1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
"""Coders for strings."""
from __future__ import annotations
import re
from functools import partial
import numpy as np
from xarray.coding.variables import (
VariableCoder,
lazy_elemwise_func,
pop_to,
safe_setitem,
unpack_for_decoding,
unpack_for_encoding,
)
from xarray.core import indexing
from xarray.core.utils import emit_user_level_warning, module_available
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import get_chunked_array_type
from xarray.namedarray.pycompat import is_chunked_array
HAS_NUMPY_2_0 = module_available("numpy", minversion="2.0.0.dev0")
def create_vlen_dtype(element_type):
if element_type not in (str, bytes):
raise TypeError(f"unsupported type for vlen_dtype: {element_type!r}")
# based on h5py.special_dtype
return np.dtype("O", metadata={"element_type": element_type})
def check_vlen_dtype(dtype):
if dtype.kind != "O" or dtype.metadata is None:
return None
else:
# check xarray (element_type) as well as h5py (vlen)
return dtype.metadata.get("element_type", dtype.metadata.get("vlen"))
def is_unicode_dtype(dtype):
return dtype.kind == "U" or check_vlen_dtype(dtype) is str
def is_bytes_dtype(dtype):
return dtype.kind == "S" or check_vlen_dtype(dtype) is bytes
class EncodedStringCoder(VariableCoder):
"""Transforms between unicode strings and fixed-width UTF-8 bytes."""
def __init__(self, allows_unicode=True):
self.allows_unicode = allows_unicode
def encode(self, variable: Variable, name=None) -> Variable:
dims, data, attrs, encoding = unpack_for_encoding(variable)
contains_unicode = is_unicode_dtype(data.dtype)
encode_as_char = encoding.get("dtype") == "S1"
if encode_as_char:
del encoding["dtype"] # no longer relevant
if contains_unicode and (encode_as_char or not self.allows_unicode):
if "_FillValue" in attrs:
raise NotImplementedError(
f"variable {name!r} has a _FillValue specified, but "
"_FillValue is not yet supported on unicode strings: "
"https://github.com/pydata/xarray/issues/1647"
)
string_encoding = encoding.pop("_Encoding", "utf-8")
safe_setitem(attrs, "_Encoding", string_encoding, name=name)
# TODO: figure out how to handle this in a lazy way with dask
data = encode_string_array(data, string_encoding)
return Variable(dims, data, attrs, encoding)
else:
variable.encoding = encoding
return variable
def decode(self, variable: Variable, name=None) -> Variable:
dims, data, attrs, encoding = unpack_for_decoding(variable)
if "_Encoding" in attrs:
string_encoding = pop_to(attrs, encoding, "_Encoding")
func = partial(decode_bytes_array, encoding=string_encoding)
data = lazy_elemwise_func(data, func, np.dtype(object))
return Variable(dims, data, attrs, encoding)
def decode_bytes_array(bytes_array, encoding="utf-8"):
# This is faster than using np.char.decode() or np.vectorize()
bytes_array = np.asarray(bytes_array)
decoded = [x.decode(encoding) for x in bytes_array.ravel()]
return np.array(decoded, dtype=object).reshape(bytes_array.shape)
def encode_string_array(string_array, encoding="utf-8"):
string_array = np.asarray(string_array)
encoded = [x.encode(encoding) for x in string_array.ravel()]
return np.array(encoded, dtype=bytes).reshape(string_array.shape)
def ensure_fixed_length_bytes(var: Variable) -> Variable:
"""Ensure that a variable with vlen bytes is converted to fixed width."""
if check_vlen_dtype(var.dtype) is bytes:
dims, data, attrs, encoding = unpack_for_encoding(var)
# TODO: figure out how to handle this with dask
data = np.asarray(data, dtype=np.bytes_)
return Variable(dims, data, attrs, encoding)
else:
return var
def validate_char_dim_name(strlen, encoding, name) -> str:
"""Check character array dimension naming and size and return it."""
if (char_dim_name := encoding.pop("char_dim_name", None)) is not None:
# 1 - extract all characters up to last number sequence
# 2 - extract last number sequence
match = re.search(r"^(.*?)(\d+)(?!.*\d)", char_dim_name)
if match:
new_dim_name = match.group(1)
if int(match.group(2)) != strlen:
emit_user_level_warning(
f"String dimension naming mismatch on variable {name!r}. {char_dim_name!r} provided by encoding, but data has length of '{strlen}'. Using '{new_dim_name}{strlen}' instead of {char_dim_name!r} to prevent possible naming clash.\n"
"To silence this warning either remove 'char_dim_name' from encoding or provide a fitting name."
)
char_dim_name = f"{new_dim_name}{strlen}"
elif (
original_shape := encoding.get("original_shape", [-1])[-1]
) != -1 and original_shape != strlen:
emit_user_level_warning(
f"String dimension length mismatch on variable {name!r}. '{original_shape}' provided by encoding, but data has length of '{strlen}'. Using '{char_dim_name}{strlen}' instead of {char_dim_name!r} to prevent possible naming clash.\n"
f"To silence this warning remove 'original_shape' from encoding."
)
char_dim_name = f"{char_dim_name}{strlen}"
else:
char_dim_name = f"string{strlen}"
return char_dim_name
class CharacterArrayCoder(VariableCoder):
"""Transforms between arrays containing bytes and character arrays."""
def encode(self, variable, name=None):
variable = ensure_fixed_length_bytes(variable)
dims, data, attrs, encoding = unpack_for_encoding(variable)
if data.dtype.kind == "S" and encoding.get("dtype") is not str:
data = bytes_to_char(data)
char_dim_name = validate_char_dim_name(data.shape[-1], encoding, name)
dims = dims + (char_dim_name,)
return Variable(dims, data, attrs, encoding)
def decode(self, variable, name=None):
dims, data, attrs, encoding = unpack_for_decoding(variable)
if data.dtype == "S1" and dims:
encoding["char_dim_name"] = dims[-1]
dims = dims[:-1]
data = char_to_bytes(data)
return Variable(dims, data, attrs, encoding)
def bytes_to_char(arr):
"""Convert numpy/dask arrays from fixed width bytes to characters."""
if arr.dtype.kind != "S":
raise ValueError("argument must have a fixed-width bytes dtype")
if is_chunked_array(arr):
chunkmanager = get_chunked_array_type(arr)
return chunkmanager.map_blocks(
_numpy_bytes_to_char,
arr,
dtype="S1",
chunks=arr.chunks + ((arr.dtype.itemsize,)),
new_axis=[arr.ndim],
)
return _numpy_bytes_to_char(arr)
def _numpy_bytes_to_char(arr):
"""Like netCDF4.stringtochar, but faster and more flexible."""
# adapt handling of copy-kwarg to numpy 2.0
# see https://github.com/numpy/numpy/issues/25916
# and https://github.com/numpy/numpy/pull/25922
copy = None if HAS_NUMPY_2_0 else False
# ensure the array is contiguous
arr = np.array(arr, copy=copy, order="C", dtype=np.bytes_)
return arr.reshape(arr.shape + (1,)).view("S1")
def char_to_bytes(arr):
"""Convert numpy/dask arrays from characters to fixed width bytes."""
if arr.dtype != "S1":
raise ValueError("argument must have dtype='S1'")
if not arr.ndim:
# no dimension to concatenate along
return arr
size = arr.shape[-1]
if not size:
# can't make an S0 dtype
return np.zeros(arr.shape[:-1], dtype=np.bytes_)
if is_chunked_array(arr):
chunkmanager = get_chunked_array_type(arr)
if len(arr.chunks[-1]) > 1:
raise ValueError(
"cannot stacked dask character array with "
f"multiple chunks in the last dimension: {arr}"
)
dtype = np.dtype("S" + str(arr.shape[-1]))
return chunkmanager.map_blocks(
_numpy_char_to_bytes,
arr,
dtype=dtype,
chunks=arr.chunks[:-1],
drop_axis=[arr.ndim - 1],
)
else:
return StackedBytesArray(arr)
def _numpy_char_to_bytes(arr):
"""Like netCDF4.chartostring, but faster and more flexible."""
# adapt handling of copy-kwarg to numpy 2.0
# see https://github.com/numpy/numpy/issues/25916
# and https://github.com/numpy/numpy/pull/25922
copy = None if HAS_NUMPY_2_0 else False
# based on: https://stackoverflow.com/a/10984878/809705
arr = np.array(arr, copy=copy, order="C")
dtype = "S" + str(arr.shape[-1])
return arr.view(dtype).reshape(arr.shape[:-1])
class StackedBytesArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Wrapper around array-like objects to create a new indexable object where
values, when accessed, are automatically stacked along the last dimension.
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> np.array(StackedBytesArray(np.array(["a", "b", "c"], dtype="S1"))[indexer])
array(b'abc', dtype='|S3')
"""
def __init__(self, array):
"""
Parameters
----------
array : array-like
Original array of values to wrap.
"""
if array.dtype != "S1":
raise ValueError(
"can only use StackedBytesArray if argument has dtype='S1'"
)
self.array = indexing.as_indexable(array)
@property
def dtype(self):
return np.dtype("S" + str(self.array.shape[-1]))
@property
def shape(self) -> tuple[int, ...]:
return self.array.shape[:-1]
def __repr__(self):
return f"{type(self).__name__}({self.array!r})"
def _vindex_get(self, key):
return type(self)(self.array.vindex[key])
def _oindex_get(self, key):
return type(self)(self.array.oindex[key])
def __getitem__(self, key):
# require slicing the last dimension completely
key = type(key)(indexing.expanded_indexer(key.tuple, self.array.ndim))
if key.tuple[-1] != slice(None):
raise IndexError("too many indices")
return type(self)(self.array[key])
def get_duck_array(self):
return _numpy_char_to_bytes(self.array.get_duck_array())
|