1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
|
from __future__ import annotations
import contextlib
import re
import warnings
from collections.abc import Callable, Hashable
from datetime import datetime, timedelta
from functools import partial
from typing import TYPE_CHECKING, Union, cast
import numpy as np
import pandas as pd
from pandas.errors import OutOfBoundsDatetime, OutOfBoundsTimedelta
from xarray.coding.common import (
SerializationWarning,
VariableCoder,
lazy_elemwise_func,
pop_to,
safe_setitem,
unpack_for_decoding,
unpack_for_encoding,
)
from xarray.compat.pdcompat import default_precision_timestamp, timestamp_as_unit
from xarray.core import indexing
from xarray.core.common import contains_cftime_datetimes, is_np_datetime_like
from xarray.core.duck_array_ops import array_all, asarray, ravel, reshape
from xarray.core.formatting import first_n_items, format_timestamp, last_item
from xarray.core.utils import attempt_import, emit_user_level_warning
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import T_ChunkedArray, get_chunked_array_type
from xarray.namedarray.pycompat import is_chunked_array, to_numpy
from xarray.namedarray.utils import is_duck_dask_array
try:
import cftime
except ImportError:
cftime = None
from xarray.core.types import (
CFCalendar,
CFTimeDatetime,
NPDatetimeUnitOptions,
PDDatetimeUnitOptions,
T_DuckArray,
)
T_Name = Union[Hashable, None]
# standard calendars recognized by cftime
_STANDARD_CALENDARS = {"standard", "gregorian", "proleptic_gregorian"}
_NS_PER_TIME_DELTA = {
"ns": 1,
"us": int(1e3),
"ms": int(1e6),
"s": int(1e9),
"m": int(1e9) * 60,
"h": int(1e9) * 60 * 60,
"D": int(1e9) * 60 * 60 * 24,
}
_US_PER_TIME_DELTA = {
"microseconds": 1,
"milliseconds": 1_000,
"seconds": 1_000_000,
"minutes": 60 * 1_000_000,
"hours": 60 * 60 * 1_000_000,
"days": 24 * 60 * 60 * 1_000_000,
}
_NETCDF_TIME_UNITS_CFTIME = [
"days",
"hours",
"minutes",
"seconds",
"milliseconds",
"microseconds",
]
_NETCDF_TIME_UNITS_NUMPY = _NETCDF_TIME_UNITS_CFTIME + ["nanoseconds"]
TIME_UNITS = frozenset(
[
"days",
"hours",
"minutes",
"seconds",
"milliseconds",
"microseconds",
"nanoseconds",
]
)
_INVALID_LITERAL_TIMEDELTA64_ENCODING_KEYS = [
"add_offset",
"scale_factor",
]
def _is_standard_calendar(calendar: str) -> bool:
return calendar.lower() in _STANDARD_CALENDARS
def _is_numpy_compatible_time_range(times):
if is_np_datetime_like(times.dtype):
return True
# times array contains cftime objects
times = np.asarray(times)
tmin = times.min()
tmax = times.max()
try:
# before relaxing the nanosecond constrained
# this raised OutOfBoundsDatetime for
# times < 1678 and times > 2262
# this isn't the case anymore for other resolutions like "s"
# now, we raise for dates before 1582-10-15
_check_date_is_after_shift(tmin, "standard")
_check_date_is_after_shift(tmax, "standard")
convert_time_or_go_back(tmin, pd.Timestamp)
convert_time_or_go_back(tmax, pd.Timestamp)
except pd.errors.OutOfBoundsDatetime:
return False
except ValueError as err:
if err.args[0] == "year 0 is out of range":
return False
raise
else:
return True
def _netcdf_to_numpy_timeunit(units: str) -> NPDatetimeUnitOptions:
units = units.lower()
if not units.endswith("s"):
units = f"{units}s"
return cast(
NPDatetimeUnitOptions,
{
"nanoseconds": "ns",
"microseconds": "us",
"milliseconds": "ms",
"seconds": "s",
"minutes": "m",
"hours": "h",
"days": "D",
}[units],
)
def _numpy_to_netcdf_timeunit(units: NPDatetimeUnitOptions) -> str:
return {
"ns": "nanoseconds",
"us": "microseconds",
"ms": "milliseconds",
"s": "seconds",
"m": "minutes",
"h": "hours",
"D": "days",
}[units]
def _numpy_dtype_to_netcdf_timeunit(dtype: np.dtype) -> str:
unit, _ = np.datetime_data(dtype)
unit = cast(NPDatetimeUnitOptions, unit)
return _numpy_to_netcdf_timeunit(unit)
def _ensure_padded_year(ref_date: str) -> str:
# Reference dates without a padded year (e.g. since 1-1-1 or since 2-3-4)
# are ambiguous (is it YMD or DMY?). This can lead to some very odd
# behaviour e.g. pandas (via dateutil) passes '1-1-1 00:00:0.0' as
# '2001-01-01 00:00:00' (because it assumes a) DMY and b) that year 1 is
# shorthand for 2001 (like 02 would be shorthand for year 2002)).
# Here we ensure that there is always a four-digit year, with the
# assumption being that year comes first if we get something ambiguous.
matches_year = re.match(r".*\d{4}.*", ref_date)
if matches_year:
# all good, return
return ref_date
# No four-digit strings, assume the first digits are the year and pad
# appropriately
matches_start_digits = re.match(r"(\d+)(.*)", ref_date)
if not matches_start_digits:
raise ValueError(f"invalid reference date for time units: {ref_date}")
ref_year, everything_else = (s for s in matches_start_digits.groups())
ref_date_padded = f"{int(ref_year):04d}{everything_else}"
warning_msg = (
f"Ambiguous reference date string: {ref_date}. The first value is "
"assumed to be the year hence will be padded with zeros to remove "
f"the ambiguity (the padded reference date string is: {ref_date_padded}). "
"To remove this message, remove the ambiguity by padding your reference "
"date strings with zeros."
)
warnings.warn(warning_msg, SerializationWarning, stacklevel=2)
return ref_date_padded
def _unpack_netcdf_time_units(units: str) -> tuple[str, str]:
# CF datetime units follow the format: "UNIT since DATE"
# this parses out the unit and date allowing for extraneous
# whitespace. It also ensures that the year is padded with zeros
# so it will be correctly understood by pandas (via dateutil).
matches = re.match(r"(.+) since (.+)", units)
if not matches:
raise ValueError(f"invalid time units: {units}")
delta_units, ref_date = (s.strip() for s in matches.groups())
ref_date = _ensure_padded_year(ref_date)
return delta_units, ref_date
def named(name: str, pattern: str) -> str:
return "(?P<" + name + ">" + pattern + ")"
def optional(x: str) -> str:
return "(?:" + x + ")?"
def trailing_optional(xs: list[str]) -> str:
if not xs:
return ""
return xs[0] + optional(trailing_optional(xs[1:]))
def build_pattern(
date_sep: str = r"\-",
datetime_sep: str = r"T",
time_sep: str = r"\:",
micro_sep: str = r".",
) -> str:
pieces = [
(None, "year", r"[+-]?\d{4,5}"),
(date_sep, "month", r"\d{2}"),
(date_sep, "day", r"\d{2}"),
(datetime_sep, "hour", r"\d{2}"),
(time_sep, "minute", r"\d{2}"),
(time_sep, "second", r"\d{2}"),
(micro_sep, "microsecond", r"\d{1,6}"),
]
pattern_list = []
for sep, name, sub_pattern in pieces:
pattern_list.append((sep or "") + named(name, sub_pattern))
# TODO: allow timezone offsets?
return "^" + trailing_optional(pattern_list) + "$"
_BASIC_PATTERN = build_pattern(date_sep="", time_sep="")
_EXTENDED_PATTERN = build_pattern()
_CFTIME_PATTERN = build_pattern(datetime_sep=" ")
_PATTERNS = [_BASIC_PATTERN, _EXTENDED_PATTERN, _CFTIME_PATTERN]
def parse_iso8601_like(datetime_string: str) -> dict[str, str | None]:
for pattern in _PATTERNS:
match = re.match(pattern, datetime_string)
if match:
return match.groupdict()
raise ValueError(
f"no ISO-8601 or cftime-string-like match for string: {datetime_string}"
)
def _parse_iso8601(date_type, timestr):
default = date_type(1, 1, 1)
result = parse_iso8601_like(timestr)
replace = {}
for attr in ["year", "month", "day", "hour", "minute", "second", "microsecond"]:
value = result.get(attr, None)
if value is not None:
resolution = attr
if attr == "microsecond":
if len(value) <= 3:
resolution = "millisecond"
# convert match string into valid microsecond value
value = 10 ** (6 - len(value)) * int(value)
replace[attr] = int(value)
return default.replace(**replace), resolution
def _maybe_strip_tz_from_timestamp(date: pd.Timestamp) -> pd.Timestamp:
# If the ref_date Timestamp is timezone-aware, convert to UTC and
# make it timezone-naive (GH 2649).
if date.tz is not None:
return date.tz_convert("UTC").tz_convert(None)
return date
def _unpack_time_unit_and_ref_date(
units: str,
) -> tuple[NPDatetimeUnitOptions, pd.Timestamp]:
# same us _unpack_netcdf_time_units but finalizes ref_date for
# processing in encode_cf_datetime
time_unit, _ref_date = _unpack_netcdf_time_units(units)
time_unit = _netcdf_to_numpy_timeunit(time_unit)
ref_date = pd.Timestamp(_ref_date)
ref_date = _maybe_strip_tz_from_timestamp(ref_date)
return time_unit, ref_date
def _unpack_time_units_and_ref_date_cftime(units: str, calendar: str):
# same as _unpack_netcdf_time_units but finalizes ref_date for
# processing in encode_cf_datetime
time_units, ref_date = _unpack_netcdf_time_units(units)
ref_date = cftime.num2date(
0,
units=f"microseconds since {ref_date}",
calendar=calendar,
only_use_cftime_datetimes=True,
)
return time_units, ref_date
def _decode_cf_datetime_dtype(
data,
units: str,
calendar: str | None,
use_cftime: bool | None,
time_unit: PDDatetimeUnitOptions = "ns",
) -> np.dtype:
# Verify that at least the first and last date can be decoded
# successfully. Otherwise, tracebacks end up swallowed by
# Dataset.__repr__ when users try to view their lazily decoded array.
values = indexing.ImplicitToExplicitIndexingAdapter(indexing.as_indexable(data))
example_value = np.concatenate(
[to_numpy(first_n_items(values, 1)), to_numpy(last_item(values))]
)
try:
result = decode_cf_datetime(
example_value, units, calendar, use_cftime, time_unit
)
except Exception as err:
calendar_msg = (
"the default calendar" if calendar is None else f"calendar {calendar!r}"
)
msg = (
f"unable to decode time units {units!r} with {calendar_msg!r}. Try "
"opening your dataset with decode_times=False or installing cftime "
"if it is not installed."
)
raise ValueError(msg) from err
else:
dtype = getattr(result, "dtype", np.dtype("object"))
return dtype
def _decode_datetime_with_cftime(
num_dates: np.ndarray, units: str, calendar: str
) -> np.ndarray:
if TYPE_CHECKING:
import cftime
else:
cftime = attempt_import("cftime")
if num_dates.size > 0:
return np.asarray(
cftime.num2date(num_dates, units, calendar, only_use_cftime_datetimes=True)
)
else:
return np.array([], dtype=object)
def _check_date_for_units_since_refdate(
date, unit: NPDatetimeUnitOptions, ref_date: pd.Timestamp
) -> pd.Timestamp:
# check for out-of-bounds floats and raise
if date > np.iinfo("int64").max or date < np.iinfo("int64").min:
raise OutOfBoundsTimedelta(
f"Value {date} can't be represented as Datetime/Timedelta."
)
delta = date * np.timedelta64(1, unit)
if not np.isnan(delta):
# this will raise on dtype overflow for integer dtypes
if date.dtype.kind in "u" and not np.int64(delta) == date:
raise OutOfBoundsTimedelta(
"DType overflow in Datetime/Timedelta calculation."
)
# this will raise on overflow if ref_date + delta
# can't be represented in the current ref_date resolution
return timestamp_as_unit(ref_date + delta, ref_date.unit)
else:
# if date is exactly NaT (np.iinfo("int64").min) return NaT
# to make follow-up checks work
return pd.Timestamp("NaT")
def _check_timedelta_range(value, data_unit, time_unit):
if value > np.iinfo("int64").max or value < np.iinfo("int64").min:
OutOfBoundsTimedelta(f"Value {value} can't be represented as Timedelta.")
# on windows multiplying nan leads to RuntimeWarning
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "invalid value encountered in multiply", RuntimeWarning
)
delta = value * np.timedelta64(1, data_unit)
if not np.isnan(delta):
# this will raise on dtype overflow for integer dtypes
if value.dtype.kind in "u" and not np.int64(delta) == value:
raise OutOfBoundsTimedelta(
"DType overflow in Datetime/Timedelta calculation."
)
# this will raise on overflow if delta cannot be represented with the
# resolutions supported by pandas.
pd.to_timedelta(delta)
def _align_reference_date_and_unit(
ref_date: pd.Timestamp, unit: NPDatetimeUnitOptions
) -> pd.Timestamp:
# align to the highest needed resolution of ref_date or unit
if np.timedelta64(1, ref_date.unit) > np.timedelta64(1, unit):
# this will raise accordingly
# if data can't be represented in the higher resolution
return timestamp_as_unit(ref_date, cast(PDDatetimeUnitOptions, unit))
return ref_date
def _check_date_is_after_shift(
date: pd.Timestamp | datetime | CFTimeDatetime, calendar: str
) -> None:
# if we have gregorian/standard we need to raise
# if we are outside the well-defined date range
# proleptic_gregorian and standard/gregorian are only equivalent
# if reference date and date range is >= 1582-10-15
if calendar != "proleptic_gregorian" and date < type(date)(1582, 10, 15):
raise OutOfBoundsDatetime(
f"Dates before 1582-10-15 cannot be decoded "
f"with pandas using {calendar!r} calendar: {date}"
)
def _check_higher_resolution(
flat_num_dates: np.ndarray,
time_unit: PDDatetimeUnitOptions,
) -> tuple[np.ndarray, PDDatetimeUnitOptions]:
"""Iterate until fitting resolution found."""
res: list[PDDatetimeUnitOptions] = ["s", "ms", "us", "ns"]
new_units = res[res.index(time_unit) :]
for new_time_unit in new_units:
if not ((np.unique(flat_num_dates % 1) > 0).any() and new_time_unit != "ns"):
break
flat_num_dates *= 1000
return flat_num_dates, new_time_unit
def _decode_datetime_with_pandas(
flat_num_dates: np.ndarray,
units: str,
calendar: str,
time_resolution: PDDatetimeUnitOptions = "ns",
) -> np.ndarray:
if not _is_standard_calendar(calendar):
raise OutOfBoundsDatetime(
f"Cannot decode times from a non-standard calendar, {calendar!r}, using "
"pandas."
)
# Work around pandas.to_timedelta issue with dtypes smaller than int64 and
# NumPy 2.0 by casting all int and uint data to int64 and uint64,
# respectively. See https://github.com/pandas-dev/pandas/issues/56996 for
# more details.
if flat_num_dates.dtype.kind == "i":
flat_num_dates = flat_num_dates.astype(np.int64)
elif flat_num_dates.dtype.kind == "u":
flat_num_dates = flat_num_dates.astype(np.uint64)
try:
time_unit, ref_date = _unpack_time_unit_and_ref_date(units)
ref_date = _align_reference_date_and_unit(ref_date, time_unit)
# here the highest wanted resolution is set
ref_date = _align_reference_date_and_unit(ref_date, time_resolution)
except ValueError as err:
# ValueError is raised by pd.Timestamp for non-ISO timestamp
# strings, in which case we fall back to using cftime
raise OutOfBoundsDatetime from err
_check_date_is_after_shift(ref_date, calendar)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "invalid value encountered", RuntimeWarning)
if flat_num_dates.size > 0:
# avoid size 0 datetimes GH1329
_check_date_for_units_since_refdate(
flat_num_dates.min(), time_unit, ref_date
)
_check_date_for_units_since_refdate(
flat_num_dates.max(), time_unit, ref_date
)
# To avoid integer overflow when converting to nanosecond units for integer
# dtypes smaller than np.int64 cast all integer and unsigned integer dtype
# arrays to np.int64 (GH 2002, GH 6589). Note this is safe even in the case
# of np.uint64 values, because any np.uint64 value that would lead to
# overflow when converting to np.int64 would not be representable with a
# timedelta64 value, and therefore would raise an error in the lines above.
if flat_num_dates.dtype.kind in "iu":
flat_num_dates = flat_num_dates.astype(np.int64)
elif flat_num_dates.dtype.kind in "f":
flat_num_dates = flat_num_dates.astype(np.float64)
timedeltas = _numbers_to_timedelta(
flat_num_dates, time_unit, ref_date.unit, "datetimes"
)
# add timedeltas to ref_date
return ref_date + timedeltas
def decode_cf_datetime(
num_dates,
units: str,
calendar: str | None = None,
use_cftime: bool | None = None,
time_unit: PDDatetimeUnitOptions = "ns",
) -> np.ndarray:
"""Given an array of numeric dates in netCDF format, convert it into a
numpy array of date time objects.
For standard (Gregorian) calendars, this function uses vectorized
operations, which makes it much faster than cftime.num2date. In such a
case, the returned array will be of type np.datetime64.
Note that time unit in `units` must not be smaller than microseconds and
not larger than days.
See Also
--------
cftime.num2date
"""
num_dates = to_numpy(num_dates)
flat_num_dates = ravel(num_dates)
if calendar is None:
calendar = "standard"
if use_cftime is None:
try:
dates = _decode_datetime_with_pandas(
flat_num_dates, units, calendar, time_unit
)
except (KeyError, OutOfBoundsDatetime, OutOfBoundsTimedelta, OverflowError):
dates = _decode_datetime_with_cftime(
flat_num_dates.astype(float), units, calendar
)
# retrieve cftype
dates_min = dates[np.nanargmin(num_dates)]
dates_max = dates[np.nanargmax(num_dates)]
cftype = type(dates_min)
# create first day of gregorian calendar in current cf calendar type
border = cftype(1582, 10, 15)
# "ns" borders
# between ['1677-09-21T00:12:43.145224193', '2262-04-11T23:47:16.854775807']
lower = cftype(1677, 9, 21, 0, 12, 43, 145224)
upper = cftype(2262, 4, 11, 23, 47, 16, 854775)
if dates_min < border:
if _is_standard_calendar(calendar):
emit_user_level_warning(
"Unable to decode time axis into full "
"numpy.datetime64 objects, continuing using "
"cftime.datetime objects instead, reason: dates prior "
"reform date (1582-10-15). To silence this warning specify "
"'use_cftime=True'.",
SerializationWarning,
)
elif time_unit == "ns" and (dates_min < lower or dates_max > upper):
emit_user_level_warning(
"Unable to decode time axis into full "
"numpy.datetime64[ns] objects, continuing using "
"cftime.datetime objects instead, reason: dates out "
"of range. To silence this warning use a coarser resolution "
"'time_unit' or specify 'use_cftime=True'.",
SerializationWarning,
)
elif _is_standard_calendar(calendar):
dates = cftime_to_nptime(dates, time_unit=time_unit)
elif use_cftime:
dates = _decode_datetime_with_cftime(flat_num_dates, units, calendar)
else:
dates = _decode_datetime_with_pandas(flat_num_dates, units, calendar, time_unit)
return reshape(dates, num_dates.shape)
def to_datetime_unboxed(value, **kwargs):
result = pd.to_datetime(value, **kwargs).to_numpy()
assert np.issubdtype(result.dtype, "datetime64")
return result
def _numbers_to_timedelta(
flat_num: np.ndarray,
time_unit: NPDatetimeUnitOptions,
ref_unit: PDDatetimeUnitOptions,
datatype: str,
target_unit: PDDatetimeUnitOptions | None = None,
) -> np.ndarray:
"""Transform numbers to np.timedelta64."""
# keep NaT/nan mask
if flat_num.dtype.kind == "f":
nan = np.asarray(np.isnan(flat_num))
elif flat_num.dtype.kind == "i":
nan = np.asarray(flat_num == np.iinfo(np.int64).min)
# in case we need to change the unit, we fix the numbers here
# this should be safe, as errors would have been raised above
ns_time_unit = _NS_PER_TIME_DELTA[time_unit]
ns_ref_date_unit = _NS_PER_TIME_DELTA[ref_unit]
if ns_time_unit > ns_ref_date_unit:
flat_num = np.asarray(flat_num * np.int64(ns_time_unit / ns_ref_date_unit))
time_unit = ref_unit
# estimate fitting resolution for floating point values
# this iterates until all floats are fractionless or time_unit == "ns"
if flat_num.dtype.kind == "f" and time_unit != "ns":
flat_num, new_time_unit = _check_higher_resolution(
flat_num, cast(PDDatetimeUnitOptions, time_unit)
)
if time_unit != new_time_unit:
if target_unit is None or np.timedelta64(1, target_unit) > np.timedelta64(
1, new_time_unit
):
if datatype == "datetimes":
kwarg = "decode_times"
coder = "CFDatetimeCoder"
else:
kwarg = "decode_timedelta"
coder = "CFTimedeltaCoder"
formatted_kwarg = f"{kwarg}={coder}(time_unit={new_time_unit!r})"
message = (
f"Can't decode floating point {datatype} to {time_unit!r} "
f"without precision loss; decoding to {new_time_unit!r} "
f"instead. To silence this warning pass {formatted_kwarg} "
f"to your opening function."
)
emit_user_level_warning(message, SerializationWarning)
time_unit = new_time_unit
# Cast input ordinals to integers and properly handle NaN/NaT
# to prevent casting NaN to int
with warnings.catch_warnings():
warnings.simplefilter("ignore", RuntimeWarning)
flat_num = flat_num.astype(np.int64)
if nan.any():
flat_num[nan] = np.iinfo(np.int64).min
# cast to wanted type
return flat_num.astype(f"timedelta64[{time_unit}]")
def decode_cf_timedelta(
num_timedeltas, units: str, time_unit: PDDatetimeUnitOptions = "ns"
) -> np.ndarray:
"""Given an array of numeric timedeltas in netCDF format, convert it into a
numpy timedelta64 ["s", "ms", "us", "ns"] array.
"""
num_timedeltas = to_numpy(num_timedeltas)
unit = _netcdf_to_numpy_timeunit(units)
# special case empty arrays
is_empty_array = num_timedeltas.size == 0
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "All-NaN slice encountered", RuntimeWarning)
if not is_empty_array:
_check_timedelta_range(np.nanmin(num_timedeltas), unit, time_unit)
_check_timedelta_range(np.nanmax(num_timedeltas), unit, time_unit)
timedeltas = _numbers_to_timedelta(
num_timedeltas, unit, "s", "timedeltas", target_unit=time_unit
)
pd_timedeltas = pd.to_timedelta(ravel(timedeltas))
if not is_empty_array and np.isnat(timedeltas).all():
empirical_unit = time_unit
else:
empirical_unit = pd_timedeltas.unit
if is_empty_array or np.timedelta64(1, time_unit) > np.timedelta64(
1, empirical_unit
):
time_unit = empirical_unit
if time_unit not in {"s", "ms", "us", "ns"}:
raise ValueError(
f"time_unit must be one of 's', 'ms', 'us', or 'ns'. Got: {time_unit}"
)
result = pd_timedeltas.as_unit(time_unit).to_numpy()
return reshape(result, num_timedeltas.shape)
def _unit_timedelta_cftime(units: str) -> timedelta:
return timedelta(microseconds=_US_PER_TIME_DELTA[units])
def _unit_timedelta_numpy(units: str) -> np.timedelta64:
numpy_units = _netcdf_to_numpy_timeunit(units)
return np.timedelta64(1, numpy_units)
def _infer_time_units_from_diff(unique_timedeltas) -> str:
# todo: check, if this function works correctly wrt np.timedelta64
unit_timedelta: Callable[[str], timedelta] | Callable[[str], np.timedelta64]
zero_timedelta: timedelta | np.timedelta64
unique_timedeltas = asarray(unique_timedeltas)
if unique_timedeltas.dtype == np.dtype("O"):
time_units = _NETCDF_TIME_UNITS_CFTIME
unit_timedelta = _unit_timedelta_cftime
zero_timedelta = timedelta(microseconds=0)
else:
time_units = _NETCDF_TIME_UNITS_NUMPY
unit_timedelta = _unit_timedelta_numpy
zero_timedelta = np.timedelta64(0, "ns")
for time_unit in time_units:
if array_all(unique_timedeltas % unit_timedelta(time_unit) == zero_timedelta):
return time_unit
return "seconds"
def _time_units_to_timedelta(units: str) -> timedelta:
return timedelta(microseconds=_US_PER_TIME_DELTA[units])
def infer_calendar_name(dates) -> CFCalendar:
"""Given an array of datetimes, infer the CF calendar name"""
if is_np_datetime_like(dates.dtype):
return "proleptic_gregorian"
elif dates.dtype == np.dtype("O") and dates.size > 0:
# Logic copied from core.common.contains_cftime_datetimes.
if cftime is not None:
sample = np.asarray(dates).flat[0]
if is_duck_dask_array(sample):
sample = sample.compute()
if isinstance(sample, np.ndarray):
sample = sample.item()
if isinstance(sample, cftime.datetime):
return sample.calendar
# Error raise if dtype is neither datetime or "O", if cftime is not importable, and if element of 'O' dtype is not cftime.
raise ValueError("Array does not contain datetime objects.")
def infer_datetime_units(dates) -> str:
"""Given an array of datetimes, returns a CF compatible time-unit string of
the form "{time_unit} since {date[0]}", where `time_unit` is 'days',
'hours', 'minutes' or 'seconds' (the first one that can evenly divide all
unique time deltas in `dates`)
"""
dates = ravel(np.asarray(dates))
if np.issubdtype(np.asarray(dates).dtype, "datetime64"):
dates = to_datetime_unboxed(dates)
dates = dates[pd.notnull(dates)]
reference_date = dates[0] if len(dates) > 0 else "1970-01-01"
reference_date = pd.Timestamp(reference_date)
else:
reference_date = dates[0] if len(dates) > 0 else "1970-01-01"
reference_date = format_cftime_datetime(reference_date)
unique_timedeltas = np.unique(np.diff(dates))
units = _infer_time_units_from_diff(unique_timedeltas)
return f"{units} since {reference_date}"
def format_cftime_datetime(date) -> str:
"""Converts a cftime.datetime object to a string with the format:
YYYY-MM-DD HH:MM:SS.UUUUUU
"""
return f"{date.year:04d}-{date.month:02d}-{date.day:02d} {date.hour:02d}:{date.minute:02d}:{date.second:02d}.{date.microsecond:06d}"
def infer_timedelta_units(deltas) -> str:
"""Given an array of timedeltas, returns a CF compatible time-unit from
{'days', 'hours', 'minutes' 'seconds'} (the first one that can evenly
divide all unique time deltas in `deltas`)
"""
deltas = ravel(deltas)
unique_timedeltas = np.unique(deltas[pd.notnull(deltas)])
return _infer_time_units_from_diff(unique_timedeltas)
def cftime_to_nptime(
times, raise_on_invalid: bool = True, time_unit: PDDatetimeUnitOptions = "ns"
) -> np.ndarray:
"""Given an array of cftime.datetime objects, return an array of
numpy.datetime64 objects of the same size
If raise_on_invalid is True (default), invalid dates trigger a ValueError.
Otherwise, the invalid element is replaced by np.NaT."""
times = np.asarray(times)
new = []
dt: np.datetime64
for _i, t in np.ndenumerate(times):
try:
# We expect either "us" resolution or "s" resolution depending on
# whether 'microseconds' are defined for the input or not.
dt = (
pd.Timestamp(np.datetime64(t.isoformat())).as_unit(time_unit).to_numpy()
)
except ValueError as e:
if raise_on_invalid:
raise ValueError(
f"Cannot convert date {t} to a date in the "
f"standard calendar. Reason: {e}."
) from e
else:
dt = np.datetime64("NaT")
new.append(dt)
return np.asarray(new).reshape(times.shape)
def convert_times(times, date_type, raise_on_invalid: bool = True) -> np.ndarray:
"""Given an array of datetimes, return the same dates in another cftime or numpy date type.
Useful to convert between calendars in numpy and cftime or between cftime calendars.
If raise_on_valid is True (default), invalid dates trigger a ValueError.
Otherwise, the invalid element is replaced by np.nan for cftime types and np.NaT for np.datetime64.
"""
if date_type in (pd.Timestamp, np.datetime64) and not is_np_datetime_like(
times.dtype
):
return cftime_to_nptime(times, raise_on_invalid=raise_on_invalid)
if is_np_datetime_like(times.dtype):
# Convert datetime64 objects to Timestamps since those have year, month, day, etc. attributes
times = pd.DatetimeIndex(times)
new = np.empty(times.shape, dtype="O")
for i, t in enumerate(times):
try:
dt = date_type(
t.year, t.month, t.day, t.hour, t.minute, t.second, t.microsecond
)
except ValueError as e:
if raise_on_invalid:
raise ValueError(
f"Cannot convert date {t} to a date in the "
f"{date_type(2000, 1, 1).calendar} calendar. Reason: {e}."
) from e
else:
dt = np.nan
new[i] = dt
return new
def convert_time_or_go_back(date, date_type):
"""Convert a single date to a new date_type (cftime.datetime or pd.Timestamp).
If the new date is invalid, it goes back a day and tries again. If it is still
invalid, goes back a second day.
This is meant to convert end-of-month dates into a new calendar.
"""
if date_type == pd.Timestamp:
date_type = default_precision_timestamp
try:
return date_type(
date.year,
date.month,
date.day,
date.hour,
date.minute,
date.second,
date.microsecond,
)
except OutOfBoundsDatetime:
raise
except ValueError:
# Day is invalid, happens at the end of months, try again the day before
try:
return date_type(
date.year,
date.month,
date.day - 1,
date.hour,
date.minute,
date.second,
date.microsecond,
)
except ValueError:
# Still invalid, happens for 360_day to non-leap february. Try again 2 days before date.
return date_type(
date.year,
date.month,
date.day - 2,
date.hour,
date.minute,
date.second,
date.microsecond,
)
def _should_cftime_be_used(
source, target_calendar: str, use_cftime: bool | None
) -> bool:
"""Return whether conversion of the source to the target calendar should
result in a cftime-backed array.
Source is a 1D datetime array, target_cal a string (calendar name) and
use_cftime is a boolean or None. If use_cftime is None, this returns True
if the source's range and target calendar are convertible to np.datetime64 objects.
"""
# Arguments Checks for target
if use_cftime is not True:
if _is_standard_calendar(target_calendar):
if _is_numpy_compatible_time_range(source):
# Conversion is possible with pandas, force False if it was None
return False
elif use_cftime is False:
raise ValueError(
"Source time range is not valid for numpy datetimes. Try using `use_cftime=True`."
)
elif use_cftime is False:
raise ValueError(
f"Calendar '{target_calendar}' is only valid with cftime. Try using `use_cftime=True`."
)
return True
def _cleanup_netcdf_time_units(units: str) -> str:
time_units, ref_date = _unpack_netcdf_time_units(units)
time_units = time_units.lower()
if not time_units.endswith("s"):
time_units = f"{time_units}s"
# don't worry about reifying the units if they're out of bounds or
# formatted badly
with contextlib.suppress(OutOfBoundsDatetime, ValueError):
units = f"{time_units} since {format_timestamp(ref_date)}"
return units
def _encode_datetime_with_cftime(dates, units: str, calendar: str) -> np.ndarray:
"""Fallback method for encoding dates using cftime.
This method is more flexible than xarray's parsing using datetime64[ns]
arrays but also slower because it loops over each element.
"""
if TYPE_CHECKING:
import cftime
else:
cftime = attempt_import("cftime")
dates = np.asarray(dates)
original_shape = dates.shape
if np.issubdtype(dates.dtype, np.datetime64):
# numpy's broken datetime conversion only works for us precision
dates = dates.astype("M8[us]").astype(datetime)
dates = np.atleast_1d(dates)
# Find all the None position
none_position = dates == None # noqa: E711
filtered_dates = dates[~none_position]
# Since netCDF files do not support storing float128 values, we ensure
# that float64 values are used by setting longdouble=False in num2date.
# This try except logic can be removed when xarray's minimum version of
# cftime is at least 1.6.2.
try:
encoded_nums = cftime.date2num(
filtered_dates, units, calendar, longdouble=False
)
except TypeError:
encoded_nums = cftime.date2num(filtered_dates, units, calendar)
if filtered_dates.size == none_position.size:
return encoded_nums.reshape(original_shape)
# Create a full matrix of NaN
# And fill the num dates in the not NaN or None position
result = np.full(dates.shape, np.nan)
result[np.nonzero(~none_position)] = encoded_nums
return result.reshape(original_shape)
def cast_to_int_if_safe(num) -> np.ndarray:
int_num = np.asarray(num, dtype=np.int64)
if array_all(num == int_num):
num = int_num
return num
def _division(deltas, delta, floor):
if floor:
# calculate int64 floor division
# to preserve integer dtype if possible (GH 4045, GH7817).
num = deltas // delta.astype(np.int64)
num = num.astype(np.int64, copy=False)
else:
num = deltas / delta
return num
def encode_cf_datetime(
dates: T_DuckArray, # type: ignore[misc]
units: str | None = None,
calendar: str | None = None,
dtype: np.dtype | None = None,
) -> tuple[T_DuckArray, str, str]:
"""Given an array of datetime objects, returns the tuple `(num, units,
calendar)` suitable for a CF compliant time variable.
Unlike `date2num`, this function can handle datetime64 arrays.
See Also
--------
cftime.date2num
"""
dates = asarray(dates)
if is_chunked_array(dates):
return _lazily_encode_cf_datetime(dates, units, calendar, dtype)
else:
return _eagerly_encode_cf_datetime(dates, units, calendar, dtype)
def _infer_needed_units_numpy(ref_date, data_units):
needed_units, data_ref_date = _unpack_time_unit_and_ref_date(data_units)
needed_units = _numpy_to_netcdf_timeunit(needed_units)
ref_delta = abs(data_ref_date - ref_date).to_timedelta64()
data_delta = _unit_timedelta_numpy(needed_units)
if (ref_delta % data_delta) > np.timedelta64(0, "ns"):
needed_units = _infer_time_units_from_diff(ref_delta)
return needed_units
def _infer_needed_units_cftime(ref_date, data_units, calendar):
needed_units, data_ref_date = _unpack_time_units_and_ref_date_cftime(
data_units, calendar
)
ref_delta = abs(data_ref_date - ref_date)
data_delta = _time_units_to_timedelta(needed_units)
if (ref_delta % data_delta) > timedelta(seconds=0):
needed_units = _infer_time_units_from_diff(ref_delta)
return needed_units
def _eagerly_encode_cf_datetime(
dates: T_DuckArray, # type: ignore[misc]
units: str | None = None,
calendar: str | None = None,
dtype: np.dtype | None = None,
allow_units_modification: bool = True,
) -> tuple[T_DuckArray, str, str]:
dates = asarray(dates)
data_units = infer_datetime_units(dates)
if units is None:
units = data_units
else:
units = _cleanup_netcdf_time_units(units)
if calendar is None:
calendar = infer_calendar_name(dates)
raise_incompatible_units_error = False
raise_gregorian_proleptic_gregorian_mismatch_error = False
try:
if not _is_standard_calendar(calendar) or dates.dtype.kind == "O":
# parse with cftime instead
raise OutOfBoundsDatetime
assert np.issubdtype(dates.dtype, "datetime64")
if calendar in ["standard", "gregorian"] and np.nanmin(dates).astype(
"=M8[us]"
).astype(datetime) < datetime(1582, 10, 15):
raise_gregorian_proleptic_gregorian_mismatch_error = True
time_unit, ref_date = _unpack_time_unit_and_ref_date(units)
# calendar equivalence only for days after the reform
_check_date_is_after_shift(ref_date, calendar)
time_delta = np.timedelta64(1, time_unit)
# Wrap the dates in a DatetimeIndex to do the subtraction to ensure
# an OverflowError is raised if the ref_date is too far away from
# dates to be encoded (GH 2272).
# DatetimeIndex will convert to units of ["s", "ms", "us", "ns"]
dates_as_index = pd.DatetimeIndex(ravel(dates))
time_deltas = dates_as_index - ref_date
# retrieve needed units to faithfully encode to int64
needed_units = _infer_needed_units_numpy(ref_date, data_units)
needed_time_delta = _unit_timedelta_numpy(needed_units)
floor_division = np.issubdtype(dtype, np.integer) or dtype is None
if time_delta > needed_time_delta:
floor_division = False
if dtype is None:
emit_user_level_warning(
f"Times can't be serialized faithfully to int64 with requested units {units!r}. "
f"Resolution of {needed_units!r} needed. Serializing times to floating point instead. "
f"Set encoding['dtype'] to integer dtype to serialize to int64. "
f"Set encoding['dtype'] to floating point dtype to silence this warning."
)
elif np.issubdtype(dtype, np.integer) and allow_units_modification:
new_units = f"{needed_units} since {format_timestamp(ref_date)}"
emit_user_level_warning(
f"Times can't be serialized faithfully to int64 with requested units {units!r}. "
f"Serializing with units {new_units!r} instead. "
f"Set encoding['dtype'] to floating point dtype to serialize with units {units!r}. "
f"Set encoding['units'] to {new_units!r} to silence this warning ."
)
units = new_units
time_delta = needed_time_delta
floor_division = True
elif np.issubdtype(dtype, np.integer) and not allow_units_modification:
new_units = f"{needed_units} since {format_timestamp(ref_date)}"
raise_incompatible_units_error = True
# get resolution of TimedeltaIndex and align time_delta
# todo: check, if this works in any case
num = _division(
time_deltas, time_delta.astype(f"=m8[{time_deltas.unit}]"), floor_division
)
num = reshape(num.values, dates.shape)
except (OutOfBoundsDatetime, OverflowError, ValueError):
time_units, ref_date = _unpack_time_units_and_ref_date_cftime(units, calendar)
time_delta_cftime = _time_units_to_timedelta(time_units)
needed_units = _infer_needed_units_cftime(ref_date, data_units, calendar)
needed_time_delta_cftime = _time_units_to_timedelta(needed_units)
if (
np.issubdtype(dtype, np.integer)
and time_delta_cftime > needed_time_delta_cftime
):
new_units = f"{needed_units} since {format_cftime_datetime(ref_date)}"
if allow_units_modification:
emit_user_level_warning(
f"Times can't be serialized faithfully to int64 with requested units {units!r}. "
f"Serializing with units {new_units!r} instead. "
f"Set encoding['dtype'] to floating point dtype to serialize with units {units!r}. "
f"Set encoding['units'] to {new_units!r} to silence this warning ."
)
units = new_units
else:
raise_incompatible_units_error = True
num = _encode_datetime_with_cftime(dates, units, calendar)
# do it now only for cftime-based flow
# we already covered for this in pandas-based flow
num = cast_to_int_if_safe(num)
if raise_incompatible_units_error:
raise ValueError(
f"Times can't be serialized faithfully to int64 with requested units {units!r}. "
f"Consider setting encoding['dtype'] to a floating point dtype to serialize with "
f"units {units!r}. Consider setting encoding['units'] to {new_units!r} to "
f"serialize with an integer dtype."
)
if raise_gregorian_proleptic_gregorian_mismatch_error:
raise ValueError(
f"Unable to encode np.datetime64 values with {calendar} "
f"calendar, because some or all values are prior to the reform "
f"date of 1582-10-15. To encode these times, set "
f"encoding['calendar'] to 'proleptic_gregorian' instead, which "
f"is the true calendar that np.datetime64 values use. The "
f"'standard' or 'gregorian' calendar is only equivalent to the "
f"'proleptic_gregorian' calendar after the reform date."
)
return num, units, calendar
def _encode_cf_datetime_within_map_blocks(
dates: T_DuckArray, # type: ignore[misc]
units: str,
calendar: str,
dtype: np.dtype,
) -> T_DuckArray:
num, *_ = _eagerly_encode_cf_datetime(
dates, units, calendar, dtype, allow_units_modification=False
)
return num
def _lazily_encode_cf_datetime(
dates: T_ChunkedArray,
units: str | None = None,
calendar: str | None = None,
dtype: np.dtype | None = None,
) -> tuple[T_ChunkedArray, str, str]:
if calendar is None:
# This will only trigger minor compute if dates is an object dtype array.
calendar = infer_calendar_name(dates)
if units is None and dtype is None:
if dates.dtype == "O":
units = "microseconds since 1970-01-01"
dtype = np.dtype("int64")
else:
netcdf_unit = _numpy_dtype_to_netcdf_timeunit(dates.dtype)
units = f"{netcdf_unit} since 1970-01-01"
dtype = np.dtype("int64")
if units is None or dtype is None:
raise ValueError(
f"When encoding chunked arrays of datetime values, both the units "
f"and dtype must be prescribed or both must be unprescribed. "
f"Prescribing only one or the other is not currently supported. "
f"Got a units encoding of {units} and a dtype encoding of {dtype}."
)
chunkmanager = get_chunked_array_type(dates)
num = chunkmanager.map_blocks(
_encode_cf_datetime_within_map_blocks,
dates,
units,
calendar,
dtype,
dtype=dtype,
)
return num, units, calendar
def encode_cf_timedelta(
timedeltas: T_DuckArray, # type: ignore[misc]
units: str | None = None,
dtype: np.dtype | None = None,
) -> tuple[T_DuckArray, str]:
timedeltas = asarray(timedeltas)
if is_chunked_array(timedeltas):
return _lazily_encode_cf_timedelta(timedeltas, units, dtype)
else:
return _eagerly_encode_cf_timedelta(timedeltas, units, dtype)
def _eagerly_encode_cf_timedelta(
timedeltas: T_DuckArray, # type: ignore[misc]
units: str | None = None,
dtype: np.dtype | None = None,
allow_units_modification: bool = True,
) -> tuple[T_DuckArray, str]:
data_units = infer_timedelta_units(timedeltas)
if units is None:
units = data_units
# units take precedence in the case of zero-size array
if timedeltas.size == 0:
data_units = units
time_delta = _unit_timedelta_numpy(units)
time_deltas = pd.TimedeltaIndex(ravel(timedeltas))
# get resolution of TimedeltaIndex and align time_delta
deltas_unit = time_deltas.unit
time_delta = time_delta.astype(f"=m8[{deltas_unit}]")
# retrieve needed units to faithfully encode to int64
needed_units = data_units
if data_units != units:
needed_units = _infer_time_units_from_diff(np.unique(time_deltas.dropna()))
# needed time delta to encode faithfully to int64
needed_time_delta = _unit_timedelta_numpy(needed_units)
floor_division = np.issubdtype(dtype, np.integer) or dtype is None
if time_delta > needed_time_delta:
floor_division = False
if dtype is None:
emit_user_level_warning(
f"Timedeltas can't be serialized faithfully to int64 with requested units {units!r}. "
f"Resolution of {needed_units!r} needed. Serializing timeseries to floating point instead. "
f"Set encoding['dtype'] to integer dtype to serialize to int64. "
f"Set encoding['dtype'] to floating point dtype to silence this warning."
)
elif np.issubdtype(dtype, np.integer) and allow_units_modification:
emit_user_level_warning(
f"Timedeltas can't be serialized faithfully with requested units {units!r}. "
f"Serializing with units {needed_units!r} instead. "
f"Set encoding['dtype'] to floating point dtype to serialize with units {units!r}. "
f"Set encoding['units'] to {needed_units!r} to silence this warning ."
)
units = needed_units
time_delta = needed_time_delta
time_delta = time_delta.astype(f"=m8[{deltas_unit}]")
floor_division = True
elif np.issubdtype(dtype, np.integer) and not allow_units_modification:
raise ValueError(
f"Timedeltas can't be serialized faithfully to int64 with requested units {units!r}. "
f"Consider setting encoding['dtype'] to a floating point dtype to serialize with "
f"units {units!r}. Consider setting encoding['units'] to {needed_units!r} to "
f"serialize with an integer dtype."
)
num = _division(time_deltas, time_delta, floor_division)
num = reshape(num.values, timedeltas.shape)
return num, units
def _encode_cf_timedelta_within_map_blocks(
timedeltas: T_DuckArray, # type: ignore[misc]
units: str,
dtype: np.dtype,
) -> T_DuckArray:
num, _ = _eagerly_encode_cf_timedelta(
timedeltas, units, dtype, allow_units_modification=False
)
return num
def _lazily_encode_cf_timedelta(
timedeltas: T_ChunkedArray, units: str | None = None, dtype: np.dtype | None = None
) -> tuple[T_ChunkedArray, str]:
if units is None and dtype is None:
units = _numpy_dtype_to_netcdf_timeunit(timedeltas.dtype)
dtype = np.dtype("int64")
if units is None or dtype is None:
raise ValueError(
f"When encoding chunked arrays of timedelta values, both the "
f"units and dtype must be prescribed or both must be "
f"unprescribed. Prescribing only one or the other is not "
f"currently supported. Got a units encoding of {units} and a "
f"dtype encoding of {dtype}."
)
chunkmanager = get_chunked_array_type(timedeltas)
num = chunkmanager.map_blocks(
_encode_cf_timedelta_within_map_blocks,
timedeltas,
units,
dtype,
dtype=dtype,
)
return num, units
class CFDatetimeCoder(VariableCoder):
"""Coder for CF Datetime coding.
Parameters
----------
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64`` objects. If False, always
decode times to ``np.datetime64`` objects; if this is not possible
raise an error.
May not be supported by all the backends.
time_unit : PDDatetimeUnitOptions
Target resolution when decoding dates. Defaults to "ns".
"""
def __init__(
self,
use_cftime: bool | None = None,
time_unit: PDDatetimeUnitOptions = "ns",
) -> None:
self.use_cftime = use_cftime
self.time_unit = time_unit
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if np.issubdtype(
variable.data.dtype, np.datetime64
) or contains_cftime_datetimes(variable):
dims, data, attrs, encoding = unpack_for_encoding(variable)
units = encoding.pop("units", None)
calendar = encoding.pop("calendar", None)
dtype = encoding.get("dtype", None)
# in the case of packed data we need to encode into
# float first, the correct dtype will be established
# via CFScaleOffsetCoder/CFMaskCoder
if "add_offset" in encoding or "scale_factor" in encoding:
dtype = data.dtype if data.dtype.kind == "f" else "float64"
(data, units, calendar) = encode_cf_datetime(data, units, calendar, dtype)
safe_setitem(attrs, "units", units, name=name)
safe_setitem(attrs, "calendar", calendar, name=name)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
units = variable.attrs.get("units", None)
if isinstance(units, str) and "since" in units:
dims, data, attrs, encoding = unpack_for_decoding(variable)
units = pop_to(attrs, encoding, "units")
calendar = pop_to(attrs, encoding, "calendar")
dtype = _decode_cf_datetime_dtype(
data, units, calendar, self.use_cftime, self.time_unit
)
transform = partial(
decode_cf_datetime,
units=units,
calendar=calendar,
use_cftime=self.use_cftime,
time_unit=self.time_unit,
)
data = lazy_elemwise_func(data, transform, dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def has_timedelta64_encoding_dtype(attrs_or_encoding: dict) -> bool:
dtype = attrs_or_encoding.get("dtype")
return isinstance(dtype, str) and dtype.startswith("timedelta64")
def resolve_time_unit_from_attrs_dtype(
attrs_dtype: str, name: T_Name
) -> PDDatetimeUnitOptions:
dtype = np.dtype(attrs_dtype)
resolution, _ = np.datetime_data(dtype)
resolution = cast(NPDatetimeUnitOptions, resolution)
if np.timedelta64(1, resolution) > np.timedelta64(1, "s"):
time_unit = cast(PDDatetimeUnitOptions, "s")
message = (
f"Following pandas, xarray only supports decoding to timedelta64 "
f"values with a resolution of 's', 'ms', 'us', or 'ns'. Encoded "
f"values for variable {name!r} have a resolution of "
f"{resolution!r}. Attempting to decode to a resolution of 's'. "
f"Note, depending on the encoded values, this may lead to an "
f"OverflowError. Additionally, data will not be identically round "
f"tripped; xarray will choose an encoding dtype of "
f"'timedelta64[s]' when re-encoding."
)
emit_user_level_warning(message)
elif np.timedelta64(1, resolution) < np.timedelta64(1, "ns"):
time_unit = cast(PDDatetimeUnitOptions, "ns")
message = (
f"Following pandas, xarray only supports decoding to timedelta64 "
f"values with a resolution of 's', 'ms', 'us', or 'ns'. Encoded "
f"values for variable {name!r} have a resolution of "
f"{resolution!r}. Attempting to decode to a resolution of 'ns'. "
f"Note, depending on the encoded values, this may lead to loss of "
f"precision. Additionally, data will not be identically round "
f"tripped; xarray will choose an encoding dtype of "
f"'timedelta64[ns]' when re-encoding."
)
emit_user_level_warning(message)
else:
time_unit = cast(PDDatetimeUnitOptions, resolution)
return time_unit
class CFTimedeltaCoder(VariableCoder):
"""Coder for CF Timedelta coding.
Parameters
----------
time_unit : PDDatetimeUnitOptions
Target resolution when decoding timedeltas via units. Defaults to "ns".
When decoding via dtype, the resolution is specified in the dtype
attribute, so this parameter is ignored.
decode_via_units : bool
Whether to decode timedeltas based on the presence of a timedelta-like
units attribute, e.g. "seconds". Defaults to True, but in the future
will default to False.
decode_via_dtype : bool
Whether to decode timedeltas based on the presence of a np.timedelta64
dtype attribute, e.g. "timedelta64[s]". Defaults to True.
"""
def __init__(
self,
time_unit: PDDatetimeUnitOptions | None = None,
decode_via_units: bool = True,
decode_via_dtype: bool = True,
) -> None:
self.time_unit = time_unit
self.decode_via_units = decode_via_units
self.decode_via_dtype = decode_via_dtype
self._emit_decode_timedelta_future_warning = False
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if np.issubdtype(variable.data.dtype, np.timedelta64):
dims, data, attrs, encoding = unpack_for_encoding(variable)
dtype = encoding.get("dtype", None)
units = encoding.pop("units", None)
# in the case of packed data we need to encode into
# float first, the correct dtype will be established
# via CFScaleOffsetCoder/CFMaskCoder
if "add_offset" in encoding or "scale_factor" in encoding:
dtype = data.dtype if data.dtype.kind == "f" else "float64"
resolution, _ = np.datetime_data(variable.dtype)
attrs_dtype = f"timedelta64[{resolution}]"
safe_setitem(attrs, "dtype", attrs_dtype, name=name)
data, units = encode_cf_timedelta(data, units, dtype)
safe_setitem(attrs, "units", units, name=name)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
units = variable.attrs.get("units", None)
has_timedelta_units = isinstance(units, str) and units in TIME_UNITS
has_timedelta_dtype = has_timedelta64_encoding_dtype(variable.attrs)
is_dtype_decodable = has_timedelta_units and has_timedelta_dtype
is_units_decodable = has_timedelta_units
if (is_dtype_decodable and self.decode_via_dtype) or (
is_units_decodable and self.decode_via_units
):
dims, data, attrs, encoding = unpack_for_decoding(variable)
units = pop_to(attrs, encoding, "units")
if is_dtype_decodable:
attrs_dtype = attrs.pop("dtype")
if self.time_unit is None:
time_unit = resolve_time_unit_from_attrs_dtype(attrs_dtype, name)
else:
time_unit = self.time_unit
else:
if self._emit_decode_timedelta_future_warning:
var_string = f"the variable {name!r}" if name else ""
emit_user_level_warning(
"In a future version, xarray will not decode "
f"{var_string} into a timedelta64 dtype based on the "
"presence of a timedelta-like 'units' attribute by "
"default. Instead it will rely on the presence of a "
"timedelta64 'dtype' attribute, which is now xarray's "
"default way of encoding timedelta64 values.\n"
"To continue decoding into a timedelta64 dtype, either "
"set `decode_timedelta=True` when opening this "
"dataset, or add the attribute "
"`dtype='timedelta64[ns]'` to this variable on disk.\n"
"To opt-in to future behavior, set "
"`decode_timedelta=False`.",
FutureWarning,
)
if self.time_unit is None:
time_unit = cast(PDDatetimeUnitOptions, "ns")
else:
time_unit = self.time_unit
# Handle edge case that decode_via_dtype=False and
# decode_via_units=True, and timedeltas were encoded with a
# dtype attribute. We need to remove the dtype attribute
# to prevent an error during round tripping.
if has_timedelta_dtype:
attrs.pop("dtype")
dtype = np.dtype(f"timedelta64[{time_unit}]")
transform = partial(decode_cf_timedelta, units=units, time_unit=time_unit)
data = lazy_elemwise_func(data, transform, dtype=dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
|