1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
from __future__ import annotations
from collections.abc import Hashable, Iterable, Sequence
from typing import TYPE_CHECKING, Generic, Literal, cast
import numpy as np
from numpy.typing import ArrayLike
from xarray.computation.apply_ufunc import apply_ufunc
from xarray.computation.computation import dot
from xarray.core import duck_array_ops, utils
from xarray.core.types import Dims, T_DataArray, T_Xarray
from xarray.namedarray.utils import is_duck_dask_array
from xarray.structure.alignment import align, broadcast
# Weighted quantile methods are a subset of the numpy supported quantile methods.
QUANTILE_METHODS = Literal[
"linear",
"interpolated_inverted_cdf",
"hazen",
"weibull",
"median_unbiased",
"normal_unbiased",
]
_WEIGHTED_REDUCE_DOCSTRING_TEMPLATE = """
Reduce this {cls}'s data by a weighted ``{fcn}`` along some dimension(s).
Parameters
----------
dim : Hashable or Iterable of Hashable, optional
Dimension(s) over which to apply the weighted ``{fcn}``.
skipna : bool or None, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
keep_attrs : bool or None, optional
If True, the attributes (``attrs``) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
Returns
-------
reduced : {cls}
New {cls} object with weighted ``{fcn}`` applied to its data and
the indicated dimension(s) removed.
Notes
-----
Returns {on_zero} if the ``weights`` sum to 0.0 along the reduced
dimension(s).
"""
_SUM_OF_WEIGHTS_DOCSTRING = """
Calculate the sum of weights, accounting for missing values in the data.
Parameters
----------
dim : str or sequence of str, optional
Dimension(s) over which to sum the weights.
keep_attrs : bool, optional
If True, the attributes (``attrs``) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
Returns
-------
reduced : {cls}
New {cls} object with the sum of the weights over the given dimension.
"""
_WEIGHTED_QUANTILE_DOCSTRING_TEMPLATE = """
Apply a weighted ``quantile`` to this {cls}'s data along some dimension(s).
Weights are interpreted as *sampling weights* (or probability weights) and
describe how a sample is scaled to the whole population [1]_. There are
other possible interpretations for weights, *precision weights* describing the
precision of observations, or *frequency weights* counting the number of identical
observations, however, they are not implemented here.
For compatibility with NumPy's non-weighted ``quantile`` (which is used by
``DataArray.quantile`` and ``Dataset.quantile``), the only interpolation
method supported by this weighted version corresponds to the default "linear"
option of ``numpy.quantile``. This is "Type 7" option, described in Hyndman
and Fan (1996) [2]_. The implementation is largely inspired by a blog post
from A. Akinshin's (2023) [3]_.
Parameters
----------
q : float or sequence of float
Quantile to compute, which must be between 0 and 1 inclusive.
dim : str or sequence of str, optional
Dimension(s) over which to apply the weighted ``quantile``.
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
keep_attrs : bool, optional
If True, the attributes (``attrs``) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
Returns
-------
quantiles : {cls}
New {cls} object with weighted ``quantile`` applied to its data and
the indicated dimension(s) removed.
See Also
--------
numpy.nanquantile, pandas.Series.quantile, Dataset.quantile, DataArray.quantile
Notes
-----
Returns NaN if the ``weights`` sum to 0.0 along the reduced
dimension(s).
References
----------
.. [1] https://notstatschat.rbind.io/2020/08/04/weights-in-statistics/
.. [2] Hyndman, R. J. & Fan, Y. (1996). Sample Quantiles in Statistical Packages.
The American Statistician, 50(4), 361–365. https://doi.org/10.2307/2684934
.. [3] Akinshin, A. (2023) "Weighted quantile estimators" arXiv:2304.07265 [stat.ME]
https://arxiv.org/abs/2304.07265
"""
if TYPE_CHECKING:
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
class Weighted(Generic[T_Xarray]):
"""An object that implements weighted operations.
You should create a Weighted object by using the ``DataArray.weighted`` or
``Dataset.weighted`` methods.
See Also
--------
Dataset.weighted
DataArray.weighted
"""
__slots__ = ("obj", "weights")
def __init__(self, obj: T_Xarray, weights: T_DataArray) -> None:
"""
Create a Weighted object
Parameters
----------
obj : DataArray or Dataset
Object over which the weighted reduction operation is applied.
weights : DataArray
An array of weights associated with the values in the obj.
Each value in the obj contributes to the reduction operation
according to its associated weight.
Notes
-----
``weights`` must be a ``DataArray`` and cannot contain missing values.
Missing values can be replaced by ``weights.fillna(0)``.
"""
from xarray.core.dataarray import DataArray
if not isinstance(weights, DataArray):
raise ValueError("`weights` must be a DataArray")
def _weight_check(w):
# Ref https://github.com/pydata/xarray/pull/4559/files#r515968670
if duck_array_ops.array_any(duck_array_ops.isnull(w)):
raise ValueError(
"`weights` cannot contain missing values. "
"Missing values can be replaced by `weights.fillna(0)`."
)
return w
if is_duck_dask_array(weights.data):
# assign to copy - else the check is not triggered
weights = weights.copy(
data=weights.data.map_blocks(_weight_check, dtype=weights.dtype), # type: ignore[call-arg, arg-type]
deep=False,
)
else:
_weight_check(weights.data)
self.obj: T_Xarray = obj
self.weights: T_DataArray = weights
def _check_dim(self, dim: Dims):
"""raise an error if any dimension is missing"""
dims: list[Hashable]
if isinstance(dim, str) or not isinstance(dim, Iterable):
dims = [dim] if dim else []
else:
dims = list(dim)
all_dims = set(self.obj.dims).union(set(self.weights.dims))
missing_dims = set(dims) - all_dims
if missing_dims:
raise ValueError(
f"Dimensions {tuple(missing_dims)} not found in {self.__class__.__name__} dimensions {tuple(all_dims)}"
)
@staticmethod
def _reduce(
da: T_DataArray,
weights: T_DataArray,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""reduce using dot; equivalent to (da * weights).sum(dim, skipna)
for internal use only
"""
# need to infer dims as we use `dot`
if dim is None:
dim = ...
# need to mask invalid values in da, as `dot` does not implement skipna
if skipna or (skipna is None and da.dtype.kind in "cfO"):
da = da.fillna(0.0)
# `dot` does not broadcast arrays, so this avoids creating a large
# DataArray (if `weights` has additional dimensions)
return dot(da, weights, dim=dim)
def _sum_of_weights(self, da: T_DataArray, dim: Dims = None) -> T_DataArray:
"""Calculate the sum of weights, accounting for missing values"""
# we need to mask data values that are nan; else the weights are wrong
mask = da.notnull()
# bool -> int, because ``xr.dot([True, True], [True, True])`` -> True
# (and not 2); GH4074
if self.weights.dtype == bool:
sum_of_weights = self._reduce(
mask,
duck_array_ops.astype(self.weights, dtype=int),
dim=dim,
skipna=False,
)
else:
sum_of_weights = self._reduce(mask, self.weights, dim=dim, skipna=False)
# 0-weights are not valid
valid_weights = sum_of_weights != 0.0
return sum_of_weights.where(valid_weights)
def _sum_of_squares(
self,
da: T_DataArray,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""Reduce a DataArray by a weighted ``sum_of_squares`` along some dimension(s)."""
demeaned = da - da.weighted(self.weights).mean(dim=dim)
# TODO: unsure why mypy complains about these being DataArray return types
# rather than T_DataArray?
return self._reduce((demeaned**2), self.weights, dim=dim, skipna=skipna) # type: ignore[return-value]
def _weighted_sum(
self,
da: T_DataArray,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""Reduce a DataArray by a weighted ``sum`` along some dimension(s)."""
return self._reduce(da, self.weights, dim=dim, skipna=skipna) # type: ignore[return-value]
def _weighted_mean(
self,
da: T_DataArray,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""Reduce a DataArray by a weighted ``mean`` along some dimension(s)."""
weighted_sum = self._weighted_sum(da, dim=dim, skipna=skipna)
sum_of_weights = self._sum_of_weights(da, dim=dim)
return weighted_sum / sum_of_weights
def _weighted_var(
self,
da: T_DataArray,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""Reduce a DataArray by a weighted ``var`` along some dimension(s)."""
sum_of_squares = self._sum_of_squares(da, dim=dim, skipna=skipna)
sum_of_weights = self._sum_of_weights(da, dim=dim)
return sum_of_squares / sum_of_weights
def _weighted_std(
self,
da: T_DataArray,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""Reduce a DataArray by a weighted ``std`` along some dimension(s)."""
return cast("T_DataArray", np.sqrt(self._weighted_var(da, dim, skipna)))
def _weighted_quantile(
self,
da: T_DataArray,
q: ArrayLike,
dim: Dims = None,
skipna: bool | None = None,
) -> T_DataArray:
"""Apply a weighted ``quantile`` to a DataArray along some dimension(s)."""
def _get_h(n: float, q: np.ndarray, method: QUANTILE_METHODS) -> np.ndarray:
"""Return the interpolation parameter."""
# Note that options are not yet exposed in the public API.
h: np.ndarray
if method == "linear":
h = (n - 1) * q + 1
elif method == "interpolated_inverted_cdf":
h = n * q
elif method == "hazen":
h = n * q + 0.5
elif method == "weibull":
h = (n + 1) * q
elif method == "median_unbiased":
h = (n + 1 / 3) * q + 1 / 3
elif method == "normal_unbiased":
h = (n + 1 / 4) * q + 3 / 8
else:
raise ValueError(f"Invalid method: {method}.")
return h.clip(1, n)
def _weighted_quantile_1d(
data: np.ndarray,
weights: np.ndarray,
q: np.ndarray,
skipna: bool,
method: QUANTILE_METHODS = "linear",
) -> np.ndarray:
# This algorithm has been adapted from:
# https://aakinshin.net/posts/weighted-quantiles/#reference-implementation
is_nan = np.isnan(data)
if skipna:
# Remove nans from data and weights
not_nan = ~is_nan
data = data[not_nan]
weights = weights[not_nan]
elif is_nan.any():
# Return nan if data contains any nan
return np.full(q.size, np.nan)
# Filter out data (and weights) associated with zero weights, which also flattens them
nonzero_weights = weights != 0
data = data[nonzero_weights]
weights = weights[nonzero_weights]
n = data.size
if n == 0:
# Possibly empty after nan or zero weight filtering above
return np.full(q.size, np.nan)
# Kish's effective sample size
nw = weights.sum() ** 2 / (weights**2).sum()
# Sort data and weights
sorter = np.argsort(data)
data = data[sorter]
weights = weights[sorter]
# Normalize and sum the weights
weights = weights / weights.sum()
weights_cum = np.append(0, weights.cumsum())
# Vectorize the computation by transposing q with respect to weights
q = np.atleast_2d(q).T
# Get the interpolation parameter for each q
h = _get_h(nw, q, method)
# Find the samples contributing to the quantile computation (at *positions* between (h-1)/nw and h/nw)
u = np.maximum((h - 1) / nw, np.minimum(h / nw, weights_cum))
# Compute their relative weight
v = u * nw - h + 1
w = np.diff(v)
# Apply the weights
return (data * w).sum(axis=1)
if skipna is None and da.dtype.kind in "cfO":
skipna = True
q = np.atleast_1d(np.asarray(q, dtype=np.float64))
if q.ndim > 1:
raise ValueError("q must be a scalar or 1d")
if np.any((q < 0) | (q > 1)):
raise ValueError("q values must be between 0 and 1")
if dim is None:
dim = da.dims
if utils.is_scalar(dim):
dim = [dim]
# To satisfy mypy
dim = cast(Sequence, dim)
# need to align *and* broadcast
# - `_weighted_quantile_1d` requires arrays with the same shape
# - broadcast does an outer join, which can introduce NaN to weights
# - therefore we first need to do align(..., join="inner")
# TODO: use broadcast(..., join="inner") once available
# see https://github.com/pydata/xarray/issues/6304
da, weights = align(da, self.weights, join="inner")
da, weights = broadcast(da, weights)
result = apply_ufunc(
_weighted_quantile_1d,
da,
weights,
input_core_dims=[dim, dim],
output_core_dims=[["quantile"]],
output_dtypes=[np.float64],
dask_gufunc_kwargs=dict(output_sizes={"quantile": len(q)}),
dask="parallelized",
vectorize=True,
kwargs={"q": q, "skipna": skipna},
)
result = result.transpose("quantile", ...)
result = result.assign_coords(quantile=q).squeeze()
return result
def _implementation(self, func, dim, **kwargs):
raise NotImplementedError("Use `Dataset.weighted` or `DataArray.weighted`")
def sum_of_weights(
self,
dim: Dims = None,
*,
keep_attrs: bool | None = None,
) -> T_Xarray:
return self._implementation(
self._sum_of_weights, dim=dim, keep_attrs=keep_attrs
)
def sum_of_squares(
self,
dim: Dims = None,
*,
skipna: bool | None = None,
keep_attrs: bool | None = None,
) -> T_Xarray:
return self._implementation(
self._sum_of_squares, dim=dim, skipna=skipna, keep_attrs=keep_attrs
)
def sum(
self,
dim: Dims = None,
*,
skipna: bool | None = None,
keep_attrs: bool | None = None,
) -> T_Xarray:
return self._implementation(
self._weighted_sum, dim=dim, skipna=skipna, keep_attrs=keep_attrs
)
def mean(
self,
dim: Dims = None,
*,
skipna: bool | None = None,
keep_attrs: bool | None = None,
) -> T_Xarray:
return self._implementation(
self._weighted_mean, dim=dim, skipna=skipna, keep_attrs=keep_attrs
)
def var(
self,
dim: Dims = None,
*,
skipna: bool | None = None,
keep_attrs: bool | None = None,
) -> T_Xarray:
return self._implementation(
self._weighted_var, dim=dim, skipna=skipna, keep_attrs=keep_attrs
)
def std(
self,
dim: Dims = None,
*,
skipna: bool | None = None,
keep_attrs: bool | None = None,
) -> T_Xarray:
return self._implementation(
self._weighted_std, dim=dim, skipna=skipna, keep_attrs=keep_attrs
)
def quantile(
self,
q: ArrayLike,
*,
dim: Dims = None,
keep_attrs: bool | None = None,
skipna: bool = True,
) -> T_Xarray:
return self._implementation(
self._weighted_quantile, q=q, dim=dim, skipna=skipna, keep_attrs=keep_attrs
)
def __repr__(self) -> str:
"""provide a nice str repr of our Weighted object"""
klass = self.__class__.__name__
weight_dims = ", ".join(map(str, self.weights.dims))
return f"{klass} with weights along dimensions: {weight_dims}"
class DataArrayWeighted(Weighted["DataArray"]):
def _implementation(self, func, dim, **kwargs) -> DataArray:
self._check_dim(dim)
dataset = self.obj._to_temp_dataset()
dataset = dataset.map(func, dim=dim, **kwargs)
return self.obj._from_temp_dataset(dataset)
class DatasetWeighted(Weighted["Dataset"]):
def _implementation(self, func, dim, **kwargs) -> Dataset:
self._check_dim(dim)
return self.obj.map(func, dim=dim, **kwargs)
def _inject_docstring(cls, cls_name):
cls.sum_of_weights.__doc__ = _SUM_OF_WEIGHTS_DOCSTRING.format(cls=cls_name)
cls.sum.__doc__ = _WEIGHTED_REDUCE_DOCSTRING_TEMPLATE.format(
cls=cls_name, fcn="sum", on_zero="0"
)
cls.mean.__doc__ = _WEIGHTED_REDUCE_DOCSTRING_TEMPLATE.format(
cls=cls_name, fcn="mean", on_zero="NaN"
)
cls.sum_of_squares.__doc__ = _WEIGHTED_REDUCE_DOCSTRING_TEMPLATE.format(
cls=cls_name, fcn="sum_of_squares", on_zero="0"
)
cls.var.__doc__ = _WEIGHTED_REDUCE_DOCSTRING_TEMPLATE.format(
cls=cls_name, fcn="var", on_zero="NaN"
)
cls.std.__doc__ = _WEIGHTED_REDUCE_DOCSTRING_TEMPLATE.format(
cls=cls_name, fcn="std", on_zero="NaN"
)
cls.quantile.__doc__ = _WEIGHTED_QUANTILE_DOCSTRING_TEMPLATE.format(cls=cls_name)
_inject_docstring(DataArrayWeighted, "DataArray")
_inject_docstring(DatasetWeighted, "Dataset")
|