1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
|
from __future__ import annotations
import datetime
import warnings
from collections.abc import Callable, Hashable, Iterable, Iterator, Mapping
from contextlib import suppress
from html import escape
from textwrap import dedent
from typing import TYPE_CHECKING, Any, Concatenate, ParamSpec, TypeVar, Union, overload
import numpy as np
import pandas as pd
from xarray.core import dtypes, duck_array_ops, formatting, formatting_html
from xarray.core.indexing import BasicIndexer, ExplicitlyIndexed
from xarray.core.options import OPTIONS, _get_keep_attrs
from xarray.core.types import ResampleCompatible
from xarray.core.utils import (
Frozen,
either_dict_or_kwargs,
is_scalar,
)
from xarray.namedarray.core import _raise_if_any_duplicate_dimensions
from xarray.namedarray.parallelcompat import get_chunked_array_type, guess_chunkmanager
from xarray.namedarray.pycompat import is_chunked_array
try:
import cftime
except ImportError:
cftime = None
# Used as a sentinel value to indicate a all dimensions
ALL_DIMS = ...
if TYPE_CHECKING:
from numpy.typing import DTypeLike
from xarray.computation.rolling_exp import RollingExp
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.indexes import Index
from xarray.core.resample import Resample
from xarray.core.types import (
DatetimeLike,
DTypeLikeSave,
ScalarOrArray,
Self,
SideOptions,
T_Chunks,
T_DataWithCoords,
T_Variable,
)
from xarray.core.variable import Variable
from xarray.groupers import Resampler
DTypeMaybeMapping = Union[DTypeLikeSave, Mapping[Any, DTypeLikeSave]]
T_Resample = TypeVar("T_Resample", bound="Resample")
C = TypeVar("C")
T = TypeVar("T")
P = ParamSpec("P")
class ImplementsArrayReduce:
__slots__ = ()
@classmethod
def _reduce_method(cls, func: Callable, include_skipna: bool, numeric_only: bool):
if include_skipna:
def wrapped_func(self, dim=None, axis=None, skipna=None, **kwargs):
return self.reduce(
func=func, dim=dim, axis=axis, skipna=skipna, **kwargs
)
else:
def wrapped_func(self, dim=None, axis=None, **kwargs): # type: ignore[misc]
return self.reduce(func=func, dim=dim, axis=axis, **kwargs)
return wrapped_func
_reduce_extra_args_docstring = dedent(
"""\
dim : str or sequence of str, optional
Dimension(s) over which to apply `{name}`.
axis : int or sequence of int, optional
Axis(es) over which to apply `{name}`. Only one of the 'dim'
and 'axis' arguments can be supplied. If neither are supplied, then
`{name}` is calculated over axes."""
)
_cum_extra_args_docstring = dedent(
"""\
dim : str or sequence of str, optional
Dimension over which to apply `{name}`.
axis : int or sequence of int, optional
Axis over which to apply `{name}`. Only one of the 'dim'
and 'axis' arguments can be supplied."""
)
class ImplementsDatasetReduce:
__slots__ = ()
@classmethod
def _reduce_method(cls, func: Callable, include_skipna: bool, numeric_only: bool):
if include_skipna:
def wrapped_func(self, dim=None, skipna=None, **kwargs):
return self.reduce(
func=func,
dim=dim,
skipna=skipna,
numeric_only=numeric_only,
**kwargs,
)
else:
def wrapped_func(self, dim=None, **kwargs): # type: ignore[misc]
return self.reduce(
func=func, dim=dim, numeric_only=numeric_only, **kwargs
)
return wrapped_func
_reduce_extra_args_docstring = dedent(
"""
dim : str or sequence of str, optional
Dimension(s) over which to apply `{name}`. By default `{name}` is
applied over all dimensions.
"""
).strip()
_cum_extra_args_docstring = dedent(
"""
dim : str or sequence of str, optional
Dimension over which to apply `{name}`.
axis : int or sequence of int, optional
Axis over which to apply `{name}`. Only one of the 'dim'
and 'axis' arguments can be supplied.
"""
).strip()
class AbstractArray:
"""Shared base class for DataArray and Variable."""
__slots__ = ()
def __bool__(self: Any) -> bool:
return bool(self.values)
def __float__(self: Any) -> float:
return float(self.values)
def __int__(self: Any) -> int:
return int(self.values)
def __complex__(self: Any) -> complex:
return complex(self.values)
def __array__(
self: Any, dtype: np.typing.DTypeLike = None, /, *, copy: bool | None = None
) -> np.ndarray:
if not copy:
if np.lib.NumpyVersion(np.__version__) >= "2.0.0":
copy = None
elif np.lib.NumpyVersion(np.__version__) <= "1.28.0":
copy = False
else:
# 2.0.0 dev versions, handle cases where copy may or may not exist
try:
np.array([1]).__array__(copy=None)
copy = None
except TypeError:
copy = False
return np.array(self.values, dtype=dtype, copy=copy)
def __repr__(self) -> str:
return formatting.array_repr(self)
def _repr_html_(self):
if OPTIONS["display_style"] == "text":
return f"<pre>{escape(repr(self))}</pre>"
return formatting_html.array_repr(self)
def __format__(self: Any, format_spec: str = "") -> str:
if format_spec != "":
if self.shape == ():
# Scalar values might be ok use format_spec with instead of repr:
return self.data.__format__(format_spec)
else:
# TODO: If it's an array the formatting.array_repr(self) should
# take format_spec as an input. If we'd only use self.data we
# lose all the information about coords for example which is
# important information:
raise NotImplementedError(
"Using format_spec is only supported"
f" when shape is (). Got shape = {self.shape}."
)
else:
return self.__repr__()
def _iter(self: Any) -> Iterator[Any]:
for n in range(len(self)):
yield self[n]
def __iter__(self: Any) -> Iterator[Any]:
if self.ndim == 0:
raise TypeError("iteration over a 0-d array")
return self._iter()
@overload
def get_axis_num(self, dim: str) -> int: ... # type: ignore [overload-overlap]
@overload
def get_axis_num(self, dim: Iterable[Hashable]) -> tuple[int, ...]: ...
@overload
def get_axis_num(self, dim: Hashable) -> int: ...
def get_axis_num(self, dim: Hashable | Iterable[Hashable]) -> int | tuple[int, ...]:
"""Return axis number(s) corresponding to dimension(s) in this array.
Parameters
----------
dim : str or iterable of str
Dimension name(s) for which to lookup axes.
Returns
-------
int or tuple of int
Axis number or numbers corresponding to the given dimensions.
"""
if not isinstance(dim, str) and isinstance(dim, Iterable):
return tuple(self._get_axis_num(d) for d in dim)
else:
return self._get_axis_num(dim)
def _get_axis_num(self: Any, dim: Hashable) -> int:
_raise_if_any_duplicate_dimensions(self.dims)
try:
return self.dims.index(dim)
except ValueError as err:
raise ValueError(
f"{dim!r} not found in array dimensions {self.dims!r}"
) from err
@property
def sizes(self: Any) -> Mapping[Hashable, int]:
"""Ordered mapping from dimension names to lengths.
Immutable.
See Also
--------
Dataset.sizes
"""
return Frozen(dict(zip(self.dims, self.shape, strict=True)))
class AttrAccessMixin:
"""Mixin class that allows getting keys with attribute access"""
__slots__ = ()
def __init_subclass__(cls, **kwargs):
"""Verify that all subclasses explicitly define ``__slots__``. If they don't,
raise error in the core xarray module and a FutureWarning in third-party
extensions.
"""
if not hasattr(object.__new__(cls), "__dict__"):
pass
elif cls.__module__.startswith("xarray."):
raise AttributeError(f"{cls.__name__} must explicitly define __slots__")
else:
cls.__setattr__ = cls._setattr_dict
warnings.warn(
f"xarray subclass {cls.__name__} should explicitly define __slots__",
FutureWarning,
stacklevel=2,
)
super().__init_subclass__(**kwargs)
@property
def _attr_sources(self) -> Iterable[Mapping[Hashable, Any]]:
"""Places to look-up items for attribute-style access"""
yield from ()
@property
def _item_sources(self) -> Iterable[Mapping[Hashable, Any]]:
"""Places to look-up items for key-autocompletion"""
yield from ()
def __getattr__(self, name: str) -> Any:
if name not in {"__dict__", "__setstate__"}:
# this avoids an infinite loop when pickle looks for the
# __setstate__ attribute before the xarray object is initialized
for source in self._attr_sources:
with suppress(KeyError):
return source[name]
raise AttributeError(
f"{type(self).__name__!r} object has no attribute {name!r}"
)
# This complicated two-method design boosts overall performance of simple operations
# - particularly DataArray methods that perform a _to_temp_dataset() round-trip - by
# a whopping 8% compared to a single method that checks hasattr(self, "__dict__") at
# runtime before every single assignment. All of this is just temporary until the
# FutureWarning can be changed into a hard crash.
def _setattr_dict(self, name: str, value: Any) -> None:
"""Deprecated third party subclass (see ``__init_subclass__`` above)"""
object.__setattr__(self, name, value)
if name in self.__dict__:
# Custom, non-slotted attr, or improperly assigned variable?
warnings.warn(
f"Setting attribute {name!r} on a {type(self).__name__!r} object. Explicitly define __slots__ "
"to suppress this warning for legitimate custom attributes and "
"raise an error when attempting variables assignments.",
FutureWarning,
stacklevel=2,
)
def __setattr__(self, name: str, value: Any) -> None:
"""Objects with ``__slots__`` raise AttributeError if you try setting an
undeclared attribute. This is desirable, but the error message could use some
improvement.
"""
try:
object.__setattr__(self, name, value)
except AttributeError as e:
# Don't accidentally shadow custom AttributeErrors, e.g.
# DataArray.dims.setter
if str(e) != f"{type(self).__name__!r} object has no attribute {name!r}":
raise
raise AttributeError(
f"cannot set attribute {name!r} on a {type(self).__name__!r} object. Use __setitem__ style"
"assignment (e.g., `ds['name'] = ...`) instead of assigning variables."
) from e
def __dir__(self) -> list[str]:
"""Provide method name lookup and completion. Only provide 'public'
methods.
"""
extra_attrs = {
item
for source in self._attr_sources
for item in source
if isinstance(item, str)
}
return sorted(set(dir(type(self))) | extra_attrs)
def _ipython_key_completions_(self) -> list[str]:
"""Provide method for the key-autocompletions in IPython.
See https://ipython.readthedocs.io/en/stable/config/integrating.html#tab-completion
For the details.
"""
items = {
item
for source in self._item_sources
for item in source
if isinstance(item, str)
}
return list(items)
class TreeAttrAccessMixin(AttrAccessMixin):
"""Mixin class that allows getting keys with attribute access"""
# TODO: Ensure ipython tab completion can include both child datatrees and
# variables from Dataset objects on relevant nodes.
__slots__ = ()
def __init_subclass__(cls, **kwargs):
"""This method overrides the check from ``AttrAccessMixin`` that ensures
``__dict__`` is absent in a class, with ``__slots__`` used instead.
``DataTree`` has some dynamically defined attributes in addition to those
defined in ``__slots__``. (GH9068)
"""
if not hasattr(object.__new__(cls), "__dict__"):
pass
def get_squeeze_dims(
xarray_obj,
dim: Hashable | Iterable[Hashable] | None = None,
axis: int | Iterable[int] | None = None,
) -> list[Hashable]:
"""Get a list of dimensions to squeeze out."""
if dim is not None and axis is not None:
raise ValueError("cannot use both parameters `axis` and `dim`")
if dim is None and axis is None:
return [d for d, s in xarray_obj.sizes.items() if s == 1]
if isinstance(dim, Iterable) and not isinstance(dim, str):
dim = list(dim)
elif dim is not None:
dim = [dim]
else:
assert axis is not None
if isinstance(axis, int):
axis = [axis]
axis = list(axis)
if any(not isinstance(a, int) for a in axis):
raise TypeError("parameter `axis` must be int or iterable of int.")
alldims = list(xarray_obj.sizes.keys())
dim = [alldims[a] for a in axis]
if any(xarray_obj.sizes[k] > 1 for k in dim):
raise ValueError(
"cannot select a dimension to squeeze out which has length greater than one"
)
return dim
class DataWithCoords(AttrAccessMixin):
"""Shared base class for Dataset and DataArray."""
_close: Callable[[], None] | None
_indexes: dict[Hashable, Index]
__slots__ = ("_close",)
def squeeze(
self,
dim: Hashable | Iterable[Hashable] | None = None,
drop: bool = False,
axis: int | Iterable[int] | None = None,
) -> Self:
"""Return a new object with squeezed data.
Parameters
----------
dim : None or Hashable or iterable of Hashable, optional
Selects a subset of the length one dimensions. If a dimension is
selected with length greater than one, an error is raised. If
None, all length one dimensions are squeezed.
drop : bool, default: False
If ``drop=True``, drop squeezed coordinates instead of making them
scalar.
axis : None or int or iterable of int, optional
Like dim, but positional.
Returns
-------
squeezed : same type as caller
This object, but with with all or a subset of the dimensions of
length 1 removed.
See Also
--------
numpy.squeeze
"""
dims = get_squeeze_dims(self, dim, axis)
return self.isel(drop=drop, **dict.fromkeys(dims, 0))
def clip(
self,
min: ScalarOrArray | None = None,
max: ScalarOrArray | None = None,
*,
keep_attrs: bool | None = None,
) -> Self:
"""
Return an array whose values are limited to ``[min, max]``.
At least one of max or min must be given.
Parameters
----------
min : None or Hashable, optional
Minimum value. If None, no lower clipping is performed.
max : None or Hashable, optional
Maximum value. If None, no upper clipping is performed.
keep_attrs : bool or None, optional
If True, the attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
Returns
-------
clipped : same type as caller
This object, but with with values < min are replaced with min,
and those > max with max.
See Also
--------
numpy.clip : equivalent function
"""
from xarray.computation.apply_ufunc import apply_ufunc
if keep_attrs is None:
# When this was a unary func, the default was True, so retaining the
# default.
keep_attrs = _get_keep_attrs(default=True)
return apply_ufunc(
duck_array_ops.clip, self, min, max, keep_attrs=keep_attrs, dask="allowed"
)
def get_index(self, key: Hashable) -> pd.Index:
"""Get an index for a dimension, with fall-back to a default RangeIndex"""
if key not in self.dims:
raise KeyError(key)
try:
return self._indexes[key].to_pandas_index()
except KeyError:
return pd.Index(range(self.sizes[key]), name=key)
def _calc_assign_results(
self: C, kwargs: Mapping[Any, T | Callable[[C], T]]
) -> dict[Hashable, T]:
return {k: v(self) if callable(v) else v for k, v in kwargs.items()}
def assign_coords(
self,
coords: Mapping | None = None,
**coords_kwargs: Any,
) -> Self:
"""Assign new coordinates to this object.
Returns a new object with all the original data in addition to the new
coordinates.
Parameters
----------
coords : mapping of dim to coord, optional
A mapping whose keys are the names of the coordinates and values are the
coordinates to assign. The mapping will generally be a dict or
:class:`Coordinates`.
* If a value is a standard data value — for example, a ``DataArray``,
scalar, or array — the data is simply assigned as a coordinate.
* If a value is callable, it is called with this object as the only
parameter, and the return value is used as new coordinate variables.
* A coordinate can also be defined and attached to an existing dimension
using a tuple with the first element the dimension name and the second
element the values for this new coordinate.
**coords_kwargs : optional
The keyword arguments form of ``coords``.
One of ``coords`` or ``coords_kwargs`` must be provided.
Returns
-------
assigned : same type as caller
A new object with the new coordinates in addition to the existing
data.
Examples
--------
Convert `DataArray` longitude coordinates from 0-359 to -180-179:
>>> da = xr.DataArray(
... np.random.rand(4),
... coords=[np.array([358, 359, 0, 1])],
... dims="lon",
... )
>>> da
<xarray.DataArray (lon: 4)> Size: 32B
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 32B 358 359 0 1
>>> da.assign_coords(lon=(((da.lon + 180) % 360) - 180))
<xarray.DataArray (lon: 4)> Size: 32B
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 32B -2 -1 0 1
The function also accepts dictionary arguments:
>>> da.assign_coords({"lon": (((da.lon + 180) % 360) - 180)})
<xarray.DataArray (lon: 4)> Size: 32B
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 32B -2 -1 0 1
New coordinate can also be attached to an existing dimension:
>>> lon_2 = np.array([300, 289, 0, 1])
>>> da.assign_coords(lon_2=("lon", lon_2))
<xarray.DataArray (lon: 4)> Size: 32B
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])
Coordinates:
* lon (lon) int64 32B 358 359 0 1
lon_2 (lon) int64 32B 300 289 0 1
Note that the same result can also be obtained with a dict e.g.
>>> _ = da.assign_coords({"lon_2": ("lon", lon_2)})
Note the same method applies to `Dataset` objects.
Convert `Dataset` longitude coordinates from 0-359 to -180-179:
>>> temperature = np.linspace(20, 32, num=16).reshape(2, 2, 4)
>>> precipitation = 2 * np.identity(4).reshape(2, 2, 4)
>>> ds = xr.Dataset(
... data_vars=dict(
... temperature=(["x", "y", "time"], temperature),
... precipitation=(["x", "y", "time"], precipitation),
... ),
... coords=dict(
... lon=(["x", "y"], [[260.17, 260.68], [260.21, 260.77]]),
... lat=(["x", "y"], [[42.25, 42.21], [42.63, 42.59]]),
... time=pd.date_range("2014-09-06", periods=4),
... reference_time=pd.Timestamp("2014-09-05"),
... ),
... attrs=dict(description="Weather-related data"),
... )
>>> ds
<xarray.Dataset> Size: 360B
Dimensions: (x: 2, y: 2, time: 4)
Coordinates:
lon (x, y) float64 32B 260.2 260.7 260.2 260.8
lat (x, y) float64 32B 42.25 42.21 42.63 42.59
* time (time) datetime64[ns] 32B 2014-09-06 ... 2014-09-09
reference_time datetime64[ns] 8B 2014-09-05
Dimensions without coordinates: x, y
Data variables:
temperature (x, y, time) float64 128B 20.0 20.8 21.6 ... 30.4 31.2 32.0
precipitation (x, y, time) float64 128B 2.0 0.0 0.0 0.0 ... 0.0 0.0 2.0
Attributes:
description: Weather-related data
>>> ds.assign_coords(lon=(((ds.lon + 180) % 360) - 180))
<xarray.Dataset> Size: 360B
Dimensions: (x: 2, y: 2, time: 4)
Coordinates:
lon (x, y) float64 32B -99.83 -99.32 -99.79 -99.23
lat (x, y) float64 32B 42.25 42.21 42.63 42.59
* time (time) datetime64[ns] 32B 2014-09-06 ... 2014-09-09
reference_time datetime64[ns] 8B 2014-09-05
Dimensions without coordinates: x, y
Data variables:
temperature (x, y, time) float64 128B 20.0 20.8 21.6 ... 30.4 31.2 32.0
precipitation (x, y, time) float64 128B 2.0 0.0 0.0 0.0 ... 0.0 0.0 2.0
Attributes:
description: Weather-related data
See Also
--------
Dataset.assign
Dataset.swap_dims
Dataset.set_coords
"""
from xarray.core.coordinates import Coordinates
coords_combined = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords")
data = self.copy(deep=False)
results: Coordinates | dict[Hashable, Any]
if isinstance(coords, Coordinates):
results = coords
else:
results = self._calc_assign_results(coords_combined)
data.coords.update(results)
return data
def assign_attrs(self, *args: Any, **kwargs: Any) -> Self:
"""Assign new attrs to this object.
Returns a new object equivalent to ``self.attrs.update(*args, **kwargs)``.
Parameters
----------
*args
positional arguments passed into ``attrs.update``.
**kwargs
keyword arguments passed into ``attrs.update``.
Examples
--------
>>> dataset = xr.Dataset({"temperature": [25, 30, 27]})
>>> dataset
<xarray.Dataset> Size: 24B
Dimensions: (temperature: 3)
Coordinates:
* temperature (temperature) int64 24B 25 30 27
Data variables:
*empty*
>>> new_dataset = dataset.assign_attrs(
... units="Celsius", description="Temperature data"
... )
>>> new_dataset
<xarray.Dataset> Size: 24B
Dimensions: (temperature: 3)
Coordinates:
* temperature (temperature) int64 24B 25 30 27
Data variables:
*empty*
Attributes:
units: Celsius
description: Temperature data
# Attributes of the new dataset
>>> new_dataset.attrs
{'units': 'Celsius', 'description': 'Temperature data'}
Returns
-------
assigned : same type as caller
A new object with the new attrs in addition to the existing data.
See Also
--------
Dataset.assign
"""
out = self.copy(deep=False)
out.attrs.update(*args, **kwargs)
return out
@overload
def pipe(
self,
func: Callable[Concatenate[Self, P], T],
*args: P.args,
**kwargs: P.kwargs,
) -> T: ...
@overload
def pipe(
self,
func: tuple[Callable[..., T], str],
*args: Any,
**kwargs: Any,
) -> T: ...
def pipe(
self,
func: Callable[Concatenate[Self, P], T] | tuple[Callable[P, T], str],
*args: P.args,
**kwargs: P.kwargs,
) -> T:
"""
Apply ``func(self, *args, **kwargs)``
This method replicates the pandas method of the same name.
Parameters
----------
func : callable
function to apply to this xarray object (Dataset/DataArray).
``args``, and ``kwargs`` are passed into ``func``.
Alternatively a ``(callable, data_keyword)`` tuple where
``data_keyword`` is a string indicating the keyword of
``callable`` that expects the xarray object.
*args
positional arguments passed into ``func``.
**kwargs
a dictionary of keyword arguments passed into ``func``.
Returns
-------
object : Any
the return type of ``func``.
Notes
-----
Use ``.pipe`` when chaining together functions that expect
xarray or pandas objects, e.g., instead of writing
.. code:: python
f(g(h(ds), arg1=a), arg2=b, arg3=c)
You can write
.. code:: python
(ds.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c))
If you have a function that takes the data as (say) the second
argument, pass a tuple indicating which keyword expects the
data. For example, suppose ``f`` takes its data as ``arg2``:
.. code:: python
(ds.pipe(h).pipe(g, arg1=a).pipe((f, "arg2"), arg1=a, arg3=c))
Examples
--------
>>> x = xr.Dataset(
... {
... "temperature_c": (
... ("lat", "lon"),
... 20 * np.random.rand(4).reshape(2, 2),
... ),
... "precipitation": (("lat", "lon"), np.random.rand(4).reshape(2, 2)),
... },
... coords={"lat": [10, 20], "lon": [150, 160]},
... )
>>> x
<xarray.Dataset> Size: 96B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
>>> def adder(data, arg):
... return data + arg
...
>>> def div(data, arg):
... return data / arg
...
>>> def sub_mult(data, sub_arg, mult_arg):
... return (data * mult_arg) - sub_arg
...
>>> x.pipe(adder, 2)
<xarray.Dataset> Size: 96B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 12.98 16.3 14.06 12.9
precipitation (lat, lon) float64 32B 2.424 2.646 2.438 2.892
>>> x.pipe(adder, arg=2)
<xarray.Dataset> Size: 96B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 12.98 16.3 14.06 12.9
precipitation (lat, lon) float64 32B 2.424 2.646 2.438 2.892
>>> (
... x.pipe(adder, arg=2)
... .pipe(div, arg=2)
... .pipe(sub_mult, sub_arg=2, mult_arg=2)
... )
<xarray.Dataset> Size: 96B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
See Also
--------
pandas.DataFrame.pipe
"""
if isinstance(func, tuple):
# Use different var when unpacking function from tuple because the type
# signature of the unpacked function differs from the expected type
# signature in the case where only a function is given, rather than a tuple.
# This makes type checkers happy at both call sites below.
f, target = func
if target in kwargs:
raise ValueError(
f"{target} is both the pipe target and a keyword argument"
)
kwargs[target] = self
return f(*args, **kwargs)
return func(self, *args, **kwargs)
def rolling_exp(
self: T_DataWithCoords,
window: Mapping[Any, int] | None = None,
window_type: str = "span",
**window_kwargs,
) -> RollingExp[T_DataWithCoords]:
"""
Exponentially-weighted moving window.
Similar to EWM in pandas
Requires the optional Numbagg dependency.
Parameters
----------
window : mapping of hashable to int, optional
A mapping from the name of the dimension to create the rolling
exponential window along (e.g. `time`) to the size of the moving window.
window_type : {"span", "com", "halflife", "alpha"}, default: "span"
The format of the previously supplied window. Each is a simple
numerical transformation of the others. Described in detail:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html
**window_kwargs : optional
The keyword arguments form of ``window``.
One of window or window_kwargs must be provided.
See Also
--------
core.rolling_exp.RollingExp
"""
if "keep_attrs" in window_kwargs:
warnings.warn(
"Passing ``keep_attrs`` to ``rolling_exp`` has no effect. Pass"
" ``keep_attrs`` directly to the applied function, e.g."
" ``rolling_exp(...).mean(keep_attrs=False)``.",
stacklevel=2,
)
window = either_dict_or_kwargs(window, window_kwargs, "rolling_exp")
from xarray.computation.rolling_exp import RollingExp
return RollingExp(self, window, window_type)
def _resample(
self,
resample_cls: type[T_Resample],
indexer: Mapping[Hashable, ResampleCompatible | Resampler] | None,
skipna: bool | None,
closed: SideOptions | None,
label: SideOptions | None,
offset: pd.Timedelta | datetime.timedelta | str | None,
origin: str | DatetimeLike,
restore_coord_dims: bool | None,
**indexer_kwargs: ResampleCompatible | Resampler,
) -> T_Resample:
"""Returns a Resample object for performing resampling operations.
Handles both downsampling and upsampling. The resampled
dimension must be a datetime-like coordinate. If any intervals
contain no values from the original object, they will be given
the value ``NaN``.
Parameters
----------
indexer : {dim: freq}, optional
Mapping from the dimension name to resample frequency [1]_. The
dimension must be datetime-like.
skipna : bool, optional
Whether to skip missing values when aggregating in downsampling.
closed : {"left", "right"}, optional
Side of each interval to treat as closed.
label : {"left", "right"}, optional
Side of each interval to use for labeling.
origin : {'epoch', 'start', 'start_day', 'end', 'end_day'}, pd.Timestamp, datetime.datetime, np.datetime64, or cftime.datetime, default 'start_day'
The datetime on which to adjust the grouping. The timezone of origin
must match the timezone of the index.
If a datetime is not used, these values are also supported:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
offset : pd.Timedelta, datetime.timedelta, or str, default is None
An offset timedelta added to the origin.
restore_coord_dims : bool, optional
If True, also restore the dimension order of multi-dimensional
coordinates.
**indexer_kwargs : {dim: freq}
The keyword arguments form of ``indexer``.
One of indexer or indexer_kwargs must be provided.
Returns
-------
resampled : same type as caller
This object resampled.
Examples
--------
Downsample monthly time-series data to seasonal data:
>>> da = xr.DataArray(
... np.linspace(0, 11, num=12),
... coords=[
... pd.date_range(
... "1999-12-15",
... periods=12,
... freq=pd.DateOffset(months=1),
... )
... ],
... dims="time",
... )
>>> da
<xarray.DataArray (time: 12)> Size: 96B
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])
Coordinates:
* time (time) datetime64[ns] 96B 1999-12-15 2000-01-15 ... 2000-11-15
>>> da.resample(time="QS-DEC").mean()
<xarray.DataArray (time: 4)> Size: 32B
array([ 1., 4., 7., 10.])
Coordinates:
* time (time) datetime64[ns] 32B 1999-12-01 2000-03-01 ... 2000-09-01
Upsample monthly time-series data to daily data:
>>> da.resample(time="1D").interpolate("linear") # +doctest: ELLIPSIS
<xarray.DataArray (time: 337)> Size: 3kB
array([ 0. , 0.03225806, 0.06451613, 0.09677419, 0.12903226,
0.16129032, 0.19354839, 0.22580645, 0.25806452, 0.29032258,
0.32258065, 0.35483871, 0.38709677, 0.41935484, 0.4516129 ,
0.48387097, 0.51612903, 0.5483871 , 0.58064516, 0.61290323,
0.64516129, 0.67741935, 0.70967742, 0.74193548, 0.77419355,
0.80645161, 0.83870968, 0.87096774, 0.90322581, 0.93548387,
0.96774194, 1. , 1.03225806, 1.06451613, 1.09677419,
1.12903226, 1.16129032, 1.19354839, 1.22580645, 1.25806452,
1.29032258, 1.32258065, 1.35483871, 1.38709677, 1.41935484,
1.4516129 , 1.48387097, 1.51612903, 1.5483871 , 1.58064516,
1.61290323, 1.64516129, 1.67741935, 1.70967742, 1.74193548,
1.77419355, 1.80645161, 1.83870968, 1.87096774, 1.90322581,
1.93548387, 1.96774194, 2. , 2.03448276, 2.06896552,
2.10344828, 2.13793103, 2.17241379, 2.20689655, 2.24137931,
2.27586207, 2.31034483, 2.34482759, 2.37931034, 2.4137931 ,
2.44827586, 2.48275862, 2.51724138, 2.55172414, 2.5862069 ,
2.62068966, 2.65517241, 2.68965517, 2.72413793, 2.75862069,
2.79310345, 2.82758621, 2.86206897, 2.89655172, 2.93103448,
2.96551724, 3. , 3.03225806, 3.06451613, 3.09677419,
3.12903226, 3.16129032, 3.19354839, 3.22580645, 3.25806452,
...
7.87096774, 7.90322581, 7.93548387, 7.96774194, 8. ,
8.03225806, 8.06451613, 8.09677419, 8.12903226, 8.16129032,
8.19354839, 8.22580645, 8.25806452, 8.29032258, 8.32258065,
8.35483871, 8.38709677, 8.41935484, 8.4516129 , 8.48387097,
8.51612903, 8.5483871 , 8.58064516, 8.61290323, 8.64516129,
8.67741935, 8.70967742, 8.74193548, 8.77419355, 8.80645161,
8.83870968, 8.87096774, 8.90322581, 8.93548387, 8.96774194,
9. , 9.03333333, 9.06666667, 9.1 , 9.13333333,
9.16666667, 9.2 , 9.23333333, 9.26666667, 9.3 ,
9.33333333, 9.36666667, 9.4 , 9.43333333, 9.46666667,
9.5 , 9.53333333, 9.56666667, 9.6 , 9.63333333,
9.66666667, 9.7 , 9.73333333, 9.76666667, 9.8 ,
9.83333333, 9.86666667, 9.9 , 9.93333333, 9.96666667,
10. , 10.03225806, 10.06451613, 10.09677419, 10.12903226,
10.16129032, 10.19354839, 10.22580645, 10.25806452, 10.29032258,
10.32258065, 10.35483871, 10.38709677, 10.41935484, 10.4516129 ,
10.48387097, 10.51612903, 10.5483871 , 10.58064516, 10.61290323,
10.64516129, 10.67741935, 10.70967742, 10.74193548, 10.77419355,
10.80645161, 10.83870968, 10.87096774, 10.90322581, 10.93548387,
10.96774194, 11. ])
Coordinates:
* time (time) datetime64[ns] 3kB 1999-12-15 1999-12-16 ... 2000-11-15
Limit scope of upsampling method
>>> da.resample(time="1D").nearest(tolerance="1D")
<xarray.DataArray (time: 337)> Size: 3kB
array([ 0., 0., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, 1., 1., 1., nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, 2., 2., 2., nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 3.,
3., 3., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, 4., 4., 4., nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, 5., 5., 5., nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
6., 6., 6., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, 8., 8., 8., nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, 9., 9., 9., nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, 10., 10., 10., nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 11., 11.])
Coordinates:
* time (time) datetime64[ns] 3kB 1999-12-15 1999-12-16 ... 2000-11-15
See Also
--------
pandas.Series.resample
pandas.DataFrame.resample
References
----------
.. [1] https://pandas.pydata.org/docs/user_guide/timeseries.html#dateoffset-objects
"""
# TODO support non-string indexer after removing the old API.
from xarray.core.dataarray import DataArray
from xarray.core.groupby import ResolvedGrouper
from xarray.core.resample import RESAMPLE_DIM
from xarray.groupers import Resampler, TimeResampler
indexer = either_dict_or_kwargs(indexer, indexer_kwargs, "resample")
if len(indexer) != 1:
raise ValueError("Resampling only supported along single dimensions.")
dim, freq = next(iter(indexer.items()))
dim_name: Hashable = dim
dim_coord = self[dim]
group = DataArray(
dim_coord, coords=dim_coord.coords, dims=dim_coord.dims, name=RESAMPLE_DIM
)
grouper: Resampler
if isinstance(freq, ResampleCompatible):
grouper = TimeResampler(
freq=freq, closed=closed, label=label, origin=origin, offset=offset
)
elif isinstance(freq, Resampler):
grouper = freq
else:
raise ValueError(
"freq must be an object of type 'str', 'datetime.timedelta', "
"'pandas.Timedelta', 'pandas.DateOffset', or 'TimeResampler'. "
f"Received {type(freq)} instead."
)
rgrouper = ResolvedGrouper(grouper, group, self)
return resample_cls(
self,
(rgrouper,),
dim=dim_name,
resample_dim=RESAMPLE_DIM,
restore_coord_dims=restore_coord_dims,
)
def where(self, cond: Any, other: Any = dtypes.NA, drop: bool = False) -> Self:
"""Filter elements from this object according to a condition.
Returns elements from 'DataArray', where 'cond' is True,
otherwise fill in 'other'.
This operation follows the normal broadcasting and alignment rules that
xarray uses for binary arithmetic.
Parameters
----------
cond : DataArray, Dataset, or callable
Locations at which to preserve this object's values. dtype must be `bool`.
If a callable, the callable is passed this object, and the result is used as
the value for cond.
other : scalar, DataArray, Dataset, or callable, optional
Value to use for locations in this object where ``cond`` is False.
By default, these locations are filled with NA. If a callable, it must
expect this object as its only parameter.
drop : bool, default: False
If True, coordinate labels that only correspond to False values of
the condition are dropped from the result.
Returns
-------
DataArray or Dataset
Same xarray type as caller, with dtype float64.
Examples
--------
>>> a = xr.DataArray(np.arange(25).reshape(5, 5), dims=("x", "y"))
>>> a
<xarray.DataArray (x: 5, y: 5)> Size: 200B
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 4)
<xarray.DataArray (x: 5, y: 5)> Size: 200B
array([[ 0., 1., 2., 3., nan],
[ 5., 6., 7., nan, nan],
[10., 11., nan, nan, nan],
[15., nan, nan, nan, nan],
[nan, nan, nan, nan, nan]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 5, -1)
<xarray.DataArray (x: 5, y: 5)> Size: 200B
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, -1],
[10, 11, 12, -1, -1],
[15, 16, -1, -1, -1],
[20, -1, -1, -1, -1]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 4, drop=True)
<xarray.DataArray (x: 4, y: 4)> Size: 128B
array([[ 0., 1., 2., 3.],
[ 5., 6., 7., nan],
[10., 11., nan, nan],
[15., nan, nan, nan]])
Dimensions without coordinates: x, y
>>> a.where(lambda x: x.x + x.y < 4, lambda x: -x)
<xarray.DataArray (x: 5, y: 5)> Size: 200B
array([[ 0, 1, 2, 3, -4],
[ 5, 6, 7, -8, -9],
[ 10, 11, -12, -13, -14],
[ 15, -16, -17, -18, -19],
[-20, -21, -22, -23, -24]])
Dimensions without coordinates: x, y
>>> a.where(a.x + a.y < 4, drop=True)
<xarray.DataArray (x: 4, y: 4)> Size: 128B
array([[ 0., 1., 2., 3.],
[ 5., 6., 7., nan],
[10., 11., nan, nan],
[15., nan, nan, nan]])
Dimensions without coordinates: x, y
See Also
--------
numpy.where : corresponding numpy function
where : equivalent function
"""
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.structure.alignment import align
if callable(cond):
cond = cond(self)
if callable(other):
other = other(self)
if drop:
if not isinstance(cond, Dataset | DataArray):
raise TypeError(
f"cond argument is {cond!r} but must be a {Dataset!r} or {DataArray!r} (or a callable than returns one)."
)
self, cond = align(self, cond)
def _dataarray_indexer(dim: Hashable) -> DataArray:
return cond.any(dim=(d for d in cond.dims if d != dim))
def _dataset_indexer(dim: Hashable) -> DataArray:
cond_wdim = cond.drop_vars(
var for var in cond if dim not in cond[var].dims
)
keepany = cond_wdim.any(dim=(d for d in cond.dims if d != dim))
return keepany.to_dataarray().any("variable")
_get_indexer = (
_dataarray_indexer if isinstance(cond, DataArray) else _dataset_indexer
)
indexers = {}
for dim in cond.sizes.keys():
indexers[dim] = _get_indexer(dim)
self = self.isel(**indexers)
cond = cond.isel(**indexers)
from xarray.computation import ops
return ops.where_method(self, cond, other)
def set_close(self, close: Callable[[], None] | None) -> None:
"""Register the function that releases any resources linked to this object.
This method controls how xarray cleans up resources associated
with this object when the ``.close()`` method is called. It is mostly
intended for backend developers and it is rarely needed by regular
end-users.
Parameters
----------
close : callable
The function that when called like ``close()`` releases
any resources linked to this object.
"""
self._close = close
def close(self) -> None:
"""Release any resources linked to this object."""
if self._close is not None:
self._close()
self._close = None
def isnull(self, keep_attrs: bool | None = None) -> Self:
"""Test each value in the array for whether it is a missing value.
Parameters
----------
keep_attrs : bool or None, optional
If True, the attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
Returns
-------
isnull : DataArray or Dataset
Same type and shape as object, but the dtype of the data is bool.
See Also
--------
pandas.isnull
Examples
--------
>>> array = xr.DataArray([1, np.nan, 3], dims="x")
>>> array
<xarray.DataArray (x: 3)> Size: 24B
array([ 1., nan, 3.])
Dimensions without coordinates: x
>>> array.isnull()
<xarray.DataArray (x: 3)> Size: 3B
array([False, True, False])
Dimensions without coordinates: x
"""
from xarray.computation.apply_ufunc import apply_ufunc
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
return apply_ufunc(
duck_array_ops.isnull,
self,
dask="allowed",
keep_attrs=keep_attrs,
)
def notnull(self, keep_attrs: bool | None = None) -> Self:
"""Test each value in the array for whether it is not a missing value.
Parameters
----------
keep_attrs : bool or None, optional
If True, the attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
Returns
-------
notnull : DataArray or Dataset
Same type and shape as object, but the dtype of the data is bool.
See Also
--------
pandas.notnull
Examples
--------
>>> array = xr.DataArray([1, np.nan, 3], dims="x")
>>> array
<xarray.DataArray (x: 3)> Size: 24B
array([ 1., nan, 3.])
Dimensions without coordinates: x
>>> array.notnull()
<xarray.DataArray (x: 3)> Size: 3B
array([ True, False, True])
Dimensions without coordinates: x
"""
from xarray.computation.apply_ufunc import apply_ufunc
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
return apply_ufunc(
duck_array_ops.notnull,
self,
dask="allowed",
keep_attrs=keep_attrs,
)
def isin(self, test_elements: Any) -> Self:
"""Tests each value in the array for whether it is in test elements.
Parameters
----------
test_elements : array_like
The values against which to test each value of `element`.
This argument is flattened if an array or array_like.
See numpy notes for behavior with non-array-like parameters.
Returns
-------
isin : DataArray or Dataset
Has the same type and shape as this object, but with a bool dtype.
Examples
--------
>>> array = xr.DataArray([1, 2, 3], dims="x")
>>> array.isin([1, 3])
<xarray.DataArray (x: 3)> Size: 3B
array([ True, False, True])
Dimensions without coordinates: x
See Also
--------
numpy.isin
"""
from xarray.computation.apply_ufunc import apply_ufunc
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.variable import Variable
if isinstance(test_elements, Dataset):
raise TypeError(
f"isin() argument must be convertible to an array: {test_elements}"
)
elif isinstance(test_elements, Variable | DataArray):
# need to explicitly pull out data to support dask arrays as the
# second argument
test_elements = test_elements.data
return apply_ufunc(
duck_array_ops.isin,
self,
kwargs=dict(test_elements=test_elements),
dask="allowed",
)
def astype(
self,
dtype,
*,
order=None,
casting=None,
subok=None,
copy=None,
keep_attrs=True,
) -> Self:
"""
Copy of the xarray object, with data cast to a specified type.
Leaves coordinate dtype unchanged.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout order of the result. ‘C’ means C order,
‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are
Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to
the order the array elements appear in memory as possible.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise the
returned array will be forced to be a base-class array.
copy : bool, optional
By default, astype always returns a newly allocated array. If this
is set to False and the `dtype` requirement is satisfied, the input
array is returned instead of a copy.
keep_attrs : bool, optional
By default, astype keeps attributes. Set to False to remove
attributes in the returned object.
Returns
-------
out : same as object
New object with data cast to the specified type.
Notes
-----
The ``order``, ``casting``, ``subok`` and ``copy`` arguments are only passed
through to the ``astype`` method of the underlying array when a value
different than ``None`` is supplied.
Make sure to only supply these arguments if the underlying array class
supports them.
See Also
--------
numpy.ndarray.astype
dask.array.Array.astype
sparse.COO.astype
"""
from xarray.computation.apply_ufunc import apply_ufunc
kwargs = dict(order=order, casting=casting, subok=subok, copy=copy)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return apply_ufunc(
duck_array_ops.astype,
self,
dtype,
kwargs=kwargs,
keep_attrs=keep_attrs,
dask="allowed",
)
def __enter__(self) -> Self:
return self
def __exit__(self, exc_type, exc_value, traceback) -> None:
self.close()
def __getitem__(self, value):
# implementations of this class should implement this method
raise NotImplementedError()
@overload
def full_like(
other: DataArray,
fill_value: Any,
dtype: DTypeLikeSave | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> DataArray: ...
@overload
def full_like(
other: Dataset,
fill_value: Any,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset: ...
@overload
def full_like(
other: Variable,
fill_value: Any,
dtype: DTypeLikeSave | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Variable: ...
@overload
def full_like(
other: Dataset | DataArray,
fill_value: Any,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = {}, # noqa: B006
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray: ...
@overload
def full_like(
other: Dataset | DataArray | Variable,
fill_value: Any,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray | Variable: ...
def full_like(
other: Dataset | DataArray | Variable,
fill_value: Any,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray | Variable:
"""
Return a new object with the same shape and type as a given object.
Returned object will be chunked if if the given object is chunked, or if chunks or chunked_array_type are specified.
Parameters
----------
other : DataArray, Dataset or Variable
The reference object in input
fill_value : scalar or dict-like
Value to fill the new object with before returning it. If
other is a Dataset, may also be a dict-like mapping data
variables to fill values.
dtype : dtype or dict-like of dtype, optional
dtype of the new array. If a dict-like, maps dtypes to
variables. If omitted, it defaults to other.dtype.
chunks : int, "auto", tuple of int or mapping of Hashable to int, optional
Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, ``(5, 5)`` or
``{"x": 5, "y": 5}``.
chunked_array_type: str, optional
Which chunked array type to coerce the underlying data array to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example, with dask as the default chunked array type, this method would pass additional kwargs
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
Returns
-------
out : same as object
New object with the same shape and type as other, with the data
filled with fill_value. Coords will be copied from other.
If other is based on dask, the new one will be as well, and will be
split in the same chunks.
Examples
--------
>>> x = xr.DataArray(
... np.arange(6).reshape(2, 3),
... dims=["lat", "lon"],
... coords={"lat": [1, 2], "lon": [0, 1, 2]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.full_like(x, 1)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[1, 1, 1],
[1, 1, 1]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.full_like(x, 0.5)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0, 0, 0],
[0, 0, 0]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.full_like(x, 0.5, dtype=np.double)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0.5, 0.5, 0.5],
[0.5, 0.5, 0.5]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.full_like(x, np.nan, dtype=np.double)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[nan, nan, nan],
[nan, nan, nan]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> ds = xr.Dataset(
... {"a": ("x", [3, 5, 2]), "b": ("x", [9, 1, 0])}, coords={"x": [2, 4, 6]}
... )
>>> ds
<xarray.Dataset> Size: 72B
Dimensions: (x: 3)
Coordinates:
* x (x) int64 24B 2 4 6
Data variables:
a (x) int64 24B 3 5 2
b (x) int64 24B 9 1 0
>>> xr.full_like(ds, fill_value={"a": 1, "b": 2})
<xarray.Dataset> Size: 72B
Dimensions: (x: 3)
Coordinates:
* x (x) int64 24B 2 4 6
Data variables:
a (x) int64 24B 1 1 1
b (x) int64 24B 2 2 2
>>> xr.full_like(ds, fill_value={"a": 1, "b": 2}, dtype={"a": bool, "b": float})
<xarray.Dataset> Size: 51B
Dimensions: (x: 3)
Coordinates:
* x (x) int64 24B 2 4 6
Data variables:
a (x) bool 3B True True True
b (x) float64 24B 2.0 2.0 2.0
See Also
--------
zeros_like
ones_like
"""
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.variable import Variable
if not is_scalar(fill_value) and not (
isinstance(other, Dataset) and isinstance(fill_value, dict)
):
raise ValueError(
f"fill_value must be scalar or, for datasets, a dict-like. Received {fill_value} instead."
)
if isinstance(other, Dataset):
if not isinstance(fill_value, dict):
fill_value = dict.fromkeys(other.data_vars.keys(), fill_value)
dtype_: Mapping[Any, DTypeLikeSave]
if not isinstance(dtype, Mapping):
dtype_ = dict.fromkeys(other.data_vars.keys(), dtype)
else:
dtype_ = dtype
data_vars = {
k: _full_like_variable(
v.variable,
fill_value.get(k, dtypes.NA),
dtype_.get(k, None),
chunks,
chunked_array_type,
from_array_kwargs,
)
for k, v in other.data_vars.items()
}
return Dataset(data_vars, coords=other.coords, attrs=other.attrs)
elif isinstance(other, DataArray):
if isinstance(dtype, Mapping):
raise ValueError("'dtype' cannot be dict-like when passing a DataArray")
return DataArray(
_full_like_variable(
other.variable,
fill_value,
dtype,
chunks,
chunked_array_type,
from_array_kwargs,
),
dims=other.dims,
coords=other.coords,
attrs=other.attrs,
name=other.name,
)
elif isinstance(other, Variable):
if isinstance(dtype, Mapping):
raise ValueError("'dtype' cannot be dict-like when passing a Variable")
return _full_like_variable(
other, fill_value, dtype, chunks, chunked_array_type, from_array_kwargs
)
else:
raise TypeError("Expected DataArray, Dataset, or Variable")
def _full_like_variable(
other: Variable,
fill_value: Any,
dtype: DTypeLike | None = None,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Variable:
"""Inner function of full_like, where other must be a variable"""
from xarray.core.variable import Variable
if fill_value is dtypes.NA:
fill_value = dtypes.get_fill_value(dtype if dtype is not None else other.dtype)
if (
is_chunked_array(other.data)
or chunked_array_type is not None
or chunks is not None
):
if chunked_array_type is None:
chunkmanager = get_chunked_array_type(other.data)
else:
chunkmanager = guess_chunkmanager(chunked_array_type)
if dtype is None:
dtype = other.dtype
if from_array_kwargs is None:
from_array_kwargs = {}
data = chunkmanager.array_api.full(
other.shape,
fill_value,
dtype=dtype,
chunks=chunks or other.data.chunks,
**from_array_kwargs,
)
else:
data = duck_array_ops.full_like(other.data, fill_value, dtype=dtype)
return Variable(dims=other.dims, data=data, attrs=other.attrs)
@overload
def zeros_like(
other: DataArray,
dtype: DTypeLikeSave | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> DataArray: ...
@overload
def zeros_like(
other: Dataset,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset: ...
@overload
def zeros_like(
other: Variable,
dtype: DTypeLikeSave | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Variable: ...
@overload
def zeros_like(
other: Dataset | DataArray,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray: ...
@overload
def zeros_like(
other: Dataset | DataArray | Variable,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray | Variable: ...
def zeros_like(
other: Dataset | DataArray | Variable,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray | Variable:
"""Return a new object of zeros with the same shape and
type as a given dataarray or dataset.
Parameters
----------
other : DataArray, Dataset or Variable
The reference object. The output will have the same dimensions and coordinates as this object.
dtype : dtype, optional
dtype of the new array. If omitted, it defaults to other.dtype.
chunks : int, "auto", tuple of int or mapping of Hashable to int, optional
Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, ``(5, 5)`` or
``{"x": 5, "y": 5}``.
chunked_array_type: str, optional
Which chunked array type to coerce the underlying data array to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example, with dask as the default chunked array type, this method would pass additional kwargs
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
Returns
-------
out : DataArray, Dataset or Variable
New object of zeros with the same shape and type as other.
Examples
--------
>>> x = xr.DataArray(
... np.arange(6).reshape(2, 3),
... dims=["lat", "lon"],
... coords={"lat": [1, 2], "lon": [0, 1, 2]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.zeros_like(x)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0, 0, 0],
[0, 0, 0]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.zeros_like(x, dtype=float)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0., 0., 0.],
[0., 0., 0.]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
See Also
--------
ones_like
full_like
"""
return full_like(
other,
0,
dtype,
chunks=chunks,
chunked_array_type=chunked_array_type,
from_array_kwargs=from_array_kwargs,
)
@overload
def ones_like(
other: DataArray,
dtype: DTypeLikeSave | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> DataArray: ...
@overload
def ones_like(
other: Dataset,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset: ...
@overload
def ones_like(
other: Variable,
dtype: DTypeLikeSave | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Variable: ...
@overload
def ones_like(
other: Dataset | DataArray,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray: ...
@overload
def ones_like(
other: Dataset | DataArray | Variable,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray | Variable: ...
def ones_like(
other: Dataset | DataArray | Variable,
dtype: DTypeMaybeMapping | None = None,
*,
chunks: T_Chunks = None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
) -> Dataset | DataArray | Variable:
"""Return a new object of ones with the same shape and
type as a given dataarray or dataset.
Parameters
----------
other : DataArray, Dataset, or Variable
The reference object. The output will have the same dimensions and coordinates as this object.
dtype : dtype, optional
dtype of the new array. If omitted, it defaults to other.dtype.
chunks : int, "auto", tuple of int or mapping of Hashable to int, optional
Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, ``(5, 5)`` or
``{"x": 5, "y": 5}``.
chunked_array_type: str, optional
Which chunked array type to coerce the underlying data array to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example, with dask as the default chunked array type, this method would pass additional kwargs
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
Returns
-------
out : same as object
New object of ones with the same shape and type as other.
Examples
--------
>>> x = xr.DataArray(
... np.arange(6).reshape(2, 3),
... dims=["lat", "lon"],
... coords={"lat": [1, 2], "lon": [0, 1, 2]},
... )
>>> x
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
>>> xr.ones_like(x)
<xarray.DataArray (lat: 2, lon: 3)> Size: 48B
array([[1, 1, 1],
[1, 1, 1]])
Coordinates:
* lat (lat) int64 16B 1 2
* lon (lon) int64 24B 0 1 2
See Also
--------
zeros_like
full_like
"""
return full_like(
other,
1,
dtype,
chunks=chunks,
chunked_array_type=chunked_array_type,
from_array_kwargs=from_array_kwargs,
)
def get_chunksizes(
variables: Iterable[Variable],
) -> Mapping[Any, tuple[int, ...]]:
chunks: dict[Any, tuple[int, ...]] = {}
for v in variables:
if hasattr(v._data, "chunks"):
for dim, c in v.chunksizes.items():
if dim in chunks and c != chunks[dim]:
raise ValueError(
f"Object has inconsistent chunks along dimension {dim}. "
"This can be fixed by calling unify_chunks()."
)
chunks[dim] = c
return Frozen(chunks)
def is_np_datetime_like(dtype: DTypeLike) -> bool:
"""Check if a dtype is a subclass of the numpy datetime types"""
return np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)
def is_np_timedelta_like(dtype: DTypeLike) -> bool:
"""Check whether dtype is of the timedelta64 dtype."""
return np.issubdtype(dtype, np.timedelta64)
def _contains_cftime_datetimes(array: Any) -> bool:
"""Check if an array inside a Variable contains cftime.datetime objects"""
if cftime is None:
return False
if array.dtype == np.dtype("O") and array.size > 0:
first_idx = (0,) * array.ndim
if isinstance(array, ExplicitlyIndexed):
first_idx = BasicIndexer(first_idx)
sample = array[first_idx]
return isinstance(np.asarray(sample).item(), cftime.datetime)
return False
def contains_cftime_datetimes(var: T_Variable) -> bool:
"""Check if an xarray.Variable contains cftime.datetime objects"""
return _contains_cftime_datetimes(var._data)
def _contains_datetime_like_objects(var: T_Variable) -> bool:
"""Check if a variable contains datetime like objects (either
np.datetime64, np.timedelta64, or cftime.datetime)
"""
return is_np_datetime_like(var.dtype) or contains_cftime_datetimes(var)
|