1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
# This file contains functions copied from the toolz library in accordance
# with its license. The original copyright notice is duplicated below.
# Copyright (c) 2013 Matthew Rocklin
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# a. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# b. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# c. Neither the name of toolz nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
# DAMAGE.
def sliding_window(n, seq):
"""A sequence of overlapping subsequences
>>> list(sliding_window(2, [1, 2, 3, 4]))
[(1, 2), (2, 3), (3, 4)]
This function creates a sliding window suitable for transformations like
sliding means / smoothing
>>> mean = lambda seq: float(sum(seq)) / len(seq)
>>> list(map(mean, sliding_window(2, [1, 2, 3, 4])))
[1.5, 2.5, 3.5]
"""
import collections
import itertools
return zip(
*(
collections.deque(itertools.islice(it, i), 0) or it
for i, it in enumerate(itertools.tee(seq, n))
),
strict=False,
)
|