1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Generic
import numpy as np
import pandas as pd
from xarray.coding.calendar_ops import _decimal_year
from xarray.coding.times import infer_calendar_name
from xarray.core import duck_array_ops
from xarray.core.common import (
_contains_datetime_like_objects,
full_like,
is_np_datetime_like,
is_np_timedelta_like,
)
from xarray.core.types import T_DataArray
from xarray.core.variable import IndexVariable, Variable
from xarray.namedarray.utils import is_duck_dask_array
if TYPE_CHECKING:
from typing import Self
from numpy.typing import DTypeLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import CFCalendar
def _season_from_months(months):
"""Compute season (DJF, MAM, JJA, SON) from month ordinal"""
# TODO: Move "season" accessor upstream into pandas
seasons = np.array(["DJF", "MAM", "JJA", "SON", "nan"])
months = np.asarray(months)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", message="invalid value encountered in floor_divide"
)
warnings.filterwarnings(
"ignore", message="invalid value encountered in remainder"
)
idx = (months // 3) % 4
idx[np.isnan(idx)] = 4
return seasons[idx.astype(int)]
def _access_through_cftimeindex(values, name):
"""Coerce an array of datetime-like values to a CFTimeIndex
and access requested datetime component
"""
from xarray.coding.cftimeindex import CFTimeIndex
if not isinstance(values, CFTimeIndex):
values_as_cftimeindex = CFTimeIndex(duck_array_ops.ravel(values))
else:
values_as_cftimeindex = values
if name == "season":
months = values_as_cftimeindex.month
field_values = _season_from_months(months)
elif name == "date":
raise AttributeError(
"'CFTimeIndex' object has no attribute `date`. Consider using the floor method "
"instead, for instance: `.time.dt.floor('D')`."
)
else:
field_values = getattr(values_as_cftimeindex, name)
return field_values.reshape(values.shape)
def _access_through_series(values, name):
"""Coerce an array of datetime-like values to a pandas Series and
access requested datetime component
"""
values_as_series = pd.Series(duck_array_ops.ravel(values), copy=False)
if name == "season":
months = values_as_series.dt.month.values
field_values = _season_from_months(months)
elif name == "total_seconds":
field_values = values_as_series.dt.total_seconds().values
elif name == "isocalendar":
# special NaT-handling can be removed when
# https://github.com/pandas-dev/pandas/issues/54657 is resolved
field_values = values_as_series.dt.isocalendar()
# test for <NA> and apply needed dtype
hasna = any(field_values.year.isnull())
if hasna:
field_values = np.dstack(
[
getattr(field_values, name).astype(np.float64, copy=False).values
for name in ["year", "week", "day"]
]
)
else:
field_values = np.array(field_values, dtype=np.int64)
# isocalendar returns iso- year, week, and weekday -> reshape
return field_values.T.reshape(3, *values.shape)
else:
field_values = getattr(values_as_series.dt, name).values
return field_values.reshape(values.shape)
def _get_date_field(values, name, dtype):
"""Indirectly access pandas' libts.get_date_field by wrapping data
as a Series and calling through `.dt` attribute.
Parameters
----------
values : np.ndarray or dask.array-like
Array-like container of datetime-like values
name : str
Name of datetime field to access
dtype : dtype-like
dtype for output date field values
Returns
-------
datetime_fields : same type as values
Array-like of datetime fields accessed for each element in values
"""
if is_np_datetime_like(values.dtype):
access_method = _access_through_series
else:
access_method = _access_through_cftimeindex
if is_duck_dask_array(values):
from dask.array import map_blocks
new_axis = chunks = None
# isocalendar adds an axis
if name == "isocalendar":
chunks = (3,) + values.chunksize
new_axis = 0
return map_blocks(
access_method, values, name, dtype=dtype, new_axis=new_axis, chunks=chunks
)
else:
out = access_method(values, name)
# cast only for integer types to keep float64 in presence of NaT
# see https://github.com/pydata/xarray/issues/7928
if np.issubdtype(out.dtype, np.integer):
out = out.astype(dtype, copy=False)
return out
def _round_through_series_or_index(values, name, freq):
"""Coerce an array of datetime-like values to a pandas Series or xarray
CFTimeIndex and apply requested rounding
"""
from xarray.coding.cftimeindex import CFTimeIndex
if is_np_datetime_like(values.dtype):
values_as_series = pd.Series(duck_array_ops.ravel(values), copy=False)
method = getattr(values_as_series.dt, name)
else:
values_as_cftimeindex = CFTimeIndex(duck_array_ops.ravel(values))
method = getattr(values_as_cftimeindex, name)
field_values = method(freq=freq).values
return field_values.reshape(values.shape)
def _round_field(values, name, freq):
"""Indirectly access rounding functions by wrapping data
as a Series or CFTimeIndex
Parameters
----------
values : np.ndarray or dask.array-like
Array-like container of datetime-like values
name : {"ceil", "floor", "round"}
Name of rounding function
freq : str
a freq string indicating the rounding resolution
Returns
-------
rounded timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
if is_duck_dask_array(values):
from dask.array import map_blocks
dtype = np.datetime64 if is_np_datetime_like(values.dtype) else np.dtype("O")
return map_blocks(
_round_through_series_or_index, values, name, freq=freq, dtype=dtype
)
else:
return _round_through_series_or_index(values, name, freq)
def _strftime_through_cftimeindex(values, date_format: str):
"""Coerce an array of cftime-like values to a CFTimeIndex
and access requested datetime component
"""
from xarray.coding.cftimeindex import CFTimeIndex
values_as_cftimeindex = CFTimeIndex(duck_array_ops.ravel(values))
field_values = values_as_cftimeindex.strftime(date_format)
return field_values.to_numpy().reshape(values.shape)
def _strftime_through_series(values, date_format: str):
"""Coerce an array of datetime-like values to a pandas Series and
apply string formatting
"""
values_as_series = pd.Series(duck_array_ops.ravel(values), copy=False)
strs = values_as_series.dt.strftime(date_format)
return strs.to_numpy().reshape(values.shape)
def _strftime(values, date_format):
if is_np_datetime_like(values.dtype):
access_method = _strftime_through_series
else:
access_method = _strftime_through_cftimeindex
if is_duck_dask_array(values):
from dask.array import map_blocks
return map_blocks(access_method, values, date_format)
else:
return access_method(values, date_format)
def _index_or_data(obj):
if isinstance(obj.variable, IndexVariable):
return obj.to_index()
else:
return obj.data
class TimeAccessor(Generic[T_DataArray]):
__slots__ = ("_obj",)
def __init__(self, obj: T_DataArray) -> None:
self._obj = obj
def _date_field(self, name: str, dtype: DTypeLike) -> T_DataArray:
if dtype is None:
dtype = self._obj.dtype
result = _get_date_field(_index_or_data(self._obj), name, dtype)
newvar = Variable(
dims=self._obj.dims,
attrs=self._obj.attrs,
encoding=self._obj.encoding,
data=result,
)
return self._obj._replace(newvar, name=name)
def _tslib_round_accessor(self, name: str, freq: str) -> T_DataArray:
result = _round_field(_index_or_data(self._obj), name, freq)
newvar = Variable(
dims=self._obj.dims,
attrs=self._obj.attrs,
encoding=self._obj.encoding,
data=result,
)
return self._obj._replace(newvar, name=name)
def floor(self, freq: str) -> T_DataArray:
"""
Round timestamps downward to specified frequency resolution.
Parameters
----------
freq : str
a freq string indicating the rounding resolution e.g. "D" for daily resolution
Returns
-------
floor-ed timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
return self._tslib_round_accessor("floor", freq)
def ceil(self, freq: str) -> T_DataArray:
"""
Round timestamps upward to specified frequency resolution.
Parameters
----------
freq : str
a freq string indicating the rounding resolution e.g. "D" for daily resolution
Returns
-------
ceil-ed timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
return self._tslib_round_accessor("ceil", freq)
def round(self, freq: str) -> T_DataArray:
"""
Round timestamps to specified frequency resolution.
Parameters
----------
freq : str
a freq string indicating the rounding resolution e.g. "D" for daily resolution
Returns
-------
rounded timestamps : same type as values
Array-like of datetime fields accessed for each element in values
"""
return self._tslib_round_accessor("round", freq)
class DatetimeAccessor(TimeAccessor[T_DataArray]):
"""Access datetime fields for DataArrays with datetime-like dtypes.
Fields can be accessed through the `.dt` attribute
for applicable DataArrays.
Examples
---------
>>> dates = pd.date_range(start="2000/01/01", freq="D", periods=10)
>>> ts = xr.DataArray(dates, dims=("time"))
>>> ts
<xarray.DataArray (time: 10)> Size: 80B
array(['2000-01-01T00:00:00.000000000', '2000-01-02T00:00:00.000000000',
'2000-01-03T00:00:00.000000000', '2000-01-04T00:00:00.000000000',
'2000-01-05T00:00:00.000000000', '2000-01-06T00:00:00.000000000',
'2000-01-07T00:00:00.000000000', '2000-01-08T00:00:00.000000000',
'2000-01-09T00:00:00.000000000', '2000-01-10T00:00:00.000000000'],
dtype='datetime64[ns]')
Coordinates:
* time (time) datetime64[ns] 80B 2000-01-01 2000-01-02 ... 2000-01-10
>>> ts.dt # doctest: +ELLIPSIS
<xarray.core.accessor_dt.DatetimeAccessor object at 0x...>
>>> ts.dt.dayofyear
<xarray.DataArray 'dayofyear' (time: 10)> Size: 80B
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
Coordinates:
* time (time) datetime64[ns] 80B 2000-01-01 2000-01-02 ... 2000-01-10
>>> ts.dt.quarter
<xarray.DataArray 'quarter' (time: 10)> Size: 80B
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
Coordinates:
* time (time) datetime64[ns] 80B 2000-01-01 2000-01-02 ... 2000-01-10
"""
def strftime(self, date_format: str) -> T_DataArray:
"""
Return an array of formatted strings specified by date_format, which
supports the same string format as the python standard library. Details
of the string format can be found in `python string format doc
<https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior>`__
Parameters
----------
date_format : str
date format string (e.g. "%Y-%m-%d")
Returns
-------
formatted strings : same type as values
Array-like of strings formatted for each element in values
Examples
--------
>>> import datetime
>>> rng = xr.Dataset({"time": datetime.datetime(2000, 1, 1)})
>>> rng["time"].dt.strftime("%B %d, %Y, %r")
<xarray.DataArray 'strftime' ()> Size: 8B
array('January 01, 2000, 12:00:00 AM', dtype=object)
"""
obj_type = type(self._obj)
result = _strftime(self._obj.data, date_format)
return obj_type(
result, name="strftime", coords=self._obj.coords, dims=self._obj.dims
)
def isocalendar(self) -> Dataset:
"""Dataset containing ISO year, week number, and weekday.
Notes
-----
The iso year and weekday differ from the nominal year and weekday.
"""
from xarray.core.dataset import Dataset
if not is_np_datetime_like(self._obj.data.dtype):
raise AttributeError("'CFTimeIndex' object has no attribute 'isocalendar'")
values = _get_date_field(self._obj.data, "isocalendar", np.int64)
obj_type = type(self._obj)
data_vars = {}
for i, name in enumerate(["year", "week", "weekday"]):
data_vars[name] = obj_type(
values[i], name=name, coords=self._obj.coords, dims=self._obj.dims
)
return Dataset(data_vars)
@property
def year(self) -> T_DataArray:
"""The year of the datetime"""
return self._date_field("year", np.int64)
@property
def month(self) -> T_DataArray:
"""The month as January=1, December=12"""
return self._date_field("month", np.int64)
@property
def day(self) -> T_DataArray:
"""The days of the datetime"""
return self._date_field("day", np.int64)
@property
def hour(self) -> T_DataArray:
"""The hours of the datetime"""
return self._date_field("hour", np.int64)
@property
def minute(self) -> T_DataArray:
"""The minutes of the datetime"""
return self._date_field("minute", np.int64)
@property
def second(self) -> T_DataArray:
"""The seconds of the datetime"""
return self._date_field("second", np.int64)
@property
def microsecond(self) -> T_DataArray:
"""The microseconds of the datetime"""
return self._date_field("microsecond", np.int64)
@property
def nanosecond(self) -> T_DataArray:
"""The nanoseconds of the datetime"""
return self._date_field("nanosecond", np.int64)
@property
def weekofyear(self) -> DataArray:
"The week ordinal of the year"
warnings.warn(
"dt.weekofyear and dt.week have been deprecated. Please use "
"dt.isocalendar().week instead.",
FutureWarning,
stacklevel=2,
)
weekofyear = self.isocalendar().week
return weekofyear
week = weekofyear
@property
def dayofweek(self) -> T_DataArray:
"""The day of the week with Monday=0, Sunday=6"""
return self._date_field("dayofweek", np.int64)
weekday = dayofweek
@property
def dayofyear(self) -> T_DataArray:
"""The ordinal day of the year"""
return self._date_field("dayofyear", np.int64)
@property
def quarter(self) -> T_DataArray:
"""The quarter of the date"""
return self._date_field("quarter", np.int64)
@property
def days_in_month(self) -> T_DataArray:
"""The number of days in the month"""
return self._date_field("days_in_month", np.int64)
daysinmonth = days_in_month
@property
def season(self) -> T_DataArray:
"""Season of the year"""
return self._date_field("season", object)
@property
def time(self) -> T_DataArray:
"""Timestamps corresponding to datetimes"""
return self._date_field("time", object)
@property
def date(self) -> T_DataArray:
"""Date corresponding to datetimes"""
return self._date_field("date", object)
@property
def is_month_start(self) -> T_DataArray:
"""Indicate whether the date is the first day of the month"""
return self._date_field("is_month_start", bool)
@property
def is_month_end(self) -> T_DataArray:
"""Indicate whether the date is the last day of the month"""
return self._date_field("is_month_end", bool)
@property
def is_quarter_start(self) -> T_DataArray:
"""Indicate whether the date is the first day of a quarter"""
return self._date_field("is_quarter_start", bool)
@property
def is_quarter_end(self) -> T_DataArray:
"""Indicate whether the date is the last day of a quarter"""
return self._date_field("is_quarter_end", bool)
@property
def is_year_start(self) -> T_DataArray:
"""Indicate whether the date is the first day of a year"""
return self._date_field("is_year_start", bool)
@property
def is_year_end(self) -> T_DataArray:
"""Indicate whether the date is the last day of the year"""
return self._date_field("is_year_end", bool)
@property
def is_leap_year(self) -> T_DataArray:
"""Indicate if the date belongs to a leap year"""
return self._date_field("is_leap_year", bool)
@property
def calendar(self) -> CFCalendar:
"""The name of the calendar of the dates.
Only relevant for arrays of :py:class:`cftime.datetime` objects,
returns "proleptic_gregorian" for arrays of :py:class:`numpy.datetime64` values.
"""
return infer_calendar_name(self._obj.data)
@property
def days_in_year(self) -> T_DataArray:
"""Each datetime as the year plus the fraction of the year elapsed."""
if self.calendar == "360_day":
result = full_like(self.year, 360)
else:
result = self.is_leap_year.astype(int) + 365
newvar = Variable(
dims=self._obj.dims,
attrs=self._obj.attrs,
encoding=self._obj.encoding,
data=result,
)
return self._obj._replace(newvar, name="days_in_year")
@property
def decimal_year(self) -> T_DataArray:
"""Convert the dates as a fractional year."""
result = _decimal_year(self._obj)
newvar = Variable(
dims=self._obj.dims,
attrs=self._obj.attrs,
encoding=self._obj.encoding,
data=result,
)
return self._obj._replace(newvar, name="decimal_year")
class TimedeltaAccessor(TimeAccessor[T_DataArray]):
"""Access Timedelta fields for DataArrays with Timedelta-like dtypes.
Fields can be accessed through the `.dt` attribute for applicable DataArrays.
Examples
--------
>>> dates = pd.timedelta_range(start="1 day", freq="6h", periods=20)
>>> ts = xr.DataArray(dates, dims=("time"))
>>> ts
<xarray.DataArray (time: 20)> Size: 160B
array([ 86400000000000, 108000000000000, 129600000000000, 151200000000000,
172800000000000, 194400000000000, 216000000000000, 237600000000000,
259200000000000, 280800000000000, 302400000000000, 324000000000000,
345600000000000, 367200000000000, 388800000000000, 410400000000000,
432000000000000, 453600000000000, 475200000000000, 496800000000000],
dtype='timedelta64[ns]')
Coordinates:
* time (time) timedelta64[ns] 160B 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt # doctest: +ELLIPSIS
<xarray.core.accessor_dt.TimedeltaAccessor object at 0x...>
>>> ts.dt.days
<xarray.DataArray 'days' (time: 20)> Size: 160B
array([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5])
Coordinates:
* time (time) timedelta64[ns] 160B 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt.microseconds
<xarray.DataArray 'microseconds' (time: 20)> Size: 160B
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Coordinates:
* time (time) timedelta64[ns] 160B 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt.seconds
<xarray.DataArray 'seconds' (time: 20)> Size: 160B
array([ 0, 21600, 43200, 64800, 0, 21600, 43200, 64800, 0,
21600, 43200, 64800, 0, 21600, 43200, 64800, 0, 21600,
43200, 64800])
Coordinates:
* time (time) timedelta64[ns] 160B 1 days 00:00:00 ... 5 days 18:00:00
>>> ts.dt.total_seconds()
<xarray.DataArray 'total_seconds' (time: 20)> Size: 160B
array([ 86400., 108000., 129600., 151200., 172800., 194400., 216000.,
237600., 259200., 280800., 302400., 324000., 345600., 367200.,
388800., 410400., 432000., 453600., 475200., 496800.])
Coordinates:
* time (time) timedelta64[ns] 160B 1 days 00:00:00 ... 5 days 18:00:00
"""
@property
def days(self) -> T_DataArray:
"""Number of days for each element"""
return self._date_field("days", np.int64)
@property
def seconds(self) -> T_DataArray:
"""Number of seconds (>= 0 and less than 1 day) for each element"""
return self._date_field("seconds", np.int64)
@property
def microseconds(self) -> T_DataArray:
"""Number of microseconds (>= 0 and less than 1 second) for each element"""
return self._date_field("microseconds", np.int64)
@property
def nanoseconds(self) -> T_DataArray:
"""Number of nanoseconds (>= 0 and less than 1 microsecond) for each element"""
return self._date_field("nanoseconds", np.int64)
# Not defined as a property in order to match the Pandas API
def total_seconds(self) -> T_DataArray:
"""Total duration of each element expressed in seconds."""
return self._date_field("total_seconds", np.float64)
class CombinedDatetimelikeAccessor(
DatetimeAccessor[T_DataArray], TimedeltaAccessor[T_DataArray]
):
def __new__(cls, obj: T_DataArray) -> Self:
# CombinedDatetimelikeAccessor isn't really instantiated. Instead
# we need to choose which parent (datetime or timedelta) is
# appropriate. Since we're checking the dtypes anyway, we'll just
# do all the validation here.
if not _contains_datetime_like_objects(obj.variable):
# We use an AttributeError here so that `obj.dt` raises an error that
# `getattr` expects; https://github.com/pydata/xarray/issues/8718. It's a
# bit unusual in a `__new__`, but that's the only case where we use this
# class.
raise AttributeError(
"'.dt' accessor only available for "
"DataArray with datetime64 timedelta64 dtype or "
"for arrays containing cftime datetime "
"objects."
)
if is_np_timedelta_like(obj.dtype):
return TimedeltaAccessor(obj) # type: ignore[return-value]
else:
return DatetimeAccessor(obj) # type: ignore[return-value]
|