1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
"""
Functions for applying functions that act on arrays to xarray's labeled data.
NOTE: This module is currently large and contains various computational functionality.
The long-term plan is to break it down into more focused submodules.
"""
from __future__ import annotations
import functools
from collections import Counter
from collections.abc import (
Callable,
Hashable,
)
from typing import TYPE_CHECKING, Any, Literal, cast, overload
import numpy as np
from xarray.compat.array_api_compat import to_like_array
from xarray.core import dtypes, duck_array_ops, utils
from xarray.core.common import zeros_like
from xarray.core.duck_array_ops import datetime_to_numeric
from xarray.core.options import OPTIONS, _get_keep_attrs
from xarray.core.types import Dims, T_DataArray
from xarray.core.utils import (
is_scalar,
parse_dims_as_set,
)
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import get_chunked_array_type
from xarray.namedarray.pycompat import is_chunked_array
from xarray.structure.alignment import align
from xarray.util.deprecation_helpers import deprecate_dims
if TYPE_CHECKING:
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
MissingCoreDimOptions = Literal["raise", "copy", "drop"]
_NO_FILL_VALUE = utils.ReprObject("<no-fill-value>")
_JOINS_WITHOUT_FILL_VALUES = frozenset({"inner", "exact"})
def cov(
da_a: T_DataArray,
da_b: T_DataArray,
dim: Dims = None,
ddof: int = 1,
weights: T_DataArray | None = None,
) -> T_DataArray:
"""
Compute covariance between two DataArray objects along a shared dimension.
Parameters
----------
da_a : DataArray
Array to compute.
da_b : DataArray
Array to compute.
dim : str, iterable of hashable, "..." or None, optional
The dimension along which the covariance will be computed
ddof : int, default: 1
If ddof=1, covariance is normalized by N-1, giving an unbiased estimate,
else normalization is by N.
weights : DataArray, optional
Array of weights.
Returns
-------
covariance : DataArray
See Also
--------
pandas.Series.cov : corresponding pandas function
xarray.corr : respective function to calculate correlation
Examples
--------
>>> from xarray import DataArray
>>> da_a = DataArray(
... np.array([[1, 2, 3], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]),
... dims=("space", "time"),
... coords=[
... ("space", ["IA", "IL", "IN"]),
... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
... ],
... )
>>> da_a
<xarray.DataArray (space: 3, time: 3)> Size: 72B
array([[1. , 2. , 3. ],
[0.1, 0.2, 0.3],
[3.2, 0.6, 1.8]])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
* time (time) datetime64[ns] 24B 2000-01-01 2000-01-02 2000-01-03
>>> da_b = DataArray(
... np.array([[0.2, 0.4, 0.6], [15, 10, 5], [3.2, 0.6, 1.8]]),
... dims=("space", "time"),
... coords=[
... ("space", ["IA", "IL", "IN"]),
... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
... ],
... )
>>> da_b
<xarray.DataArray (space: 3, time: 3)> Size: 72B
array([[ 0.2, 0.4, 0.6],
[15. , 10. , 5. ],
[ 3.2, 0.6, 1.8]])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
* time (time) datetime64[ns] 24B 2000-01-01 2000-01-02 2000-01-03
>>> xr.cov(da_a, da_b)
<xarray.DataArray ()> Size: 8B
array(-3.53055556)
>>> xr.cov(da_a, da_b, dim="time")
<xarray.DataArray (space: 3)> Size: 24B
array([ 0.2 , -0.5 , 1.69333333])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
>>> weights = DataArray(
... [4, 2, 1],
... dims=("space"),
... coords=[
... ("space", ["IA", "IL", "IN"]),
... ],
... )
>>> weights
<xarray.DataArray (space: 3)> Size: 24B
array([4, 2, 1])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
>>> xr.cov(da_a, da_b, dim="space", weights=weights)
<xarray.DataArray (time: 3)> Size: 24B
array([-4.69346939, -4.49632653, -3.37959184])
Coordinates:
* time (time) datetime64[ns] 24B 2000-01-01 2000-01-02 2000-01-03
"""
from xarray.core.dataarray import DataArray
if any(not isinstance(arr, DataArray) for arr in [da_a, da_b]):
raise TypeError(
"Only xr.DataArray is supported."
f"Given {[type(arr) for arr in [da_a, da_b]]}."
)
if weights is not None and not isinstance(weights, DataArray):
raise TypeError(f"Only xr.DataArray is supported. Given {type(weights)}.")
return _cov_corr(da_a, da_b, weights=weights, dim=dim, ddof=ddof, method="cov")
def corr(
da_a: T_DataArray,
da_b: T_DataArray,
dim: Dims = None,
weights: T_DataArray | None = None,
) -> T_DataArray:
"""
Compute the Pearson correlation coefficient between
two DataArray objects along a shared dimension.
Parameters
----------
da_a : DataArray
Array to compute.
da_b : DataArray
Array to compute.
dim : str, iterable of hashable, "..." or None, optional
The dimension along which the correlation will be computed
weights : DataArray, optional
Array of weights.
Returns
-------
correlation: DataArray
See Also
--------
pandas.Series.corr : corresponding pandas function
xarray.cov : underlying covariance function
Examples
--------
>>> from xarray import DataArray
>>> da_a = DataArray(
... np.array([[1, 2, 3], [0.1, 0.2, 0.3], [3.2, 0.6, 1.8]]),
... dims=("space", "time"),
... coords=[
... ("space", ["IA", "IL", "IN"]),
... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
... ],
... )
>>> da_a
<xarray.DataArray (space: 3, time: 3)> Size: 72B
array([[1. , 2. , 3. ],
[0.1, 0.2, 0.3],
[3.2, 0.6, 1.8]])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
* time (time) datetime64[ns] 24B 2000-01-01 2000-01-02 2000-01-03
>>> da_b = DataArray(
... np.array([[0.2, 0.4, 0.6], [15, 10, 5], [3.2, 0.6, 1.8]]),
... dims=("space", "time"),
... coords=[
... ("space", ["IA", "IL", "IN"]),
... ("time", pd.date_range("2000-01-01", freq="1D", periods=3)),
... ],
... )
>>> da_b
<xarray.DataArray (space: 3, time: 3)> Size: 72B
array([[ 0.2, 0.4, 0.6],
[15. , 10. , 5. ],
[ 3.2, 0.6, 1.8]])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
* time (time) datetime64[ns] 24B 2000-01-01 2000-01-02 2000-01-03
>>> xr.corr(da_a, da_b)
<xarray.DataArray ()> Size: 8B
array(-0.57087777)
>>> xr.corr(da_a, da_b, dim="time")
<xarray.DataArray (space: 3)> Size: 24B
array([ 1., -1., 1.])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
>>> weights = DataArray(
... [4, 2, 1],
... dims=("space"),
... coords=[
... ("space", ["IA", "IL", "IN"]),
... ],
... )
>>> weights
<xarray.DataArray (space: 3)> Size: 24B
array([4, 2, 1])
Coordinates:
* space (space) <U2 24B 'IA' 'IL' 'IN'
>>> xr.corr(da_a, da_b, dim="space", weights=weights)
<xarray.DataArray (time: 3)> Size: 24B
array([-0.50240504, -0.83215028, -0.99057446])
Coordinates:
* time (time) datetime64[ns] 24B 2000-01-01 2000-01-02 2000-01-03
"""
from xarray.core.dataarray import DataArray
if any(not isinstance(arr, DataArray) for arr in [da_a, da_b]):
raise TypeError(
"Only xr.DataArray is supported."
f"Given {[type(arr) for arr in [da_a, da_b]]}."
)
if weights is not None and not isinstance(weights, DataArray):
raise TypeError(f"Only xr.DataArray is supported. Given {type(weights)}.")
return _cov_corr(da_a, da_b, weights=weights, dim=dim, method="corr")
def _cov_corr(
da_a: T_DataArray,
da_b: T_DataArray,
weights: T_DataArray | None = None,
dim: Dims = None,
ddof: int = 0,
method: Literal["cov", "corr"] | None = None,
) -> T_DataArray:
"""
Internal method for xr.cov() and xr.corr() so only have to
sanitize the input arrays once and we don't repeat code.
"""
# 1. Broadcast the two arrays
da_a, da_b = align(da_a, da_b, join="inner", copy=False)
# 2. Ignore the nans
valid_values = da_a.notnull() & da_b.notnull()
da_a = da_a.where(valid_values)
da_b = da_b.where(valid_values)
# 3. Detrend along the given dim
if weights is not None:
demeaned_da_a = da_a - da_a.weighted(weights).mean(dim=dim)
demeaned_da_b = da_b - da_b.weighted(weights).mean(dim=dim)
else:
demeaned_da_a = da_a - da_a.mean(dim=dim)
demeaned_da_b = da_b - da_b.mean(dim=dim)
# 4. Compute covariance along the given dim
# N.B. `skipna=True` is required or auto-covariance is computed incorrectly. E.g.
# Try xr.cov(da,da) for da = xr.DataArray([[1, 2], [1, np.nan]], dims=["x", "time"])
if weights is not None:
cov = (
(demeaned_da_a.conj() * demeaned_da_b)
.weighted(weights)
.mean(dim=dim, skipna=True)
)
else:
cov = (demeaned_da_a.conj() * demeaned_da_b).mean(dim=dim, skipna=True)
if method == "cov":
# Adjust covariance for degrees of freedom
valid_count = valid_values.sum(dim)
adjust = valid_count / (valid_count - ddof)
# I think the cast is required because of `T_DataArray` + `T_Xarray` (would be
# the same with `T_DatasetOrArray`)
# https://github.com/pydata/xarray/pull/8384#issuecomment-1784228026
return cast(T_DataArray, cov * adjust)
else:
# Compute std and corr
if weights is not None:
da_a_std = da_a.weighted(weights).std(dim=dim)
da_b_std = da_b.weighted(weights).std(dim=dim)
else:
da_a_std = da_a.std(dim=dim)
da_b_std = da_b.std(dim=dim)
corr = cov / (da_a_std * da_b_std)
return cast(T_DataArray, corr)
def cross(
a: DataArray | Variable, b: DataArray | Variable, *, dim: Hashable
) -> DataArray | Variable:
"""
Compute the cross product of two (arrays of) vectors.
The cross product of `a` and `b` in :math:`R^3` is a vector
perpendicular to both `a` and `b`. The vectors in `a` and `b` are
defined by the values along the dimension `dim` and can have sizes
1, 2 or 3. Where the size of either `a` or `b` is
1 or 2, the remaining components of the input vector is assumed to
be zero and the cross product calculated accordingly. In cases where
both input vectors have dimension 2, the z-component of the cross
product is returned.
Parameters
----------
a, b : DataArray or Variable
Components of the first and second vector(s).
dim : hashable
The dimension along which the cross product will be computed.
Must be available in both vectors.
Examples
--------
Vector cross-product with 3 dimensions:
>>> a = xr.DataArray([1, 2, 3])
>>> b = xr.DataArray([4, 5, 6])
>>> xr.cross(a, b, dim="dim_0")
<xarray.DataArray (dim_0: 3)> Size: 24B
array([-3, 6, -3])
Dimensions without coordinates: dim_0
Vector cross-product with 3 dimensions but zeros at the last axis
yields the same results as with 2 dimensions:
>>> a = xr.DataArray([1, 2, 0])
>>> b = xr.DataArray([4, 5, 0])
>>> xr.cross(a, b, dim="dim_0")
<xarray.DataArray (dim_0: 3)> Size: 24B
array([ 0, 0, -3])
Dimensions without coordinates: dim_0
Multiple vector cross-products. Note that the direction of the
cross product vector is defined by the right-hand rule:
>>> a = xr.DataArray(
... [[1, 2, 3], [4, 5, 6]],
... dims=("time", "cartesian"),
... coords=dict(
... time=(["time"], [0, 1]),
... cartesian=(["cartesian"], ["x", "y", "z"]),
... ),
... )
>>> b = xr.DataArray(
... [[4, 5, 6], [1, 2, 3]],
... dims=("time", "cartesian"),
... coords=dict(
... time=(["time"], [0, 1]),
... cartesian=(["cartesian"], ["x", "y", "z"]),
... ),
... )
>>> xr.cross(a, b, dim="cartesian")
<xarray.DataArray (time: 2, cartesian: 3)> Size: 48B
array([[-3, 6, -3],
[ 3, -6, 3]])
Coordinates:
* time (time) int64 16B 0 1
* cartesian (cartesian) <U1 12B 'x' 'y' 'z'
Cross can be called on Datasets by converting to DataArrays and later
back to a Dataset:
>>> ds_a = xr.Dataset(dict(x=("dim_0", [1]), y=("dim_0", [2]), z=("dim_0", [3])))
>>> ds_b = xr.Dataset(dict(x=("dim_0", [4]), y=("dim_0", [5]), z=("dim_0", [6])))
>>> c = xr.cross(
... ds_a.to_dataarray("cartesian"),
... ds_b.to_dataarray("cartesian"),
... dim="cartesian",
... )
>>> c.to_dataset(dim="cartesian")
<xarray.Dataset> Size: 24B
Dimensions: (dim_0: 1)
Dimensions without coordinates: dim_0
Data variables:
x (dim_0) int64 8B -3
y (dim_0) int64 8B 6
z (dim_0) int64 8B -3
See Also
--------
numpy.cross : Corresponding numpy function
"""
if dim not in a.dims:
raise ValueError(f"Dimension {dim!r} not on a")
elif dim not in b.dims:
raise ValueError(f"Dimension {dim!r} not on b")
if not 1 <= a.sizes[dim] <= 3:
raise ValueError(
f"The size of {dim!r} on a must be 1, 2, or 3 to be "
f"compatible with a cross product but is {a.sizes[dim]}"
)
elif not 1 <= b.sizes[dim] <= 3:
raise ValueError(
f"The size of {dim!r} on b must be 1, 2, or 3 to be "
f"compatible with a cross product but is {b.sizes[dim]}"
)
all_dims = list(dict.fromkeys(a.dims + b.dims))
if a.sizes[dim] != b.sizes[dim]:
# Arrays have different sizes. Append zeros where the smaller
# array is missing a value, zeros will not affect np.cross:
if (
not isinstance(a, Variable) # Only used to make mypy happy.
and dim in getattr(a, "coords", {})
and not isinstance(b, Variable) # Only used to make mypy happy.
and dim in getattr(b, "coords", {})
):
# If the arrays have coords we know which indexes to fill
# with zeros:
a, b = align(
a,
b,
fill_value=0,
join="outer",
exclude=set(all_dims) - {dim},
)
elif min(a.sizes[dim], b.sizes[dim]) == 2:
# If the array doesn't have coords we can only infer
# that it has composite values if the size is at least 2.
# Once padded, rechunk the padded array because apply_ufunc
# requires core dimensions not to be chunked:
if a.sizes[dim] < b.sizes[dim]:
a = a.pad({dim: (0, 1)}, constant_values=0)
# TODO: Should pad or apply_ufunc handle correct chunking?
a = a.chunk({dim: -1}) if is_chunked_array(a.data) else a
else:
b = b.pad({dim: (0, 1)}, constant_values=0)
# TODO: Should pad or apply_ufunc handle correct chunking?
b = b.chunk({dim: -1}) if is_chunked_array(b.data) else b
else:
raise ValueError(
f"{dim!r} on {'a' if a.sizes[dim] == 1 else 'b'} is incompatible:"
" dimensions without coordinates must have have a length of 2 or 3"
)
from xarray.computation.apply_ufunc import apply_ufunc
c = apply_ufunc(
duck_array_ops.cross,
a,
b,
input_core_dims=[[dim], [dim]],
output_core_dims=[[dim] if a.sizes[dim] == 3 else []],
dask="parallelized",
output_dtypes=[np.result_type(a, b)],
)
c = c.transpose(*all_dims, missing_dims="ignore")
return c
@deprecate_dims
def dot(
*arrays,
dim: Dims = None,
**kwargs: Any,
):
"""Generalized dot product for xarray objects. Like ``np.einsum``, but
provides a simpler interface based on array dimension names.
Parameters
----------
*arrays : DataArray or Variable
Arrays to compute.
dim : str, iterable of hashable, "..." or None, optional
Which dimensions to sum over. Ellipsis ('...') sums over all dimensions.
If not specified, then all the common dimensions are summed over.
**kwargs : dict
Additional keyword arguments passed to ``numpy.einsum`` or
``dask.array.einsum``
Returns
-------
DataArray
See Also
--------
numpy.einsum
dask.array.einsum
opt_einsum.contract
Notes
-----
We recommend installing the optional ``opt_einsum`` package, or alternatively passing ``optimize=True``,
which is passed through to ``np.einsum``, and works for most array backends.
Examples
--------
>>> da_a = xr.DataArray(np.arange(3 * 2).reshape(3, 2), dims=["a", "b"])
>>> da_b = xr.DataArray(np.arange(3 * 2 * 2).reshape(3, 2, 2), dims=["a", "b", "c"])
>>> da_c = xr.DataArray(np.arange(2 * 3).reshape(2, 3), dims=["c", "d"])
>>> da_a
<xarray.DataArray (a: 3, b: 2)> Size: 48B
array([[0, 1],
[2, 3],
[4, 5]])
Dimensions without coordinates: a, b
>>> da_b
<xarray.DataArray (a: 3, b: 2, c: 2)> Size: 96B
array([[[ 0, 1],
[ 2, 3]],
<BLANKLINE>
[[ 4, 5],
[ 6, 7]],
<BLANKLINE>
[[ 8, 9],
[10, 11]]])
Dimensions without coordinates: a, b, c
>>> da_c
<xarray.DataArray (c: 2, d: 3)> Size: 48B
array([[0, 1, 2],
[3, 4, 5]])
Dimensions without coordinates: c, d
>>> xr.dot(da_a, da_b, dim=["a", "b"])
<xarray.DataArray (c: 2)> Size: 16B
array([110, 125])
Dimensions without coordinates: c
>>> xr.dot(da_a, da_b, dim=["a"])
<xarray.DataArray (b: 2, c: 2)> Size: 32B
array([[40, 46],
[70, 79]])
Dimensions without coordinates: b, c
>>> xr.dot(da_a, da_b, da_c, dim=["b", "c"])
<xarray.DataArray (a: 3, d: 3)> Size: 72B
array([[ 9, 14, 19],
[ 93, 150, 207],
[273, 446, 619]])
Dimensions without coordinates: a, d
>>> xr.dot(da_a, da_b)
<xarray.DataArray (c: 2)> Size: 16B
array([110, 125])
Dimensions without coordinates: c
>>> xr.dot(da_a, da_b, dim=...)
<xarray.DataArray ()> Size: 8B
array(235)
"""
from xarray.core.dataarray import DataArray
if any(not isinstance(arr, Variable | DataArray) for arr in arrays):
raise TypeError(
"Only xr.DataArray and xr.Variable are supported."
f"Given {[type(arr) for arr in arrays]}."
)
if len(arrays) == 0:
raise TypeError("At least one array should be given.")
common_dims: set[Hashable] = set.intersection(*(set(arr.dims) for arr in arrays))
all_dims = []
for arr in arrays:
all_dims += [d for d in arr.dims if d not in all_dims]
einsum_axes = "abcdefghijklmnopqrstuvwxyz"
dim_map = {d: einsum_axes[i] for i, d in enumerate(all_dims)}
dot_dims: set[Hashable]
if dim is None:
# find dimensions that occur more than once
dim_counts: Counter = Counter()
for arr in arrays:
dim_counts.update(arr.dims)
dot_dims = {d for d, c in dim_counts.items() if c > 1}
else:
dot_dims = parse_dims_as_set(dim, all_dims=set(all_dims))
# dimensions to be parallelized
broadcast_dims = common_dims - dot_dims
input_core_dims = [
[d for d in arr.dims if d not in broadcast_dims] for arr in arrays
]
output_core_dims = [
[d for d in all_dims if d not in dot_dims and d not in broadcast_dims]
]
# construct einsum subscripts, such as '...abc,...ab->...c'
# Note: input_core_dims are always moved to the last position
subscripts_list = [
"..." + "".join(dim_map[d] for d in ds) for ds in input_core_dims
]
subscripts = ",".join(subscripts_list)
subscripts += "->..." + "".join(dim_map[d] for d in output_core_dims[0])
join = OPTIONS["arithmetic_join"]
# using "inner" emulates `(a * b).sum()` for all joins (except "exact")
if join != "exact":
join = "inner"
# subscripts should be passed to np.einsum as arg, not as kwargs. We need
# to construct a partial function for apply_ufunc to work.
func = functools.partial(duck_array_ops.einsum, subscripts, **kwargs)
from xarray.computation.apply_ufunc import apply_ufunc
result = apply_ufunc(
func,
*arrays,
input_core_dims=input_core_dims,
output_core_dims=output_core_dims,
join=join,
dask="allowed",
)
return result.transpose(*all_dims, missing_dims="ignore")
def where(cond, x, y, keep_attrs=None):
"""Return elements from `x` or `y` depending on `cond`.
Performs xarray-like broadcasting across input arguments.
All dimension coordinates on `x` and `y` must be aligned with each
other and with `cond`.
Parameters
----------
cond : scalar, array, Variable, DataArray or Dataset
When True, return values from `x`, otherwise returns values from `y`.
x : scalar, array, Variable, DataArray or Dataset
values to choose from where `cond` is True
y : scalar, array, Variable, DataArray or Dataset
values to choose from where `cond` is False
keep_attrs : bool or str or callable, optional
How to treat attrs. If True, keep the attrs of `x`.
Returns
-------
Dataset, DataArray, Variable or array
In priority order: Dataset, DataArray, Variable or array, whichever
type appears as an input argument.
Examples
--------
>>> x = xr.DataArray(
... 0.1 * np.arange(10),
... dims=["lat"],
... coords={"lat": np.arange(10)},
... name="sst",
... )
>>> x
<xarray.DataArray 'sst' (lat: 10)> Size: 80B
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
Coordinates:
* lat (lat) int64 80B 0 1 2 3 4 5 6 7 8 9
>>> xr.where(x < 0.5, x, x * 100)
<xarray.DataArray 'sst' (lat: 10)> Size: 80B
array([ 0. , 0.1, 0.2, 0.3, 0.4, 50. , 60. , 70. , 80. , 90. ])
Coordinates:
* lat (lat) int64 80B 0 1 2 3 4 5 6 7 8 9
>>> y = xr.DataArray(
... 0.1 * np.arange(9).reshape(3, 3),
... dims=["lat", "lon"],
... coords={"lat": np.arange(3), "lon": 10 + np.arange(3)},
... name="sst",
... )
>>> y
<xarray.DataArray 'sst' (lat: 3, lon: 3)> Size: 72B
array([[0. , 0.1, 0.2],
[0.3, 0.4, 0.5],
[0.6, 0.7, 0.8]])
Coordinates:
* lat (lat) int64 24B 0 1 2
* lon (lon) int64 24B 10 11 12
>>> xr.where(y.lat < 1, y, -1)
<xarray.DataArray (lat: 3, lon: 3)> Size: 72B
array([[ 0. , 0.1, 0.2],
[-1. , -1. , -1. ],
[-1. , -1. , -1. ]])
Coordinates:
* lat (lat) int64 24B 0 1 2
* lon (lon) int64 24B 10 11 12
>>> cond = xr.DataArray([True, False], dims=["x"])
>>> x = xr.DataArray([1, 2], dims=["y"])
>>> xr.where(cond, x, 0)
<xarray.DataArray (x: 2, y: 2)> Size: 32B
array([[1, 2],
[0, 0]])
Dimensions without coordinates: x, y
See Also
--------
numpy.where : corresponding numpy function
Dataset.where, DataArray.where :
equivalent methods
"""
from xarray.core.dataset import Dataset
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
# alignment for three arguments is complicated, so don't support it yet
from xarray.computation.apply_ufunc import apply_ufunc
result = apply_ufunc(
duck_array_ops.where,
cond,
x,
y,
join="exact",
dataset_join="exact",
dask="allowed",
keep_attrs=keep_attrs,
)
# keep the attributes of x, the second parameter, by default to
# be consistent with the `where` method of `DataArray` and `Dataset`
# rebuild the attrs from x at each level of the output, which could be
# Dataset, DataArray, or Variable, and also handle coords
if keep_attrs is True and hasattr(result, "attrs"):
if isinstance(y, Dataset) and not isinstance(x, Dataset):
# handle special case where x gets promoted to Dataset
result.attrs = {}
if getattr(x, "name", None) in result.data_vars:
result[x.name].attrs = getattr(x, "attrs", {})
else:
# otherwise, fill in global attrs and variable attrs (if they exist)
result.attrs = getattr(x, "attrs", {})
for v in getattr(result, "data_vars", []):
result[v].attrs = getattr(getattr(x, v, None), "attrs", {})
for c in getattr(result, "coords", []):
# always fill coord attrs of x
result[c].attrs = getattr(getattr(x, c, None), "attrs", {})
return result
@overload
def polyval(
coord: DataArray, coeffs: DataArray, degree_dim: Hashable = "degree"
) -> DataArray: ...
@overload
def polyval(
coord: DataArray, coeffs: Dataset, degree_dim: Hashable = "degree"
) -> Dataset: ...
@overload
def polyval(
coord: Dataset, coeffs: DataArray, degree_dim: Hashable = "degree"
) -> Dataset: ...
@overload
def polyval(
coord: Dataset, coeffs: Dataset, degree_dim: Hashable = "degree"
) -> Dataset: ...
@overload
def polyval(
coord: Dataset | DataArray,
coeffs: Dataset | DataArray,
degree_dim: Hashable = "degree",
) -> Dataset | DataArray: ...
def polyval(
coord: Dataset | DataArray,
coeffs: Dataset | DataArray,
degree_dim: Hashable = "degree",
) -> Dataset | DataArray:
"""Evaluate a polynomial at specific values
Parameters
----------
coord : DataArray or Dataset
Values at which to evaluate the polynomial.
coeffs : DataArray or Dataset
Coefficients of the polynomial.
degree_dim : Hashable, default: "degree"
Name of the polynomial degree dimension in `coeffs`.
Returns
-------
DataArray or Dataset
Evaluated polynomial.
See Also
--------
xarray.DataArray.polyfit
numpy.polynomial.polynomial.polyval
"""
if degree_dim not in coeffs._indexes:
raise ValueError(
f"Dimension `{degree_dim}` should be a coordinate variable with labels."
)
if not np.issubdtype(coeffs[degree_dim].dtype, np.integer):
raise ValueError(
f"Dimension `{degree_dim}` should be of integer dtype. Received {coeffs[degree_dim].dtype} instead."
)
max_deg = coeffs[degree_dim].max().item()
coeffs = coeffs.reindex(
{degree_dim: np.arange(max_deg + 1)}, fill_value=0, copy=False
)
coord = _ensure_numeric(coord)
# using Horner's method
# https://en.wikipedia.org/wiki/Horner%27s_method
res = zeros_like(coord) + coeffs.isel({degree_dim: max_deg}, drop=True)
for deg in range(max_deg - 1, -1, -1):
res *= coord
res += coeffs.isel({degree_dim: deg}, drop=True)
return res
def _ensure_numeric(data: Dataset | DataArray) -> Dataset | DataArray:
"""Converts all datetime64 variables to float64
Parameters
----------
data : DataArray or Dataset
Variables with possible datetime dtypes.
Returns
-------
DataArray or Dataset
Variables with datetime64 dtypes converted to float64.
"""
from xarray.core.dataset import Dataset
def _cfoffset(x: DataArray) -> Any:
scalar = x.compute().data[0]
if not is_scalar(scalar):
# we do not get a scalar back on dask == 2021.04.1
scalar = scalar.item()
return type(scalar)(1970, 1, 1)
def to_floatable(x: DataArray) -> DataArray:
if x.dtype.kind in "MO":
# datetimes (CFIndexes are object type)
offset = (
np.datetime64("1970-01-01") if x.dtype.kind == "M" else _cfoffset(x)
)
return x.copy(
data=datetime_to_numeric(x.data, offset=offset, datetime_unit="ns"),
)
elif x.dtype.kind == "m":
# timedeltas
return duck_array_ops.astype(x, dtype=float)
return x
if isinstance(data, Dataset):
return data.map(to_floatable)
else:
return to_floatable(data)
def _calc_idxminmax(
*,
array,
func: Callable,
dim: Hashable | None = None,
skipna: bool | None = None,
fill_value: Any = dtypes.NA,
keep_attrs: bool | None = None,
):
"""Apply common operations for idxmin and idxmax."""
# This function doesn't make sense for scalars so don't try
if not array.ndim:
raise ValueError("This function does not apply for scalars")
if dim is not None:
pass # Use the dim if available
elif array.ndim == 1:
# it is okay to guess the dim if there is only 1
dim = array.dims[0]
else:
# The dim is not specified and ambiguous. Don't guess.
raise ValueError("Must supply 'dim' argument for multidimensional arrays")
if dim not in array.dims:
raise KeyError(
f"Dimension {dim!r} not found in array dimensions {array.dims!r}"
)
if dim not in array.coords:
raise KeyError(
f"Dimension {dim!r} is not one of the coordinates {tuple(array.coords.keys())}"
)
# These are dtypes with NaN values argmin and argmax can handle
na_dtypes = "cfO"
if skipna or (skipna is None and array.dtype.kind in na_dtypes):
# Need to skip NaN values since argmin and argmax can't handle them
allna = array.isnull().all(dim)
array = array.where(~allna, 0)
# This will run argmin or argmax.
indx = func(array, dim=dim, axis=None, keep_attrs=keep_attrs, skipna=skipna)
# Handle chunked arrays (e.g. dask).
coord = array[dim]._variable.to_base_variable()
if is_chunked_array(array.data):
chunkmanager = get_chunked_array_type(array.data)
coord_array = chunkmanager.from_array(
array[dim].data, chunks=((array.sizes[dim],),)
)
coord = coord.copy(data=coord_array)
else:
coord = coord.copy(data=to_like_array(array[dim].data, array.data))
res = indx._replace(coord[(indx.variable,)]).rename(dim)
if skipna or (skipna is None and array.dtype.kind in na_dtypes):
# Put the NaN values back in after removing them
res = res.where(~allna, fill_value)
# Copy attributes from argmin/argmax, if any
res.attrs = indx.attrs
return res
|