1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
from __future__ import annotations
from collections.abc import Mapping
from typing import Any, Generic
import numpy as np
from xarray.compat.pdcompat import count_not_none
from xarray.computation.apply_ufunc import apply_ufunc
from xarray.core.options import _get_keep_attrs
from xarray.core.types import T_DataWithCoords
from xarray.core.utils import module_available
def _get_alpha(
com: float | None = None,
span: float | None = None,
halflife: float | None = None,
alpha: float | None = None,
) -> float:
"""
Convert com, span, halflife to alpha.
"""
valid_count = count_not_none(com, span, halflife, alpha)
if valid_count > 1:
raise ValueError("com, span, halflife, and alpha are mutually exclusive")
# Convert to alpha
if com is not None:
if com < 0:
raise ValueError("commust satisfy: com>= 0")
return 1 / (com + 1)
elif span is not None:
if span < 1:
raise ValueError("span must satisfy: span >= 1")
return 2 / (span + 1)
elif halflife is not None:
if halflife <= 0:
raise ValueError("halflife must satisfy: halflife > 0")
return 1 - np.exp(np.log(0.5) / halflife)
elif alpha is not None:
if not 0 < alpha <= 1:
raise ValueError("alpha must satisfy: 0 < alpha <= 1")
return alpha
else:
raise ValueError("Must pass one of comass, span, halflife, or alpha")
class RollingExp(Generic[T_DataWithCoords]):
"""
Exponentially-weighted moving window object.
Similar to EWM in pandas
Parameters
----------
obj : Dataset or DataArray
Object to window.
windows : mapping of hashable to int (or float for alpha type)
A mapping from the name of the dimension to create the rolling
exponential window along (e.g. `time`) to the size of the moving window.
window_type : {"span", "com", "halflife", "alpha"}, default: "span"
The format of the previously supplied window. Each is a simple
numerical transformation of the others. Described in detail:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html
Returns
-------
RollingExp : type of input argument
"""
def __init__(
self,
obj: T_DataWithCoords,
windows: Mapping[Any, int | float],
window_type: str = "span",
min_weight: float = 0.0,
):
if not module_available("numbagg"):
raise ImportError(
"numbagg >= 0.2.1 is required for rolling_exp but currently numbagg is not installed"
)
self.obj: T_DataWithCoords = obj
dim, window = next(iter(windows.items()))
self.dim = dim
self.alpha = _get_alpha(**{window_type: window})
self.min_weight = min_weight
# Don't pass min_weight=0 so we can support older versions of numbagg
kwargs = dict(alpha=self.alpha, axis=-1)
if min_weight > 0:
kwargs["min_weight"] = min_weight
self.kwargs = kwargs
def mean(self, keep_attrs: bool | None = None) -> T_DataWithCoords:
"""
Exponentially weighted moving average.
Parameters
----------
keep_attrs : bool, default: None
If True, the attributes (``attrs``) will be copied from the original
object to the new one. If False, the new object will be returned
without attributes. If None uses the global default.
Examples
--------
>>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x")
>>> da.rolling_exp(x=2, window_type="span").mean()
<xarray.DataArray (x: 5)> Size: 40B
array([1. , 1. , 1.69230769, 1.9 , 1.96694215])
Dimensions without coordinates: x
"""
import numbagg
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
dim_order = self.obj.dims
return apply_ufunc(
numbagg.move_exp_nanmean,
self.obj,
input_core_dims=[[self.dim]],
kwargs=self.kwargs,
output_core_dims=[[self.dim]],
keep_attrs=keep_attrs,
on_missing_core_dim="copy",
dask="parallelized",
).transpose(*dim_order)
def sum(self, keep_attrs: bool | None = None) -> T_DataWithCoords:
"""
Exponentially weighted moving sum.
Parameters
----------
keep_attrs : bool, default: None
If True, the attributes (``attrs``) will be copied from the original
object to the new one. If False, the new object will be returned
without attributes. If None uses the global default.
Examples
--------
>>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x")
>>> da.rolling_exp(x=2, window_type="span").sum()
<xarray.DataArray (x: 5)> Size: 40B
array([1. , 1.33333333, 2.44444444, 2.81481481, 2.9382716 ])
Dimensions without coordinates: x
"""
import numbagg
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
dim_order = self.obj.dims
return apply_ufunc(
numbagg.move_exp_nansum,
self.obj,
input_core_dims=[[self.dim]],
kwargs=self.kwargs,
output_core_dims=[[self.dim]],
keep_attrs=keep_attrs,
on_missing_core_dim="copy",
dask="parallelized",
).transpose(*dim_order)
def std(self) -> T_DataWithCoords:
"""
Exponentially weighted moving standard deviation.
`keep_attrs` is always True for this method. Drop attrs separately to remove attrs.
Examples
--------
>>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x")
>>> da.rolling_exp(x=2, window_type="span").std()
<xarray.DataArray (x: 5)> Size: 40B
array([ nan, 0. , 0.67936622, 0.42966892, 0.25389527])
Dimensions without coordinates: x
"""
import numbagg
dim_order = self.obj.dims
return apply_ufunc(
numbagg.move_exp_nanstd,
self.obj,
input_core_dims=[[self.dim]],
kwargs=self.kwargs,
output_core_dims=[[self.dim]],
keep_attrs=True,
on_missing_core_dim="copy",
dask="parallelized",
).transpose(*dim_order)
def var(self) -> T_DataWithCoords:
"""
Exponentially weighted moving variance.
`keep_attrs` is always True for this method. Drop attrs separately to remove attrs.
Examples
--------
>>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x")
>>> da.rolling_exp(x=2, window_type="span").var()
<xarray.DataArray (x: 5)> Size: 40B
array([ nan, 0. , 0.46153846, 0.18461538, 0.06446281])
Dimensions without coordinates: x
"""
dim_order = self.obj.dims
import numbagg
return apply_ufunc(
numbagg.move_exp_nanvar,
self.obj,
input_core_dims=[[self.dim]],
kwargs=self.kwargs,
output_core_dims=[[self.dim]],
keep_attrs=True,
on_missing_core_dim="copy",
dask="parallelized",
).transpose(*dim_order)
def cov(self, other: T_DataWithCoords) -> T_DataWithCoords:
"""
Exponentially weighted moving covariance.
`keep_attrs` is always True for this method. Drop attrs separately to remove attrs.
Examples
--------
>>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x")
>>> da.rolling_exp(x=2, window_type="span").cov(da**2)
<xarray.DataArray (x: 5)> Size: 40B
array([ nan, 0. , 1.38461538, 0.55384615, 0.19338843])
Dimensions without coordinates: x
"""
dim_order = self.obj.dims
import numbagg
return apply_ufunc(
numbagg.move_exp_nancov,
self.obj,
other,
input_core_dims=[[self.dim], [self.dim]],
kwargs=self.kwargs,
output_core_dims=[[self.dim]],
keep_attrs=True,
on_missing_core_dim="copy",
dask="parallelized",
).transpose(*dim_order)
def corr(self, other: T_DataWithCoords) -> T_DataWithCoords:
"""
Exponentially weighted moving correlation.
`keep_attrs` is always True for this method. Drop attrs separately to remove attrs.
Examples
--------
>>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x")
>>> da.rolling_exp(x=2, window_type="span").corr(da.shift(x=1))
<xarray.DataArray (x: 5)> Size: 40B
array([ nan, nan, nan, 0.4330127 , 0.48038446])
Dimensions without coordinates: x
"""
dim_order = self.obj.dims
import numbagg
return apply_ufunc(
numbagg.move_exp_nancorr,
self.obj,
other,
input_core_dims=[[self.dim], [self.dim]],
kwargs=self.kwargs,
output_core_dims=[[self.dim]],
keep_attrs=True,
on_missing_core_dim="copy",
dask="parallelized",
).transpose(*dim_order)
|