1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
"""Coders for individual Variable objects."""
from __future__ import annotations
import warnings
from collections.abc import Hashable, MutableMapping
from functools import partial
from typing import TYPE_CHECKING, Any, Union
import numpy as np
import pandas as pd
from xarray.coding.common import (
SerializationWarning,
VariableCoder,
lazy_elemwise_func,
pop_to,
safe_setitem,
unpack_for_decoding,
unpack_for_encoding,
)
from xarray.coding.times import CFDatetimeCoder, CFTimedeltaCoder
from xarray.core import dtypes, duck_array_ops, indexing
from xarray.core.types import Self
from xarray.core.variable import Variable
if TYPE_CHECKING:
T_VarTuple = tuple[tuple[Hashable, ...], Any, dict, dict]
T_Name = Union[Hashable, None]
class NativeEndiannessArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Decode arrays on the fly from non-native to native endianness
This is useful for decoding arrays from netCDF3 files (which are all
big endian) into native endianness, so they can be used with Cython
functions, such as those found in bottleneck and pandas.
>>> x = np.arange(5, dtype=">i2")
>>> x.dtype
dtype('>i2')
>>> NativeEndiannessArray(x).dtype
dtype('int16')
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> NativeEndiannessArray(x)[indexer].dtype
dtype('int16')
"""
__slots__ = ("array",)
def __init__(self, array) -> None:
self.array = indexing.as_indexable(array)
@property
def dtype(self) -> np.dtype:
return np.dtype(self.array.dtype.kind + str(self.array.dtype.itemsize))
def _oindex_get(self, key):
return type(self)(self.array.oindex[key])
def _vindex_get(self, key):
return type(self)(self.array.vindex[key])
def __getitem__(self, key) -> Self:
return type(self)(self.array[key])
def get_duck_array(self):
return duck_array_ops.astype(self.array.get_duck_array(), dtype=self.dtype)
def transpose(self, order):
return type(self)(self.array.transpose(order))
class BoolTypeArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Decode arrays on the fly from integer to boolean datatype
This is useful for decoding boolean arrays from integer typed netCDF
variables.
>>> x = np.array([1, 0, 1, 1, 0], dtype="i1")
>>> x.dtype
dtype('int8')
>>> BoolTypeArray(x).dtype
dtype('bool')
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> BoolTypeArray(x)[indexer].dtype
dtype('bool')
"""
__slots__ = ("array",)
def __init__(self, array) -> None:
self.array = indexing.as_indexable(array)
@property
def dtype(self) -> np.dtype:
return np.dtype("bool")
def _oindex_get(self, key):
return type(self)(self.array.oindex[key])
def _vindex_get(self, key):
return type(self)(self.array.vindex[key])
def __getitem__(self, key) -> Self:
return type(self)(self.array[key])
def get_duck_array(self):
return duck_array_ops.astype(self.array.get_duck_array(), dtype=self.dtype)
def transpose(self, order):
return type(self)(self.array.transpose(order))
def _apply_mask(
data: np.ndarray,
encoded_fill_values: list,
decoded_fill_value: Any,
dtype: np.typing.DTypeLike,
) -> np.ndarray:
"""Mask all matching values in a NumPy arrays."""
data = np.asarray(data, dtype=dtype)
condition = False
for fv in encoded_fill_values:
condition |= data == fv
return np.where(condition, decoded_fill_value, data)
def _is_time_like(units):
# test for time-like
# return "datetime" for datetime-like
# return "timedelta" for timedelta-like
if units is None:
return False
time_strings = [
"days",
"hours",
"minutes",
"seconds",
"milliseconds",
"microseconds",
"nanoseconds",
]
units = str(units)
# to prevent detecting units like `days accumulated` as time-like
# special casing for datetime-units and timedelta-units (GH-8269)
if "since" in units:
from xarray.coding.times import _unpack_netcdf_time_units
try:
_unpack_netcdf_time_units(units)
except ValueError:
return False
return "datetime"
else:
return "timedelta" if any(tstr == units for tstr in time_strings) else False
def _check_fill_values(attrs, name, dtype):
"""Check _FillValue and missing_value if available.
Return dictionary with raw fill values and set with encoded fill values.
Issue SerializationWarning if appropriate.
"""
raw_fill_dict = {}
for attr in ("missing_value", "_FillValue"):
pop_to(attrs, raw_fill_dict, attr, name=name)
encoded_fill_values = set()
for k in list(raw_fill_dict):
v = raw_fill_dict[k]
kfill = {fv for fv in np.ravel(v) if not pd.isnull(fv)}
if not kfill and np.issubdtype(dtype, np.integer):
warnings.warn(
f"variable {name!r} has non-conforming {k!r} "
f"{v!r} defined, dropping {k!r} entirely.",
SerializationWarning,
stacklevel=3,
)
del raw_fill_dict[k]
else:
encoded_fill_values |= kfill
if len(encoded_fill_values) > 1:
warnings.warn(
f"variable {name!r} has multiple fill values "
f"{encoded_fill_values} defined, decoding all values to NaN.",
SerializationWarning,
stacklevel=3,
)
return raw_fill_dict, encoded_fill_values
def _convert_unsigned_fill_value(
name: T_Name,
data: Any,
unsigned: str,
raw_fill_value: Any,
encoded_fill_values: set,
) -> Any:
if data.dtype.kind == "i":
if unsigned == "true":
unsigned_dtype = np.dtype(f"u{data.dtype.itemsize}")
transform = partial(np.asarray, dtype=unsigned_dtype)
if raw_fill_value is not None:
new_fill = np.array(raw_fill_value, dtype=data.dtype)
encoded_fill_values.remove(raw_fill_value)
# use view here to prevent OverflowError
encoded_fill_values.add(new_fill.view(unsigned_dtype).item())
data = lazy_elemwise_func(data, transform, unsigned_dtype)
elif data.dtype.kind == "u":
if unsigned == "false":
signed_dtype = np.dtype(f"i{data.dtype.itemsize}")
transform = partial(np.asarray, dtype=signed_dtype)
data = lazy_elemwise_func(data, transform, signed_dtype)
if raw_fill_value is not None:
new_fill = signed_dtype.type(raw_fill_value)
encoded_fill_values.remove(raw_fill_value)
encoded_fill_values.add(new_fill)
else:
warnings.warn(
f"variable {name!r} has _Unsigned attribute but is not "
"of integer type. Ignoring attribute.",
SerializationWarning,
stacklevel=3,
)
return data
def _encode_unsigned_fill_value(
name: T_Name,
fill_value: Any,
encoded_dtype: np.dtype,
) -> Any:
try:
if hasattr(fill_value, "item"):
# if numpy type, convert to python native integer to determine overflow
# otherwise numpy unsigned ints will silently cast to the signed counterpart
fill_value = fill_value.item()
# passes if provided fill value fits in encoded on-disk type
new_fill = encoded_dtype.type(fill_value)
except OverflowError:
encoded_kind_str = "signed" if encoded_dtype.kind == "i" else "unsigned"
warnings.warn(
f"variable {name!r} will be stored as {encoded_kind_str} integers "
f"but _FillValue attribute can't be represented as a "
f"{encoded_kind_str} integer.",
SerializationWarning,
stacklevel=3,
)
# user probably provided the fill as the in-memory dtype,
# convert to on-disk type to match CF standard
orig_kind = "u" if encoded_dtype.kind == "i" else "i"
orig_dtype = np.dtype(f"{orig_kind}{encoded_dtype.itemsize}")
# use view here to prevent OverflowError
new_fill = np.array(fill_value, dtype=orig_dtype).view(encoded_dtype).item()
return new_fill
class CFMaskCoder(VariableCoder):
"""Mask or unmask fill values according to CF conventions."""
def __init__(
self,
decode_times: bool | CFDatetimeCoder = False,
decode_timedelta: bool | CFTimedeltaCoder = False,
) -> None:
self.decode_times = decode_times
self.decode_timedelta = decode_timedelta
def encode(self, variable: Variable, name: T_Name = None):
dims, data, attrs, encoding = unpack_for_encoding(variable)
dtype = np.dtype(encoding.get("dtype", data.dtype))
# from netCDF best practices
# https://docs.unidata.ucar.edu/nug/current/best_practices.html#bp_Unsigned-Data
# "_Unsigned = "true" to indicate that
# integer data should be treated as unsigned"
has_unsigned = encoding.get("_Unsigned") is not None
fv = encoding.get("_FillValue")
mv = encoding.get("missing_value")
fill_value = None
fv_exists = fv is not None
mv_exists = mv is not None
if not fv_exists and not mv_exists:
return variable
if fv_exists and mv_exists and not duck_array_ops.allclose_or_equiv(fv, mv):
raise ValueError(
f"Variable {name!r} has conflicting _FillValue ({fv}) and missing_value ({mv}). Cannot encode data."
)
if fv_exists:
# Ensure _FillValue is cast to same dtype as data's
# but not for packed data
encoding["_FillValue"] = (
_encode_unsigned_fill_value(name, fv, dtype)
if has_unsigned
else (
dtype.type(fv)
if "add_offset" not in encoding and "scale_factor" not in encoding
else fv
)
)
fill_value = pop_to(encoding, attrs, "_FillValue", name=name)
if mv_exists:
# try to use _FillValue, if it exists to align both values
# or use missing_value and ensure it's cast to same dtype as data's
# but not for packed data
encoding["missing_value"] = attrs.get(
"_FillValue",
(
_encode_unsigned_fill_value(name, mv, dtype)
if has_unsigned
else (
dtype.type(mv)
if "add_offset" not in encoding
and "scale_factor" not in encoding
else mv
)
),
)
fill_value = pop_to(encoding, attrs, "missing_value", name=name)
# apply fillna
if fill_value is not None and not pd.isnull(fill_value):
# special case DateTime to properly handle NaT
if _is_time_like(attrs.get("units")):
if data.dtype.kind in "iu":
data = duck_array_ops.where(
data != np.iinfo(np.int64).min, data, fill_value
)
else:
# if we have float data (data was packed prior masking)
# we just fillna
data = duck_array_ops.fillna(data, fill_value)
# but if the fill_value is of integer type
# we need to round and cast
if np.array(fill_value).dtype.kind in "iu":
data = duck_array_ops.astype(
duck_array_ops.around(data), type(fill_value)
)
else:
data = duck_array_ops.fillna(data, fill_value)
if fill_value is not None and has_unsigned:
pop_to(encoding, attrs, "_Unsigned")
# XXX: Is this actually needed? Doesn't the backend handle this?
# two-stage casting to prevent undefined cast from float to unsigned int
# first float -> int with corresponding itemsize
# second int -> int/uint to final itemsize
signed_dtype = np.dtype(f"i{data.itemsize}")
data = duck_array_ops.astype(
duck_array_ops.astype(
duck_array_ops.around(data), signed_dtype, copy=False
),
dtype,
copy=False,
)
attrs["_FillValue"] = fill_value
return Variable(dims, data, attrs, encoding, fastpath=True)
def decode(self, variable: Variable, name: T_Name = None):
raw_fill_dict, encoded_fill_values = _check_fill_values(
variable.attrs, name, variable.dtype
)
if "_Unsigned" not in variable.attrs and not raw_fill_dict:
return variable
dims, data, attrs, encoding = unpack_for_decoding(variable)
# Even if _Unsigned is used, retain on-disk _FillValue
for attr, value in raw_fill_dict.items():
safe_setitem(encoding, attr, value, name=name)
if "_Unsigned" in attrs:
unsigned = pop_to(attrs, encoding, "_Unsigned")
data = _convert_unsigned_fill_value(
name,
data,
unsigned,
raw_fill_dict.get("_FillValue"),
encoded_fill_values,
)
if encoded_fill_values:
dtype: np.typing.DTypeLike
decoded_fill_value: Any
# in case of packed data we have to decode into float
# in any case
if "scale_factor" in attrs or "add_offset" in attrs:
dtype, decoded_fill_value = (
_choose_float_dtype(data.dtype, attrs),
np.nan,
)
else:
# in case of no-packing special case DateTime/Timedelta to properly
# handle NaT, we need to check if time-like will be decoded
# or not in further processing
is_time_like = _is_time_like(attrs.get("units"))
if (
(is_time_like == "datetime" and self.decode_times)
or (is_time_like == "timedelta" and self.decode_timedelta)
) and data.dtype.kind in "iu":
dtype = np.int64
decoded_fill_value = np.iinfo(np.int64).min
else:
dtype, decoded_fill_value = dtypes.maybe_promote(data.dtype)
transform = partial(
_apply_mask,
encoded_fill_values=encoded_fill_values,
decoded_fill_value=decoded_fill_value,
dtype=dtype,
)
data = lazy_elemwise_func(data, transform, dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
def _scale_offset_decoding(data, scale_factor, add_offset, dtype: np.typing.DTypeLike):
data = data.astype(dtype=dtype, copy=True)
if scale_factor is not None:
data *= scale_factor
if add_offset is not None:
data += add_offset
return data
def _choose_float_dtype(
dtype: np.dtype, mapping: MutableMapping
) -> type[np.floating[Any]]:
"""Return a float dtype that can losslessly represent `dtype` values."""
# check scale/offset first to derive wanted float dtype
# see https://github.com/pydata/xarray/issues/5597#issuecomment-879561954
scale_factor = mapping.get("scale_factor")
add_offset = mapping.get("add_offset")
if scale_factor is not None or add_offset is not None:
# get the type from scale_factor/add_offset to determine
# the needed floating point type
if scale_factor is not None:
scale_type = np.dtype(type(scale_factor))
if add_offset is not None:
offset_type = np.dtype(type(add_offset))
# CF conforming, both scale_factor and add-offset are given and
# of same floating point type (float32/64)
if (
add_offset is not None
and scale_factor is not None
and offset_type == scale_type
and scale_type in [np.float32, np.float64]
):
# in case of int32 -> we need upcast to float64
# due to precision issues
if dtype.itemsize == 4 and np.issubdtype(dtype, np.integer):
return np.float64
return scale_type.type
# Not CF conforming and add_offset given:
# A scale factor is entirely safe (vanishing into the mantissa),
# but a large integer offset could lead to loss of precision.
# Sensitivity analysis can be tricky, so we just use a float64
# if there's any offset at all - better unoptimised than wrong!
if add_offset is not None:
return np.float64
# return dtype depending on given scale_factor
return scale_type.type
# If no scale_factor or add_offset is given, use some general rules.
# Keep float32 as-is. Upcast half-precision to single-precision,
# because float16 is "intended for storage but not computation"
if dtype.itemsize <= 4 and np.issubdtype(dtype, np.floating):
return np.float32
# float32 can exactly represent all integers up to 24 bits
if dtype.itemsize <= 2 and np.issubdtype(dtype, np.integer):
return np.float32
# For all other types and circumstances, we just use float64.
# Todo: with nc-complex from netcdf4-python >= 1.7.0 this is available
# (safe because eg. complex numbers are not supported in NetCDF)
return np.float64
class CFScaleOffsetCoder(VariableCoder):
"""Scale and offset variables according to CF conventions.
Follows the formula:
decode_values = encoded_values * scale_factor + add_offset
"""
def __init__(
self,
decode_times: bool | CFDatetimeCoder = False,
decode_timedelta: bool | CFTimedeltaCoder = False,
) -> None:
self.decode_times = decode_times
self.decode_timedelta = decode_timedelta
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
dims, data, attrs, encoding = unpack_for_encoding(variable)
if "scale_factor" in encoding or "add_offset" in encoding:
# if we have a _FillValue/masked_value we do not want to cast now
# but leave that to CFMaskCoder
dtype = data.dtype
if "_FillValue" not in encoding and "missing_value" not in encoding:
dtype = _choose_float_dtype(data.dtype, encoding)
# but still we need a copy prevent changing original data
data = duck_array_ops.astype(data, dtype=dtype, copy=True)
if "add_offset" in encoding:
data -= pop_to(encoding, attrs, "add_offset", name=name)
if "scale_factor" in encoding:
data /= pop_to(encoding, attrs, "scale_factor", name=name)
return Variable(dims, data, attrs, encoding, fastpath=True)
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
_attrs = variable.attrs
if "scale_factor" in _attrs or "add_offset" in _attrs:
dims, data, attrs, encoding = unpack_for_decoding(variable)
scale_factor = pop_to(attrs, encoding, "scale_factor", name=name)
add_offset = pop_to(attrs, encoding, "add_offset", name=name)
if duck_array_ops.ndim(scale_factor) > 0:
scale_factor = np.asarray(scale_factor).item()
if duck_array_ops.ndim(add_offset) > 0:
add_offset = np.asarray(add_offset).item()
# if we have a _FillValue/masked_value in encoding we already have the wanted
# floating point dtype here (via CFMaskCoder), so no check is necessary
# only check in other cases and for time-like
dtype = data.dtype
is_time_like = _is_time_like(attrs.get("units"))
if (
("_FillValue" not in encoding and "missing_value" not in encoding)
or (is_time_like == "datetime" and self.decode_times)
or (is_time_like == "timedelta" and self.decode_timedelta)
):
dtype = _choose_float_dtype(dtype, encoding)
transform = partial(
_scale_offset_decoding,
scale_factor=scale_factor,
add_offset=add_offset,
dtype=dtype,
)
data = lazy_elemwise_func(data, transform, dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
class DefaultFillvalueCoder(VariableCoder):
"""Encode default _FillValue if needed."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
dims, data, attrs, encoding = unpack_for_encoding(variable)
# make NaN the fill value for float types
if (
"_FillValue" not in attrs
and "_FillValue" not in encoding
and np.issubdtype(variable.dtype, np.floating)
):
attrs["_FillValue"] = variable.dtype.type(np.nan)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
raise NotImplementedError()
class BooleanCoder(VariableCoder):
"""Code boolean values."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if (
(variable.dtype == bool)
and ("dtype" not in variable.encoding)
and ("dtype" not in variable.attrs)
):
dims, data, attrs, encoding = unpack_for_encoding(variable)
attrs["dtype"] = "bool"
data = duck_array_ops.astype(data, dtype="i1", copy=True)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
if variable.attrs.get("dtype", False) == "bool":
dims, data, attrs, encoding = unpack_for_decoding(variable)
# overwrite (!) dtype in encoding, and remove from attrs
# needed for correct subsequent encoding
encoding["dtype"] = attrs.pop("dtype")
data = BoolTypeArray(data)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
class EndianCoder(VariableCoder):
"""Decode Endianness to native."""
def encode(self):
raise NotImplementedError()
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
dims, data, attrs, encoding = unpack_for_decoding(variable)
if not data.dtype.isnative:
data = NativeEndiannessArray(data)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
class NonStringCoder(VariableCoder):
"""Encode NonString variables if dtypes differ."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if "dtype" in variable.encoding and variable.encoding["dtype"] not in (
"S1",
str,
):
dims, data, attrs, encoding = unpack_for_encoding(variable)
dtype = np.dtype(encoding.pop("dtype"))
if dtype != variable.dtype:
if np.issubdtype(dtype, np.integer):
if (
np.issubdtype(variable.dtype, np.floating)
and "_FillValue" not in variable.attrs
and "missing_value" not in variable.attrs
):
warnings.warn(
f"saving variable {name} with floating "
"point data as an integer dtype without "
"any _FillValue to use for NaNs",
SerializationWarning,
stacklevel=10,
)
data = duck_array_ops.round(data)
data = duck_array_ops.astype(data, dtype=dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self):
raise NotImplementedError()
class ObjectVLenStringCoder(VariableCoder):
def encode(self):
raise NotImplementedError
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
if variable.dtype.kind == "O" and variable.encoding.get("dtype", False) is str:
variable = variable.astype(variable.encoding["dtype"])
return variable
else:
return variable
class Numpy2StringDTypeCoder(VariableCoder):
# Convert Numpy 2 StringDType arrays to object arrays for backwards compatibility
# TODO: remove this if / when we decide to allow StringDType arrays in Xarray
def encode(self):
raise NotImplementedError
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
if variable.dtype.kind == "T":
return variable.astype(object)
else:
return variable
class NativeEnumCoder(VariableCoder):
"""Encode Enum into variable dtype metadata."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if (
"dtype" in variable.encoding
and np.dtype(variable.encoding["dtype"]).metadata
and "enum" in variable.encoding["dtype"].metadata
):
dims, data, attrs, encoding = unpack_for_encoding(variable)
data = data.astype(dtype=variable.encoding.pop("dtype"))
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
raise NotImplementedError()
|