to a
# separate region of the array, and if region boundaries are perfectly aligned
# with chunk boundaries, then no synchronization is required."
# TODO: incorporate synchronizer to allow writes from multiple dask
# threads
shape = zarr_shape or v.shape
validate_grid_chunks_alignment(
nd_var_chunks=v.chunks,
enc_chunks=encoding["chunks"],
region=region,
allow_partial_chunks=self._mode != "r+",
name=name,
backend_shape=shape,
)
if self._mode == "w" or name not in existing_keys:
# new variable
encoded_attrs = {k: self.encode_attribute(v) for k, v in attrs.items()}
# the magic for storing the hidden dimension data
if is_zarr_v3_format:
encoding["dimension_names"] = dims
else:
encoded_attrs[DIMENSION_KEY] = dims
encoding["overwrite"] = self._mode == "w"
zarr_array = self._create_new_array(
name=name,
dtype=dtype,
shape=shape,
fill_value=fill_value,
encoding=encoding,
attrs=encoded_attrs,
)
writer.add(v.data, zarr_array, region)
def close(self) -> None:
if self._close_store_on_close:
self.zarr_group.store.close()
def _auto_detect_regions(self, ds, region):
for dim, val in region.items():
if val != "auto":
continue
if dim not in ds._variables:
# unindexed dimension
region[dim] = slice(0, ds.sizes[dim])
continue
variable = conventions.decode_cf_variable(
dim, self.open_store_variable(dim).compute()
)
assert variable.dims == (dim,)
index = pd.Index(variable.data)
idxs = index.get_indexer(ds[dim].data)
if (idxs == -1).any():
raise KeyError(
f"Not all values of coordinate '{dim}' in the new array were"
" found in the original store. Writing to a zarr region slice"
" requires that no dimensions or metadata are changed by the write."
)
if (np.diff(idxs) != 1).any():
raise ValueError(
f"The auto-detected region of coordinate '{dim}' for writing new data"
" to the original store had non-contiguous indices. Writing to a zarr"
" region slice requires that the new data constitute a contiguous subset"
" of the original store."
)
region[dim] = slice(idxs[0], idxs[-1] + 1)
return region
def _validate_and_autodetect_region(self, ds: Dataset) -> Dataset:
if self._write_region is None:
return ds
region = self._write_region
if region == "auto":
region = dict.fromkeys(ds.dims, "auto")
if not isinstance(region, dict):
raise TypeError(f"``region`` must be a dict, got {type(region)}")
if any(v == "auto" for v in region.values()):
if self._mode not in ["r+", "a"]:
raise ValueError(
f"``mode`` must be 'r+' or 'a' when using ``region='auto'``, got {self._mode!r}"
)
region = self._auto_detect_regions(ds, region)
# validate before attempting to auto-detect since the auto-detection
# should always return a valid slice.
for k, v in region.items():
if k not in ds.dims:
raise ValueError(
f"all keys in ``region`` are not in Dataset dimensions, got "
f"{list(region)} and {list(ds.dims)}"
)
if not isinstance(v, slice):
raise TypeError(
"all values in ``region`` must be slice objects, got "
f"region={region}"
)
if v.step not in {1, None}:
raise ValueError(
"step on all slices in ``region`` must be 1 or None, got "
f"region={region}"
)
non_matching_vars = [
k for k, v in ds.variables.items() if not set(region).intersection(v.dims)
]
if non_matching_vars:
raise ValueError(
f"when setting `region` explicitly in to_zarr(), all "
f"variables in the dataset to write must have at least "
f"one dimension in common with the region's dimensions "
f"{list(region.keys())}, but that is not "
f"the case for some variables here. To drop these variables "
f"from this dataset before exporting to zarr, write: "
f".drop_vars({non_matching_vars!r})"
)
if self._append_dim is not None and self._append_dim in region:
raise ValueError(
f"cannot list the same dimension in both ``append_dim`` and "
f"``region`` with to_zarr(), got {self._append_dim} in both"
)
self._write_region = region
# can't modify indexes with region writes
return ds.drop_vars(ds.indexes)
def _validate_encoding(self, encoding) -> None:
if encoding and self._mode in ["a", "a-", "r+"]:
existing_var_names = self.array_keys()
for var_name in existing_var_names:
if var_name in encoding:
raise ValueError(
f"variable {var_name!r} already exists, but encoding was provided"
)
def open_zarr(
store,
group=None,
synchronizer=None,
chunks="auto",
decode_cf=True,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables=None,
consolidated=None,
overwrite_encoded_chunks=False,
chunk_store=None,
storage_options=None,
decode_timedelta=None,
use_cftime=None,
zarr_version=None,
zarr_format=None,
use_zarr_fill_value_as_mask=None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
create_default_indexes=True,
**kwargs,
):
"""Load and decode a dataset from a Zarr store.
The `store` object should be a valid store for a Zarr group. `store`
variables must contain dimension metadata encoded in the
`_ARRAY_DIMENSIONS` attribute or must have NCZarr format.
Parameters
----------
store : MutableMapping or str
A MutableMapping where a Zarr Group has been stored or a path to a
directory in file system where a Zarr DirectoryStore has been stored.
synchronizer : object, optional
Array synchronizer provided to zarr
group : str, optional
Group path. (a.k.a. `path` in zarr terminology.)
chunks : int, dict, 'auto' or None, default: 'auto'
If provided, used to load the data into dask arrays.
- ``chunks='auto'`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask. This uses xarray's internally private
:ref:`lazy indexing classes <internal design.lazy indexing>`,
but data is eagerly loaded into memory as numpy arrays when accessed.
This can be more efficient for smaller arrays, though results may vary.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using engine preferred chunks if
exposed by the backend, otherwise with a single chunk for all arrays.
See dask chunking for more details.
overwrite_encoded_chunks : bool, optional
Whether to drop the zarr chunks encoded for each variable when a
dataset is loaded with specified chunk sizes (default: False)
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
decode_coords : bool, optional
If True, decode the 'coordinates' attribute to identify coordinates in
the resulting dataset.
drop_variables : str or iterable, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
consolidated : bool, optional
Whether to open the store using zarr's consolidated metadata
capability. Only works for stores that have already been consolidated.
By default (`consolidate=None`), attempts to read consolidated metadata,
falling back to read non-consolidated metadata if that fails.
When the experimental ``zarr_version=3``, ``consolidated`` must be
either be ``None`` or ``False``.
chunk_store : MutableMapping, optional
A separate Zarr store only for chunk data.
storage_options : dict, optional
Any additional parameters for the storage backend (ignored for local
paths).
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds'}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
zarr_version : int or None, optional
.. deprecated:: 2024.9.1
Use ``zarr_format`` instead.
zarr_format : int or None, optional
The desired zarr format to target (currently 2 or 3). The default
of None will attempt to determine the zarr version from ``store`` when
possible, otherwise defaulting to the default version used by
the zarr-python library installed.
use_zarr_fill_value_as_mask : bool, optional
If True, use the zarr Array ``fill_value`` to mask the data, the same as done
for NetCDF data with ``_FillValue`` or ``missing_value`` attributes. If False,
the ``fill_value`` is ignored and the data are not masked. If None, this defaults
to True for ``zarr_version=2`` and False for ``zarr_version=3``.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the ``ChunkManagerEntrypoint.from_array`` method used to create
chunked arrays, via whichever chunk manager is specified through the ``chunked_array_type`` kwarg.
Defaults to ``{'manager': 'dask'}``, meaning additional kwargs will be passed eventually to
:py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
create_default_indexes : bool, default: True
If True, create pandas indexes for :term:`dimension coordinates <dimension coordinate>`,
which loads the coordinate data into memory. Set it to False if you want to avoid loading
data into memory.
Note that backends can still choose to create other indexes. If you want to control that,
please refer to the backend's documentation.
Returns
-------
dataset : Dataset
The newly created dataset.
See Also
--------
open_dataset
open_mfdataset
References
----------
https://zarr.readthedocs.io/
"""
from xarray.backends.api import open_dataset
if from_array_kwargs is None:
from_array_kwargs = {}
if chunks == "auto":
try:
guess_chunkmanager(
chunked_array_type
) # attempt to import that parallel backend
chunks = {}
except (ValueError, ImportError):
chunks = None
if kwargs:
raise TypeError(
"open_zarr() got unexpected keyword arguments " + ",".join(kwargs.keys())
)
backend_kwargs = {
"synchronizer": synchronizer,
"consolidated": consolidated,
"overwrite_encoded_chunks": overwrite_encoded_chunks,
"chunk_store": chunk_store,
"storage_options": storage_options,
"zarr_version": zarr_version,
"zarr_format": zarr_format,
}
ds = open_dataset(
filename_or_obj=store,
group=group,
decode_cf=decode_cf,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
engine="zarr",
chunks=chunks,
drop_variables=drop_variables,
create_default_indexes=create_default_indexes,
chunked_array_type=chunked_array_type,
from_array_kwargs=from_array_kwargs,
backend_kwargs=backend_kwargs,
decode_timedelta=decode_timedelta,
use_cftime=use_cftime,
zarr_version=zarr_version,
use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
)
return ds
class ZarrBackendEntrypoint(BackendEntrypoint):
"""
Backend for ".zarr" files based on the zarr package.
For more information about the underlying library, visit:
https://zarr.readthedocs.io/en/stable
See Also
--------
backends.ZarrStore
"""
description = "Open zarr files (.zarr) using zarr in Xarray"
url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.ZarrBackendEntrypoint.html"
def guess_can_open(self, filename_or_obj: T_PathFileOrDataStore) -> bool:
if isinstance(filename_or_obj, str | os.PathLike):
_, ext = os.path.splitext(filename_or_obj)
return ext == ".zarr"
return False
def open_dataset(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
group=None,
mode="r",
synchronizer=None,
consolidated=None,
chunk_store=None,
storage_options=None,
zarr_version=None,
zarr_format=None,
store=None,
engine=None,
use_zarr_fill_value_as_mask=None,
cache_members: bool = True,
) -> Dataset:
filename_or_obj = _normalize_path(filename_or_obj)
if not store:
store = ZarrStore.open_group(
filename_or_obj,
group=group,
mode=mode,
synchronizer=synchronizer,
consolidated=consolidated,
consolidate_on_close=False,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
use_zarr_fill_value_as_mask=None,
zarr_format=zarr_format,
cache_members=cache_members,
)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(store):
ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
return ds
def open_datatree(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
group: str | None = None,
mode="r",
synchronizer=None,
consolidated=None,
chunk_store=None,
storage_options=None,
zarr_version=None,
zarr_format=None,
) -> DataTree:
filename_or_obj = _normalize_path(filename_or_obj)
groups_dict = self.open_groups_as_dict(
filename_or_obj=filename_or_obj,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
group=group,
mode=mode,
synchronizer=synchronizer,
consolidated=consolidated,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
zarr_format=zarr_format,
)
return datatree_from_dict_with_io_cleanup(groups_dict)
def open_groups_as_dict(
self,
filename_or_obj: T_PathFileOrDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
group: str | None = None,
mode="r",
synchronizer=None,
consolidated=None,
chunk_store=None,
storage_options=None,
zarr_version=None,
zarr_format=None,
) -> dict[str, Dataset]:
filename_or_obj = _normalize_path(filename_or_obj)
# Check for a group and make it a parent if it exists
if group:
parent = str(NodePath("/") / NodePath(group))
else:
parent = str(NodePath("/"))
stores = ZarrStore.open_store(
filename_or_obj,
group=parent,
mode=mode,
synchronizer=synchronizer,
consolidated=consolidated,
consolidate_on_close=False,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
zarr_format=zarr_format,
)
groups_dict = {}
for path_group, store in stores.items():
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(store):
group_ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
if group:
group_name = str(NodePath(path_group).relative_to(parent))
else:
group_name = str(NodePath(path_group))
groups_dict[group_name] = group_ds
return groups_dict
def _iter_zarr_groups(root: ZarrGroup, parent: str = "/") -> Iterable[str]:
parent_nodepath = NodePath(parent)
yield str(parent_nodepath)
for path, group in root.groups():
gpath = parent_nodepath / path
yield from _iter_zarr_groups(group, parent=str(gpath))
def _get_open_params(
store,
mode,
synchronizer,
group,
consolidated,
consolidate_on_close,
chunk_store,
storage_options,
zarr_version,
use_zarr_fill_value_as_mask,
zarr_format,
):
if TYPE_CHECKING:
import zarr
else:
zarr = attempt_import("zarr")
# zarr doesn't support pathlib.Path objects yet. zarr-python#601
if isinstance(store, os.PathLike):
store = os.fspath(store)
open_kwargs = dict(
# mode='a-' is a handcrafted xarray specialty
mode="a" if mode == "a-" else mode,
synchronizer=synchronizer,
path=group,
)
open_kwargs["storage_options"] = storage_options
zarr_format = _handle_zarr_version_or_format(
zarr_version=zarr_version, zarr_format=zarr_format
)
if _zarr_v3():
open_kwargs["zarr_format"] = zarr_format
else:
open_kwargs["zarr_version"] = zarr_format
if chunk_store is not None:
open_kwargs["chunk_store"] = chunk_store
if consolidated is None:
consolidated = False
if _zarr_v3():
# TODO: replace AssertionError after https://github.com/zarr-developers/zarr-python/issues/2821 is resolved
missing_exc = AssertionError
else:
missing_exc = zarr.errors.GroupNotFoundError
if _zarr_v3():
# zarr 3.0.8 and earlier did not support this property - it was effectively assumed true
if not getattr(store, "supports_consolidated_metadata", True):
consolidated = consolidate_on_close = False
if consolidated in [None, True]:
# open the root of the store, in case there is metadata consolidated there
group = open_kwargs.pop("path")
if consolidated:
# TODO: an option to pass the metadata_key keyword
zarr_root_group = zarr.open_consolidated(store, **open_kwargs)
elif consolidated is None:
# same but with more error handling in case no consolidated metadata found
try:
zarr_root_group = zarr.open_consolidated(store, **open_kwargs)
except (ValueError, KeyError):
# ValueError in zarr-python 3.x, KeyError in 2.x.
try:
zarr_root_group = zarr.open_group(store, **open_kwargs)
emit_user_level_warning(
"Failed to open Zarr store with consolidated metadata, "
"but successfully read with non-consolidated metadata. "
"This is typically much slower for opening a dataset. "
"To silence this warning, consider:\n"
"1. Consolidating metadata in this existing store with "
"zarr.consolidate_metadata().\n"
"2. Explicitly setting consolidated=False, to avoid trying "
"to read consolidate metadata, or\n"
"3. Explicitly setting consolidated=True, to raise an "
"error in this case instead of falling back to try "
"reading non-consolidated metadata.",
RuntimeWarning,
)
except missing_exc as err:
raise FileNotFoundError(
f"No such file or directory: '{store}'"
) from err
# but the user should still receive a DataTree whose root is the group they asked for
if group and group != "/":
zarr_group = zarr_root_group[group.removeprefix("/")]
else:
zarr_group = zarr_root_group
else:
if _zarr_v3():
# we have determined that we don't want to use consolidated metadata
# so we set that to False to avoid trying to read it
open_kwargs["use_consolidated"] = False
zarr_group = zarr.open_group(store, **open_kwargs)
close_store_on_close = zarr_group.store is not store
# we use this to determine how to handle fill_value
is_zarr_v3_format = _zarr_v3() and zarr_group.metadata.zarr_format == 3
if use_zarr_fill_value_as_mask is None:
if is_zarr_v3_format:
# for new data, we use a better default
use_zarr_fill_value_as_mask = False
else:
# this was the default for v2 and should apply to most existing Zarr data
use_zarr_fill_value_as_mask = True
return (
zarr_group,
consolidate_on_close,
close_store_on_close,
use_zarr_fill_value_as_mask,
)
def _handle_zarr_version_or_format(
*, zarr_version: ZarrFormat | None, zarr_format: ZarrFormat | None
) -> ZarrFormat | None:
"""handle the deprecated zarr_version kwarg and return zarr_format"""
if (
zarr_format is not None
and zarr_version is not None
and zarr_format != zarr_version
):
raise ValueError(
f"zarr_format {zarr_format} does not match zarr_version {zarr_version}, please only set one"
)
if zarr_version is not None:
emit_user_level_warning(
"zarr_version is deprecated, use zarr_format", FutureWarning
)
return zarr_version
return zarr_format
BACKEND_ENTRYPOINTS["zarr"] = ("zarr", ZarrBackendEntrypoint)
|