File: dataset.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (10474 lines) | stat: -rw-r--r-- 405,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
from __future__ import annotations

import asyncio
import copy
import datetime
import io
import math
import sys
import warnings
from collections import defaultdict
from collections.abc import (
    Callable,
    Collection,
    Hashable,
    Iterable,
    Iterator,
    Mapping,
    MutableMapping,
    Sequence,
)
from functools import partial
from html import escape
from numbers import Number
from operator import methodcaller
from os import PathLike
from types import EllipsisType
from typing import IO, TYPE_CHECKING, Any, Literal, cast, overload

import numpy as np
import pandas as pd

from xarray.coding.calendar_ops import convert_calendar, interp_calendar
from xarray.coding.cftimeindex import CFTimeIndex, _parse_array_of_cftime_strings
from xarray.compat.array_api_compat import to_like_array
from xarray.computation import ops
from xarray.computation.arithmetic import DatasetArithmetic
from xarray.core import dtypes as xrdtypes
from xarray.core import (
    duck_array_ops,
    formatting,
    formatting_html,
    utils,
)
from xarray.core._aggregations import DatasetAggregations
from xarray.core.common import (
    DataWithCoords,
    _contains_datetime_like_objects,
    get_chunksizes,
)
from xarray.core.coordinates import (
    Coordinates,
    DatasetCoordinates,
    assert_coordinate_consistent,
)
from xarray.core.dataset_utils import _get_virtual_variable, _LocIndexer
from xarray.core.dataset_variables import DataVariables
from xarray.core.duck_array_ops import datetime_to_numeric
from xarray.core.indexes import (
    Index,
    Indexes,
    PandasIndex,
    PandasMultiIndex,
    assert_no_index_corrupted,
    create_default_index_implicit,
    filter_indexes_from_coords,
    isel_indexes,
    remove_unused_levels_categories,
    roll_indexes,
)
from xarray.core.indexing import is_fancy_indexer, map_index_queries
from xarray.core.options import OPTIONS, _get_keep_attrs
from xarray.core.types import (
    Bins,
    NetcdfWriteModes,
    QuantileMethods,
    Self,
    T_ChunkDim,
    T_ChunksFreq,
    T_DataArray,
    T_DataArrayOrSet,
    ZarrWriteModes,
)
from xarray.core.utils import (
    Default,
    FilteredMapping,
    Frozen,
    FrozenMappingWarningOnValuesAccess,
    OrderedSet,
    _default,
    decode_numpy_dict_values,
    drop_dims_from_indexers,
    either_dict_or_kwargs,
    emit_user_level_warning,
    infix_dims,
    is_allowed_extension_array,
    is_dict_like,
    is_duck_array,
    is_duck_dask_array,
    is_scalar,
    maybe_wrap_array,
    parse_dims_as_set,
)
from xarray.core.variable import (
    UNSUPPORTED_EXTENSION_ARRAY_TYPES,
    IndexVariable,
    Variable,
    as_variable,
    broadcast_variables,
    calculate_dimensions,
)
from xarray.namedarray.parallelcompat import get_chunked_array_type, guess_chunkmanager
from xarray.namedarray.pycompat import array_type, is_chunked_array, to_numpy
from xarray.plot.accessor import DatasetPlotAccessor
from xarray.structure import alignment
from xarray.structure.alignment import (
    _broadcast_helper,
    _get_broadcast_dims_map_common_coords,
    align,
)
from xarray.structure.chunks import _maybe_chunk, unify_chunks
from xarray.structure.merge import (
    dataset_merge_method,
    dataset_update_method,
    merge_coordinates_without_align,
    merge_data_and_coords,
)
from xarray.util.deprecation_helpers import (
    _COMPAT_DEFAULT,
    _JOIN_DEFAULT,
    CombineKwargDefault,
    _deprecate_positional_args,
    deprecate_dims,
)

if TYPE_CHECKING:
    from dask.dataframe import DataFrame as DaskDataFrame
    from dask.delayed import Delayed
    from numpy.typing import ArrayLike

    from xarray.backends import AbstractDataStore, ZarrStore
    from xarray.backends.api import T_NetcdfEngine, T_NetcdfTypes
    from xarray.computation.rolling import DatasetCoarsen, DatasetRolling
    from xarray.computation.weighted import DatasetWeighted
    from xarray.core.dataarray import DataArray
    from xarray.core.groupby import DatasetGroupBy
    from xarray.core.resample import DatasetResample
    from xarray.core.types import (
        CFCalendar,
        CoarsenBoundaryOptions,
        CombineAttrsOptions,
        CompatOptions,
        DataVars,
        DatetimeLike,
        DatetimeUnitOptions,
        Dims,
        DsCompatible,
        ErrorOptions,
        ErrorOptionsWithWarn,
        GroupIndices,
        GroupInput,
        InterpOptions,
        JoinOptions,
        PadModeOptions,
        PadReflectOptions,
        QueryEngineOptions,
        QueryParserOptions,
        ReindexMethodOptions,
        ResampleCompatible,
        SideOptions,
        T_ChunkDimFreq,
        T_Chunks,
        T_DatasetPadConstantValues,
        T_Xarray,
    )
    from xarray.groupers import Grouper, Resampler
    from xarray.namedarray.parallelcompat import ChunkManagerEntrypoint
    from xarray.structure.merge import CoercibleMapping, CoercibleValue


# list of attributes of pd.DatetimeIndex that are ndarrays of time info
_DATETIMEINDEX_COMPONENTS = [
    "year",
    "month",
    "day",
    "hour",
    "minute",
    "second",
    "microsecond",
    "nanosecond",
    "date",
    "time",
    "dayofyear",
    "weekofyear",
    "dayofweek",
    "quarter",
]


class Dataset(
    DataWithCoords,
    DatasetAggregations,
    DatasetArithmetic,
    Mapping[Hashable, "DataArray"],
):
    """A multi-dimensional, in memory, array database.

    A dataset resembles an in-memory representation of a NetCDF file,
    and consists of variables, coordinates and attributes which
    together form a self describing dataset.

    Dataset implements the mapping interface with keys given by variable
    names and values given by DataArray objects for each variable name.

    By default, pandas indexes are created for one dimensional variables with
    name equal to their dimension (i.e., :term:`Dimension coordinate`) so those
    variables can be readily used as coordinates for label based indexing. When a
    :py:class:`~xarray.Coordinates` object is passed to ``coords``, any existing
    index(es) built from those coordinates will be added to the Dataset.

    To load data from a file or file-like object, use the `open_dataset`
    function.

    Parameters
    ----------
    data_vars : dict-like, optional
        A mapping from variable names to :py:class:`~xarray.DataArray`
        objects, :py:class:`~xarray.Variable` objects or to tuples of
        the form ``(dims, data[, attrs])`` which can be used as
        arguments to create a new ``Variable``. Each dimension must
        have the same length in all variables in which it appears.

        The following notations are accepted:

        - mapping {var name: DataArray}
        - mapping {var name: Variable}
        - mapping {var name: (dimension name, array-like)}
        - mapping {var name: (tuple of dimension names, array-like)}
        - mapping {dimension name: array-like}
          (if array-like is not a scalar it will be automatically moved to coords,
          see below)

        Each dimension must have the same length in all variables in
        which it appears.
    coords : :py:class:`~xarray.Coordinates` or dict-like, optional
        A :py:class:`~xarray.Coordinates` object or another mapping in
        similar form as the `data_vars` argument, except that each item
        is saved on the dataset as a "coordinate".
        These variables have an associated meaning: they describe
        constant/fixed/independent quantities, unlike the
        varying/measured/dependent quantities that belong in
        `variables`.

        The following notations are accepted for arbitrary mappings:

        - mapping {coord name: DataArray}
        - mapping {coord name: Variable}
        - mapping {coord name: (dimension name, array-like)}
        - mapping {coord name: (tuple of dimension names, array-like)}
        - mapping {dimension name: array-like}
          (the dimension name is implicitly set to be the same as the
          coord name)

        The last notation implies either that the coordinate value is a scalar
        or that it is a 1-dimensional array and the coord name is the same as
        the dimension name (i.e., a :term:`Dimension coordinate`). In the latter
        case, the 1-dimensional array will be assumed to give index values
        along the dimension with the same name.

        Alternatively, a :py:class:`~xarray.Coordinates` object may be used in
        order to explicitly pass indexes (e.g., a multi-index or any custom
        Xarray index) or to bypass the creation of a default index for any
        :term:`Dimension coordinate` included in that object.

    attrs : dict-like, optional
        Global attributes to save on this dataset.
        (see FAQ, :ref:`approach to metadata`)

    Examples
    --------
    In this example dataset, we will represent measurements of the temperature
    and pressure that were made under various conditions:

    * the measurements were made on four different days;
    * they were made at two separate locations, which we will represent using
      their latitude and longitude; and
    * they were made using three instrument developed by three different
      manufacturers, which we will refer to using the strings `'manufac1'`,
      `'manufac2'`, and `'manufac3'`.

    >>> np.random.seed(0)
    >>> temperature = 15 + 8 * np.random.randn(2, 3, 4)
    >>> precipitation = 10 * np.random.rand(2, 3, 4)
    >>> lon = [-99.83, -99.32]
    >>> lat = [42.25, 42.21]
    >>> instruments = ["manufac1", "manufac2", "manufac3"]
    >>> time = pd.date_range("2014-09-06", periods=4)
    >>> reference_time = pd.Timestamp("2014-09-05")

    Here, we initialize the dataset with multiple dimensions. We use the string
    `"loc"` to represent the location dimension of the data, the string
    `"instrument"` to represent the instrument manufacturer dimension, and the
    string `"time"` for the time dimension.

    >>> ds = xr.Dataset(
    ...     data_vars=dict(
    ...         temperature=(["loc", "instrument", "time"], temperature),
    ...         precipitation=(["loc", "instrument", "time"], precipitation),
    ...     ),
    ...     coords=dict(
    ...         lon=("loc", lon),
    ...         lat=("loc", lat),
    ...         instrument=instruments,
    ...         time=time,
    ...         reference_time=reference_time,
    ...     ),
    ...     attrs=dict(description="Weather related data."),
    ... )
    >>> ds
    <xarray.Dataset> Size: 552B
    Dimensions:         (loc: 2, instrument: 3, time: 4)
    Coordinates:
        lon             (loc) float64 16B -99.83 -99.32
        lat             (loc) float64 16B 42.25 42.21
      * instrument      (instrument) <U8 96B 'manufac1' 'manufac2' 'manufac3'
      * time            (time) datetime64[ns] 32B 2014-09-06 ... 2014-09-09
        reference_time  datetime64[ns] 8B 2014-09-05
    Dimensions without coordinates: loc
    Data variables:
        temperature     (loc, instrument, time) float64 192B 29.11 18.2 ... 9.063
        precipitation   (loc, instrument, time) float64 192B 4.562 5.684 ... 1.613
    Attributes:
        description:  Weather related data.

    Find out where the coldest temperature was and what values the
    other variables had:

    >>> ds.isel(ds.temperature.argmin(...))
    <xarray.Dataset> Size: 80B
    Dimensions:         ()
    Coordinates:
        lon             float64 8B -99.32
        lat             float64 8B 42.21
        instrument      <U8 32B 'manufac3'
        time            datetime64[ns] 8B 2014-09-06
        reference_time  datetime64[ns] 8B 2014-09-05
    Data variables:
        temperature     float64 8B -5.424
        precipitation   float64 8B 9.884
    Attributes:
        description:  Weather related data.

    """

    _attrs: dict[Hashable, Any] | None
    _cache: dict[str, Any]
    _coord_names: set[Hashable]
    _dims: dict[Hashable, int]
    _encoding: dict[Hashable, Any] | None
    _close: Callable[[], None] | None
    _indexes: dict[Hashable, Index]
    _variables: dict[Hashable, Variable]

    __slots__ = (
        "__weakref__",
        "_attrs",
        "_cache",
        "_close",
        "_coord_names",
        "_dims",
        "_encoding",
        "_indexes",
        "_variables",
    )

    def __init__(
        self,
        # could make a VariableArgs to use more generally, and refine these
        # categories
        data_vars: DataVars | None = None,
        coords: Mapping[Any, Any] | None = None,
        attrs: Mapping[Any, Any] | None = None,
    ) -> None:
        if data_vars is None:
            data_vars = {}
        if coords is None:
            coords = {}

        both_data_and_coords = set(data_vars) & set(coords)
        if both_data_and_coords:
            raise ValueError(
                f"variables {both_data_and_coords!r} are found in both data_vars and coords"
            )

        if isinstance(coords, Dataset):
            coords = coords._variables

        variables, coord_names, dims, indexes, _ = merge_data_and_coords(
            data_vars, coords
        )

        self._attrs = dict(attrs) if attrs else None
        self._close = None
        self._encoding = None
        self._variables = variables
        self._coord_names = coord_names
        self._dims = dims
        self._indexes = indexes

    # TODO: dirty workaround for mypy 1.5 error with inherited DatasetOpsMixin vs. Mapping
    # related to https://github.com/python/mypy/issues/9319?
    def __eq__(self, other: DsCompatible) -> Self:  # type: ignore[override]
        return super().__eq__(other)

    @classmethod
    def load_store(cls, store, decoder=None) -> Self:
        """Create a new dataset from the contents of a backends.*DataStore
        object
        """
        variables, attributes = store.load()
        if decoder:
            variables, attributes = decoder(variables, attributes)
        obj = cls(variables, attrs=attributes)
        obj.set_close(store.close)
        return obj

    @property
    def variables(self) -> Frozen[Hashable, Variable]:
        """Low level interface to Dataset contents as dict of Variable objects.

        This ordered dictionary is frozen to prevent mutation that could
        violate Dataset invariants. It contains all variable objects
        constituting the Dataset, including both data variables and
        coordinates.
        """
        return Frozen(self._variables)

    @property
    def attrs(self) -> dict[Any, Any]:
        """Dictionary of global attributes on this dataset"""
        if self._attrs is None:
            self._attrs = {}
        return self._attrs

    @attrs.setter
    def attrs(self, value: Mapping[Any, Any]) -> None:
        self._attrs = dict(value) if value else None

    @property
    def encoding(self) -> dict[Any, Any]:
        """Dictionary of global encoding attributes on this dataset"""
        if self._encoding is None:
            self._encoding = {}
        return self._encoding

    @encoding.setter
    def encoding(self, value: Mapping[Any, Any]) -> None:
        self._encoding = dict(value)

    def reset_encoding(self) -> Self:
        warnings.warn(
            "reset_encoding is deprecated since 2023.11, use `drop_encoding` instead",
            stacklevel=2,
        )
        return self.drop_encoding()

    def drop_encoding(self) -> Self:
        """Return a new Dataset without encoding on the dataset or any of its
        variables/coords."""
        variables = {k: v.drop_encoding() for k, v in self.variables.items()}
        return self._replace(variables=variables, encoding={})

    @property
    def dims(self) -> Frozen[Hashable, int]:
        """Mapping from dimension names to lengths.

        Cannot be modified directly, but is updated when adding new variables.

        Note that type of this object differs from `DataArray.dims`.
        See `Dataset.sizes` and `DataArray.sizes` for consistently named
        properties. This property will be changed to return a type more consistent with
        `DataArray.dims` in the future, i.e. a set of dimension names.

        See Also
        --------
        Dataset.sizes
        DataArray.dims
        """
        return FrozenMappingWarningOnValuesAccess(self._dims)

    @property
    def sizes(self) -> Frozen[Hashable, int]:
        """Mapping from dimension names to lengths.

        Cannot be modified directly, but is updated when adding new variables.

        This is an alias for `Dataset.dims` provided for the benefit of
        consistency with `DataArray.sizes`.

        See Also
        --------
        DataArray.sizes
        """
        return Frozen(self._dims)

    @property
    def dtypes(self) -> Frozen[Hashable, np.dtype]:
        """Mapping from data variable names to dtypes.

        Cannot be modified directly, but is updated when adding new variables.

        See Also
        --------
        DataArray.dtype
        """
        return Frozen(
            {
                n: v.dtype
                for n, v in self._variables.items()
                if n not in self._coord_names
            }
        )

    def load(self, **kwargs) -> Self:
        """Trigger loading data into memory and return this dataset.

        Data will be computed and/or loaded from disk or a remote source.

        Unlike ``.compute``, the original dataset is modified and returned.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.compute``.

        Returns
        -------
        object : Dataset
            Same object but with lazy data variables and coordinates as in-memory arrays.

        See Also
        --------
        dask.compute
        Dataset.compute
        Dataset.load_async
        DataArray.load
        Variable.load
        """
        # access .data to coerce everything to numpy or dask arrays
        chunked_data = {
            k: v._data for k, v in self.variables.items() if is_chunked_array(v._data)
        }
        if chunked_data:
            chunkmanager = get_chunked_array_type(*chunked_data.values())

            # evaluate all the chunked arrays simultaneously
            evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute(
                *chunked_data.values(), **kwargs
            )

            for k, data in zip(chunked_data, evaluated_data, strict=False):
                self.variables[k].data = data

        # load everything else sequentially
        [v.load() for k, v in self.variables.items() if k not in chunked_data]

        return self

    async def load_async(self, **kwargs) -> Self:
        """Trigger and await asynchronous loading of data into memory and return this dataset.

        Data will be computed and/or loaded from disk or a remote source.

        Unlike ``.compute``, the original dataset is modified and returned.

        Only works when opening data lazily from IO storage backends which support lazy asynchronous loading.
        Otherwise will raise a NotImplementedError.

        Note users are expected to limit concurrency themselves - xarray does not internally limit concurrency in any way.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.compute``.

        Returns
        -------
        object : Dataset
            Same object but with lazy data variables and coordinates as in-memory arrays.

        See Also
        --------
        dask.compute
        Dataset.compute
        Dataset.load
        DataArray.load_async
        Variable.load_async
        """
        # TODO refactor this to pull out the common chunked_data codepath

        # this blocks on chunked arrays but not on lazily indexed arrays

        # access .data to coerce everything to numpy or dask arrays
        chunked_data = {
            k: v._data for k, v in self.variables.items() if is_chunked_array(v._data)
        }
        if chunked_data:
            chunkmanager = get_chunked_array_type(*chunked_data.values())

            # evaluate all the chunked arrays simultaneously
            evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute(
                *chunked_data.values(), **kwargs
            )

            for k, data in zip(chunked_data, evaluated_data, strict=False):
                self.variables[k].data = data

        # load everything else concurrently
        coros = [
            v.load_async() for k, v in self.variables.items() if k not in chunked_data
        ]
        await asyncio.gather(*coros)

        return self

    def __dask_tokenize__(self) -> object:
        from dask.base import normalize_token

        return normalize_token(
            (type(self), self._variables, self._coord_names, self._attrs or None)
        )

    def __dask_graph__(self):
        graphs = {k: v.__dask_graph__() for k, v in self.variables.items()}
        graphs = {k: v for k, v in graphs.items() if v is not None}
        if not graphs:
            return None
        else:
            try:
                from dask.highlevelgraph import HighLevelGraph

                return HighLevelGraph.merge(*graphs.values())
            except ImportError:
                from dask import sharedict

                return sharedict.merge(*graphs.values())

    def __dask_keys__(self):
        import dask

        return [
            v.__dask_keys__()
            for v in self.variables.values()
            if dask.is_dask_collection(v)
        ]

    def __dask_layers__(self):
        import dask

        return sum(
            (
                v.__dask_layers__()
                for v in self.variables.values()
                if dask.is_dask_collection(v)
            ),
            (),
        )

    @property
    def __dask_optimize__(self):
        import dask.array as da

        return da.Array.__dask_optimize__

    @property
    def __dask_scheduler__(self):
        import dask.array as da

        return da.Array.__dask_scheduler__

    def __dask_postcompute__(self):
        return self._dask_postcompute, ()

    def __dask_postpersist__(self):
        return self._dask_postpersist, ()

    def _dask_postcompute(self, results: Iterable[Variable]) -> Self:
        import dask

        variables = {}
        results_iter = iter(results)

        for k, v in self._variables.items():
            if dask.is_dask_collection(v):
                rebuild, args = v.__dask_postcompute__()
                v = rebuild(next(results_iter), *args)
            variables[k] = v

        return type(self)._construct_direct(
            variables,
            self._coord_names,
            self._dims,
            self._attrs,
            self._indexes,
            self._encoding,
            self._close,
        )

    def _dask_postpersist(
        self, dsk: Mapping, *, rename: Mapping[str, str] | None = None
    ) -> Self:
        from dask import is_dask_collection
        from dask.highlevelgraph import HighLevelGraph
        from dask.optimization import cull

        variables = {}

        for k, v in self._variables.items():
            if not is_dask_collection(v):
                variables[k] = v
                continue

            if isinstance(dsk, HighLevelGraph):
                # dask >= 2021.3
                # __dask_postpersist__() was called by dask.highlevelgraph.
                # Don't use dsk.cull(), as we need to prevent partial layers:
                # https://github.com/dask/dask/issues/7137
                layers = v.__dask_layers__()
                if rename:
                    layers = [rename.get(k, k) for k in layers]
                dsk2 = dsk.cull_layers(layers)
            elif rename:  # pragma: nocover
                # At the moment of writing, this is only for forward compatibility.
                # replace_name_in_key requires dask >= 2021.3.
                from dask.base import flatten, replace_name_in_key

                keys = [
                    replace_name_in_key(k, rename) for k in flatten(v.__dask_keys__())
                ]
                dsk2, _ = cull(dsk, keys)
            else:
                # __dask_postpersist__() was called by dask.optimize or dask.persist
                dsk2, _ = cull(dsk, v.__dask_keys__())

            rebuild, args = v.__dask_postpersist__()
            # rename was added in dask 2021.3
            kwargs = {"rename": rename} if rename else {}
            variables[k] = rebuild(dsk2, *args, **kwargs)

        return type(self)._construct_direct(
            variables,
            self._coord_names,
            self._dims,
            self._attrs,
            self._indexes,
            self._encoding,
            self._close,
        )

    def compute(self, **kwargs) -> Self:
        """Trigger loading data into memory and return a new dataset.

        Data will be computed and/or loaded from disk or a remote source.

        Unlike ``.load``, the original dataset is left unaltered.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.compute``.

        Returns
        -------
        object : Dataset
            New object with lazy data variables and coordinates as in-memory arrays.

        See Also
        --------
        dask.compute
        Dataset.load
        Dataset.load_async
        DataArray.compute
        Variable.compute
        """
        new = self.copy(deep=False)
        return new.load(**kwargs)

    def _persist_inplace(self, **kwargs) -> Self:
        """Persist all chunked arrays in memory."""
        # access .data to coerce everything to numpy or dask arrays
        lazy_data = {
            k: v._data for k, v in self.variables.items() if is_chunked_array(v._data)
        }
        if lazy_data:
            chunkmanager = get_chunked_array_type(*lazy_data.values())

            # evaluate all the dask arrays simultaneously
            evaluated_data = chunkmanager.persist(*lazy_data.values(), **kwargs)

            for k, data in zip(lazy_data, evaluated_data, strict=False):
                self.variables[k].data = data

        return self

    def persist(self, **kwargs) -> Self:
        """Trigger computation, keeping data as chunked arrays.

        This operation can be used to trigger computation on underlying dask
        arrays, similar to ``.compute()`` or ``.load()``.  However this
        operation keeps the data as dask arrays. This is particularly useful
        when using the dask.distributed scheduler and you want to load a large
        amount of data into distributed memory.
        Like compute (but unlike load), the original dataset is left unaltered.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.persist``.

        Returns
        -------
        object : Dataset
            New object with all dask-backed coordinates and data variables as persisted dask arrays.

        See Also
        --------
        dask.persist
        """
        new = self.copy(deep=False)
        return new._persist_inplace(**kwargs)

    @classmethod
    def _construct_direct(
        cls,
        variables: dict[Any, Variable],
        coord_names: set[Hashable],
        dims: dict[Any, int] | None = None,
        attrs: dict | None = None,
        indexes: dict[Any, Index] | None = None,
        encoding: dict | None = None,
        close: Callable[[], None] | None = None,
    ) -> Self:
        """Shortcut around __init__ for internal use when we want to skip
        costly validation
        """
        if dims is None:
            dims = calculate_dimensions(variables)
        if indexes is None:
            indexes = {}
        obj = object.__new__(cls)
        obj._variables = variables
        obj._coord_names = coord_names
        obj._dims = dims
        obj._indexes = indexes
        obj._attrs = attrs
        obj._close = close
        obj._encoding = encoding
        return obj

    def _replace(
        self,
        variables: dict[Hashable, Variable] | None = None,
        coord_names: set[Hashable] | None = None,
        dims: dict[Any, int] | None = None,
        attrs: dict[Hashable, Any] | Default | None = _default,
        indexes: dict[Hashable, Index] | None = None,
        encoding: dict | Default | None = _default,
        inplace: bool = False,
    ) -> Self:
        """Fastpath constructor for internal use.

        Returns an object with optionally with replaced attributes.

        Explicitly passed arguments are *not* copied when placed on the new
        dataset. It is up to the caller to ensure that they have the right type
        and are not used elsewhere.
        """
        if inplace:
            if variables is not None:
                self._variables = variables
            if coord_names is not None:
                self._coord_names = coord_names
            if dims is not None:
                self._dims = dims
            if attrs is not _default:
                self._attrs = attrs
            if indexes is not None:
                self._indexes = indexes
            if encoding is not _default:
                self._encoding = encoding
            obj = self
        else:
            if variables is None:
                variables = self._variables.copy()
            if coord_names is None:
                coord_names = self._coord_names.copy()
            if dims is None:
                dims = self._dims.copy()
            if attrs is _default:
                attrs = copy.copy(self._attrs)
            if indexes is None:
                indexes = self._indexes.copy()
            if encoding is _default:
                encoding = copy.copy(self._encoding)
            obj = self._construct_direct(
                variables, coord_names, dims, attrs, indexes, encoding
            )
        return obj

    def _replace_with_new_dims(
        self,
        variables: dict[Hashable, Variable],
        coord_names: set | None = None,
        attrs: dict[Hashable, Any] | Default | None = _default,
        indexes: dict[Hashable, Index] | None = None,
        inplace: bool = False,
    ) -> Self:
        """Replace variables with recalculated dimensions."""
        dims = calculate_dimensions(variables)
        return self._replace(
            variables, coord_names, dims, attrs, indexes, inplace=inplace
        )

    def _replace_vars_and_dims(
        self,
        variables: dict[Hashable, Variable],
        coord_names: set | None = None,
        dims: dict[Hashable, int] | None = None,
        attrs: dict[Hashable, Any] | Default | None = _default,
        inplace: bool = False,
    ) -> Self:
        """Deprecated version of _replace_with_new_dims().

        Unlike _replace_with_new_dims(), this method always recalculates
        indexes from variables.
        """
        if dims is None:
            dims = calculate_dimensions(variables)
        return self._replace(
            variables, coord_names, dims, attrs, indexes=None, inplace=inplace
        )

    def _overwrite_indexes(
        self,
        indexes: Mapping[Hashable, Index],
        variables: Mapping[Hashable, Variable] | None = None,
        drop_variables: list[Hashable] | None = None,
        drop_indexes: list[Hashable] | None = None,
        rename_dims: Mapping[Hashable, Hashable] | None = None,
    ) -> Self:
        """Maybe replace indexes.

        This function may do a lot more depending on index query
        results.

        """
        if not indexes:
            return self

        if variables is None:
            variables = {}
        if drop_variables is None:
            drop_variables = []
        if drop_indexes is None:
            drop_indexes = []

        new_variables = self._variables.copy()
        new_coord_names = self._coord_names.copy()
        new_indexes = dict(self._indexes)

        index_variables = {}
        no_index_variables = {}
        for name, var in variables.items():
            old_var = self._variables.get(name)
            if old_var is not None:
                var.attrs.update(old_var.attrs)
                var.encoding.update(old_var.encoding)
            if name in indexes:
                index_variables[name] = var
            else:
                no_index_variables[name] = var

        for name in indexes:
            new_indexes[name] = indexes[name]

        for name, var in index_variables.items():
            new_coord_names.add(name)
            new_variables[name] = var

        # append no-index variables at the end
        for k in no_index_variables:
            new_variables.pop(k)
        new_variables.update(no_index_variables)

        for name in drop_indexes:
            new_indexes.pop(name)

        for name in drop_variables:
            new_variables.pop(name)
            new_indexes.pop(name, None)
            new_coord_names.remove(name)

        replaced = self._replace(
            variables=new_variables, coord_names=new_coord_names, indexes=new_indexes
        )

        if rename_dims:
            # skip rename indexes: they should already have the right name(s)
            dims = replaced._rename_dims(rename_dims)
            new_variables, new_coord_names = replaced._rename_vars({}, rename_dims)
            return replaced._replace(
                variables=new_variables, coord_names=new_coord_names, dims=dims
            )
        else:
            return replaced

    def copy(self, deep: bool = False, data: DataVars | None = None) -> Self:
        """Returns a copy of this dataset.

        If `deep=True`, a deep copy is made of each of the component variables.
        Otherwise, a shallow copy of each of the component variable is made, so
        that the underlying memory region of the new dataset is the same as in
        the original dataset.

        Use `data` to create a new object with the same structure as
        original but entirely new data.

        Parameters
        ----------
        deep : bool, default: False
            Whether each component variable is loaded into memory and copied onto
            the new object. Default is False.
        data : dict-like or None, optional
            Data to use in the new object. Each item in `data` must have same
            shape as corresponding data variable in original. When `data` is
            used, `deep` is ignored for the data variables and only used for
            coords.

        Returns
        -------
        object : Dataset
            New object with dimensions, attributes, coordinates, name, encoding,
            and optionally data copied from original.

        Examples
        --------
        Shallow copy versus deep copy

        >>> da = xr.DataArray(np.random.randn(2, 3))
        >>> ds = xr.Dataset(
        ...     {"foo": da, "bar": ("x", [-1, 2])},
        ...     coords={"x": ["one", "two"]},
        ... )
        >>> ds.copy()
        <xarray.Dataset> Size: 88B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Coordinates:
          * x        (x) <U3 24B 'one' 'two'
        Dimensions without coordinates: dim_0, dim_1
        Data variables:
            foo      (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 -0.9773
            bar      (x) int64 16B -1 2

        >>> ds_0 = ds.copy(deep=False)
        >>> ds_0["foo"][0, 0] = 7
        >>> ds_0
        <xarray.Dataset> Size: 88B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Coordinates:
          * x        (x) <U3 24B 'one' 'two'
        Dimensions without coordinates: dim_0, dim_1
        Data variables:
            foo      (dim_0, dim_1) float64 48B 7.0 0.4002 0.9787 2.241 1.868 -0.9773
            bar      (x) int64 16B -1 2

        >>> ds
        <xarray.Dataset> Size: 88B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Coordinates:
          * x        (x) <U3 24B 'one' 'two'
        Dimensions without coordinates: dim_0, dim_1
        Data variables:
            foo      (dim_0, dim_1) float64 48B 7.0 0.4002 0.9787 2.241 1.868 -0.9773
            bar      (x) int64 16B -1 2

        Changing the data using the ``data`` argument maintains the
        structure of the original object, but with the new data. Original
        object is unaffected.

        >>> ds.copy(data={"foo": np.arange(6).reshape(2, 3), "bar": ["a", "b"]})
        <xarray.Dataset> Size: 80B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Coordinates:
          * x        (x) <U3 24B 'one' 'two'
        Dimensions without coordinates: dim_0, dim_1
        Data variables:
            foo      (dim_0, dim_1) int64 48B 0 1 2 3 4 5
            bar      (x) <U1 8B 'a' 'b'

        >>> ds
        <xarray.Dataset> Size: 88B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Coordinates:
          * x        (x) <U3 24B 'one' 'two'
        Dimensions without coordinates: dim_0, dim_1
        Data variables:
            foo      (dim_0, dim_1) float64 48B 7.0 0.4002 0.9787 2.241 1.868 -0.9773
            bar      (x) int64 16B -1 2

        See Also
        --------
        pandas.DataFrame.copy
        """
        return self._copy(deep=deep, data=data)

    def _copy(
        self,
        deep: bool = False,
        data: DataVars | None = None,
        memo: dict[int, Any] | None = None,
    ) -> Self:
        if data is None:
            data = {}
        elif not utils.is_dict_like(data):
            raise ValueError("Data must be dict-like")

        if data:
            var_keys = set(self.data_vars.keys())
            data_keys = set(data.keys())
            keys_not_in_vars = data_keys - var_keys
            if keys_not_in_vars:
                raise ValueError(
                    "Data must only contain variables in original "
                    f"dataset. Extra variables: {keys_not_in_vars}"
                )
            keys_missing_from_data = var_keys - data_keys
            if keys_missing_from_data:
                raise ValueError(
                    "Data must contain all variables in original "
                    f"dataset. Data is missing {keys_missing_from_data}"
                )

        indexes, index_vars = self.xindexes.copy_indexes(deep=deep)

        variables = {}
        for k, v in self._variables.items():
            if k in index_vars:
                variables[k] = index_vars[k]
            else:
                variables[k] = v._copy(deep=deep, data=data.get(k), memo=memo)

        attrs = copy.deepcopy(self._attrs, memo) if deep else copy.copy(self._attrs)
        encoding = (
            copy.deepcopy(self._encoding, memo) if deep else copy.copy(self._encoding)
        )

        return self._replace(variables, indexes=indexes, attrs=attrs, encoding=encoding)

    def __copy__(self) -> Self:
        return self._copy(deep=False)

    def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
        return self._copy(deep=True, memo=memo)

    def as_numpy(self) -> Self:
        """
        Coerces wrapped data and coordinates into numpy arrays, returning a Dataset.

        See also
        --------
        DataArray.as_numpy
        DataArray.to_numpy : Returns only the data as a numpy.ndarray object.
        """
        numpy_variables = {k: v.as_numpy() for k, v in self.variables.items()}
        return self._replace(variables=numpy_variables)

    def _copy_listed(self, names: Iterable[Hashable]) -> Self:
        """Create a new Dataset with the listed variables from this dataset and
        the all relevant coordinates. Skips all validation.
        """
        variables: dict[Hashable, Variable] = {}
        coord_names = set()
        indexes: dict[Hashable, Index] = {}

        for name in names:
            try:
                variables[name] = self._variables[name]
            except KeyError:
                ref_name, var_name, var = _get_virtual_variable(
                    self._variables, name, self.sizes
                )
                variables[var_name] = var
                if ref_name in self._coord_names or ref_name in self.dims:
                    coord_names.add(var_name)
                if (var_name,) == var.dims:
                    index, index_vars = create_default_index_implicit(var, names)
                    indexes.update(dict.fromkeys(index_vars, index))
                    variables.update(index_vars)
                    coord_names.update(index_vars)

        needed_dims: OrderedSet[Hashable] = OrderedSet()
        for v in variables.values():
            needed_dims.update(v.dims)

        dims = {k: self.sizes[k] for k in needed_dims}

        # preserves ordering of coordinates
        for k in self._variables:
            if k not in self._coord_names:
                continue

            if set(self.variables[k].dims) <= needed_dims:
                variables[k] = self._variables[k]
                coord_names.add(k)

        indexes.update(filter_indexes_from_coords(self._indexes, coord_names))

        return self._replace(variables, coord_names, dims, indexes=indexes)

    def _construct_dataarray(self, name: Hashable) -> DataArray:
        """Construct a DataArray by indexing this dataset"""
        from xarray.core.dataarray import DataArray

        try:
            variable = self._variables[name]
        except KeyError:
            _, name, variable = _get_virtual_variable(self._variables, name, self.sizes)

        needed_dims = set(variable.dims)

        coords: dict[Hashable, Variable] = {}
        # preserve ordering
        for k in self._variables:
            if k in self._indexes:
                add_coord = self._indexes[k].should_add_coord_to_array(
                    k, self._variables[k], needed_dims
                )
            else:
                var_dims = set(self._variables[k].dims)
                add_coord = k in self._coord_names and var_dims <= needed_dims

            if add_coord:
                coords[k] = self._variables[k]

        indexes = filter_indexes_from_coords(self._indexes, set(coords))

        return DataArray(variable, coords, name=name, indexes=indexes, fastpath=True)

    @property
    def _attr_sources(self) -> Iterable[Mapping[Hashable, Any]]:
        """Places to look-up items for attribute-style access"""
        yield from self._item_sources
        yield self.attrs

    @property
    def _item_sources(self) -> Iterable[Mapping[Hashable, Any]]:
        """Places to look-up items for key-completion"""
        yield self.data_vars
        yield FilteredMapping(keys=self._coord_names, mapping=self.coords)

        # virtual coordinates
        yield FilteredMapping(keys=self.sizes, mapping=self)

    def __contains__(self, key: object) -> bool:
        """The 'in' operator will return true or false depending on whether
        'key' is an array in the dataset or not.
        """
        return key in self._variables

    def __len__(self) -> int:
        return len(self.data_vars)

    def __bool__(self) -> bool:
        return bool(self.data_vars)

    def __iter__(self) -> Iterator[Hashable]:
        return iter(self.data_vars)

    if TYPE_CHECKING:
        # needed because __getattr__ is returning Any and otherwise
        # this class counts as part of the SupportsArray Protocol
        __array__ = None  # type: ignore[var-annotated,unused-ignore]

    else:

        def __array__(self, dtype=None, copy=None):
            raise TypeError(
                "cannot directly convert an xarray.Dataset into a "
                "numpy array. Instead, create an xarray.DataArray "
                "first, either with indexing on the Dataset or by "
                "invoking the `to_dataarray()` method."
            )

    @property
    def nbytes(self) -> int:
        """
        Total bytes consumed by the data arrays of all variables in this dataset.

        If the backend array for any variable does not include ``nbytes``, estimates
        the total bytes for that array based on the ``size`` and ``dtype``.
        """
        return sum(v.nbytes for v in self.variables.values())

    @property
    def loc(self) -> _LocIndexer[Self]:
        """Attribute for location based indexing. Only supports __getitem__,
        and only when the key is a dict of the form {dim: labels}.
        """
        return _LocIndexer(self)

    @overload
    def __getitem__(self, key: Hashable) -> DataArray: ...

    # Mapping is Iterable
    @overload
    def __getitem__(self, key: Iterable[Hashable]) -> Self: ...

    def __getitem__(
        self, key: Mapping[Any, Any] | Hashable | Iterable[Hashable]
    ) -> Self | DataArray:
        """Access variables or coordinates of this dataset as a
        :py:class:`~xarray.DataArray` or a subset of variables or a indexed dataset.

        Indexing with a list of names will return a new ``Dataset`` object.
        """
        from xarray.core.formatting import shorten_list_repr

        if utils.is_dict_like(key):
            return self.isel(**key)
        if utils.hashable(key):
            try:
                return self._construct_dataarray(key)
            except KeyError as e:
                message = f"No variable named {key!r}."

                best_guess = utils.did_you_mean(key, self.variables.keys())
                if best_guess:
                    message += f" {best_guess}"
                else:
                    message += f" Variables on the dataset include {shorten_list_repr(list(self.variables.keys()), max_items=10)}"

                # If someone attempts `ds['foo' , 'bar']` instead of `ds[['foo', 'bar']]`
                if isinstance(key, tuple):
                    message += f"\nHint: use a list to select multiple variables, for example `ds[{list(key)}]`"
                raise KeyError(message) from e

        if utils.iterable_of_hashable(key):
            return self._copy_listed(key)
        raise ValueError(f"Unsupported key-type {type(key)}")

    def __setitem__(
        self, key: Hashable | Iterable[Hashable] | Mapping, value: Any
    ) -> None:
        """Add an array to this dataset.
        Multiple arrays can be added at the same time, in which case each of
        the following operations is applied to the respective value.

        If key is dict-like, update all variables in the dataset
        one by one with the given value at the given location.
        If the given value is also a dataset, select corresponding variables
        in the given value and in the dataset to be changed.

        If value is a `
        from .dataarray import DataArray`, call its `select_vars()` method, rename it
        to `key` and merge the contents of the resulting dataset into this
        dataset.

        If value is a `Variable` object (or tuple of form
        ``(dims, data[, attrs])``), add it to this dataset as a new
        variable.
        """
        from xarray.core.dataarray import DataArray

        if utils.is_dict_like(key):
            # check for consistency and convert value to dataset
            value = self._setitem_check(key, value)
            # loop over dataset variables and set new values
            processed = []
            for name, var in self.items():
                try:
                    var[key] = value[name]
                    processed.append(name)
                except Exception as e:
                    if processed:
                        raise RuntimeError(
                            "An error occurred while setting values of the"
                            f" variable '{name}'. The following variables have"
                            f" been successfully updated:\n{processed}"
                        ) from e
                    else:
                        raise e

        elif utils.hashable(key):
            if isinstance(value, Dataset):
                raise TypeError(
                    "Cannot assign a Dataset to a single key - only a DataArray or Variable "
                    "object can be stored under a single key."
                )
            self.update({key: value})

        elif utils.iterable_of_hashable(key):
            keylist = list(key)
            if len(keylist) == 0:
                raise ValueError("Empty list of variables to be set")
            if len(keylist) == 1:
                self.update({keylist[0]: value})
            else:
                if len(keylist) != len(value):
                    raise ValueError(
                        f"Different lengths of variables to be set "
                        f"({len(keylist)}) and data used as input for "
                        f"setting ({len(value)})"
                    )
                if isinstance(value, Dataset):
                    self.update(
                        dict(zip(keylist, value.data_vars.values(), strict=True))
                    )
                elif isinstance(value, DataArray):
                    raise ValueError("Cannot assign single DataArray to multiple keys")
                else:
                    self.update(dict(zip(keylist, value, strict=True)))

        else:
            raise ValueError(f"Unsupported key-type {type(key)}")

    def _setitem_check(self, key, value):
        """Consistency check for __setitem__

        When assigning values to a subset of a Dataset, do consistency check beforehand
        to avoid leaving the dataset in a partially updated state when an error occurs.
        """
        from xarray.core.dataarray import DataArray

        if isinstance(value, Dataset):
            missing_vars = [
                name for name in value.data_vars if name not in self.data_vars
            ]
            if missing_vars:
                raise ValueError(
                    f"Variables {missing_vars} in new values"
                    f" not available in original dataset:\n{self}"
                )
        elif not any(isinstance(value, t) for t in [DataArray, Number, str]):
            raise TypeError(
                "Dataset assignment only accepts DataArrays, Datasets, and scalars."
            )

        new_value = Dataset()
        for name, var in self.items():
            # test indexing
            try:
                var_k = var[key]
            except Exception as e:
                raise ValueError(
                    f"Variable '{name}': indexer {key} not available"
                ) from e

            if isinstance(value, Dataset):
                val = value[name]
            else:
                val = value

            if isinstance(val, DataArray):
                # check consistency of dimensions
                for dim in val.dims:
                    if dim not in var_k.dims:
                        raise KeyError(
                            f"Variable '{name}': dimension '{dim}' appears in new values "
                            f"but not in the indexed original data"
                        )
                dims = tuple(dim for dim in var_k.dims if dim in val.dims)
                if dims != val.dims:
                    raise ValueError(
                        f"Variable '{name}': dimension order differs between"
                        f" original and new data:\n{dims}\nvs.\n{val.dims}"
                    )
            else:
                val = np.array(val)

            # type conversion
            new_value[name] = duck_array_ops.astype(val, dtype=var_k.dtype, copy=False)

        # check consistency of dimension sizes and dimension coordinates
        if isinstance(value, DataArray | Dataset):
            align(self[key], value, join="exact", copy=False)

        return new_value

    def __delitem__(self, key: Hashable) -> None:
        """Remove a variable from this dataset."""
        assert_no_index_corrupted(self.xindexes, {key})

        if key in self._indexes:
            del self._indexes[key]
        del self._variables[key]
        self._coord_names.discard(key)
        self._dims = calculate_dimensions(self._variables)

    # mutable objects should not be hashable
    # https://github.com/python/mypy/issues/4266
    __hash__ = None  # type: ignore[assignment]

    def _all_compat(self, other: Self, compat_str: str) -> bool:
        """Helper function for equals and identical"""

        # some stores (e.g., scipy) do not seem to preserve order, so don't
        # require matching order for equality
        def compat(x: Variable, y: Variable) -> bool:
            return getattr(x, compat_str)(y)

        return self._coord_names == other._coord_names and utils.dict_equiv(
            self._variables, other._variables, compat=compat
        )

    def broadcast_equals(self, other: Self) -> bool:
        """Two Datasets are broadcast equal if they are equal after
        broadcasting all variables against each other.

        For example, variables that are scalar in one dataset but non-scalar in
        the other dataset can still be broadcast equal if the the non-scalar
        variable is a constant.

        Examples
        --------

        # 2D array with shape (1, 3)

        >>> data = np.array([[1, 2, 3]])
        >>> a = xr.Dataset(
        ...     {"variable_name": (("space", "time"), data)},
        ...     coords={"space": [0], "time": [0, 1, 2]},
        ... )
        >>> a
        <xarray.Dataset> Size: 56B
        Dimensions:        (space: 1, time: 3)
        Coordinates:
          * space          (space) int64 8B 0
          * time           (time) int64 24B 0 1 2
        Data variables:
            variable_name  (space, time) int64 24B 1 2 3

        # 2D array with shape (3, 1)

        >>> data = np.array([[1], [2], [3]])
        >>> b = xr.Dataset(
        ...     {"variable_name": (("time", "space"), data)},
        ...     coords={"time": [0, 1, 2], "space": [0]},
        ... )
        >>> b
        <xarray.Dataset> Size: 56B
        Dimensions:        (time: 3, space: 1)
        Coordinates:
          * time           (time) int64 24B 0 1 2
          * space          (space) int64 8B 0
        Data variables:
            variable_name  (time, space) int64 24B 1 2 3

        .equals returns True if two Datasets have the same values, dimensions, and coordinates. .broadcast_equals returns True if the
        results of broadcasting two Datasets against each other have the same values, dimensions, and coordinates.

        >>> a.equals(b)
        False

        >>> a.broadcast_equals(b)
        True

        >>> a2, b2 = xr.broadcast(a, b)
        >>> a2.equals(b2)
        True

        See Also
        --------
        Dataset.equals
        Dataset.identical
        Dataset.broadcast
        """
        try:
            return self._all_compat(other, "broadcast_equals")
        except (TypeError, AttributeError):
            return False

    def equals(self, other: Self) -> bool:
        """Two Datasets are equal if they have matching variables and
        coordinates, all of which are equal.

        Datasets can still be equal (like pandas objects) if they have NaN
        values in the same locations.

        This method is necessary because `v1 == v2` for ``Dataset``
        does element-wise comparisons (like numpy.ndarrays).

        Examples
        --------

        # 2D array with shape (1, 3)

        >>> data = np.array([[1, 2, 3]])
        >>> dataset1 = xr.Dataset(
        ...     {"variable_name": (("space", "time"), data)},
        ...     coords={"space": [0], "time": [0, 1, 2]},
        ... )
        >>> dataset1
        <xarray.Dataset> Size: 56B
        Dimensions:        (space: 1, time: 3)
        Coordinates:
          * space          (space) int64 8B 0
          * time           (time) int64 24B 0 1 2
        Data variables:
            variable_name  (space, time) int64 24B 1 2 3

        # 2D array with shape (3, 1)

        >>> data = np.array([[1], [2], [3]])
        >>> dataset2 = xr.Dataset(
        ...     {"variable_name": (("time", "space"), data)},
        ...     coords={"time": [0, 1, 2], "space": [0]},
        ... )
        >>> dataset2
        <xarray.Dataset> Size: 56B
        Dimensions:        (time: 3, space: 1)
        Coordinates:
          * time           (time) int64 24B 0 1 2
          * space          (space) int64 8B 0
        Data variables:
            variable_name  (time, space) int64 24B 1 2 3
        >>> dataset1.equals(dataset2)
        False

        >>> dataset1.broadcast_equals(dataset2)
        True

        .equals returns True if two Datasets have the same values, dimensions, and coordinates. .broadcast_equals returns True if the
        results of broadcasting two Datasets against each other have the same values, dimensions, and coordinates.

        Similar for missing values too:

        >>> ds1 = xr.Dataset(
        ...     {
        ...         "temperature": (["x", "y"], [[1, np.nan], [3, 4]]),
        ...     },
        ...     coords={"x": [0, 1], "y": [0, 1]},
        ... )

        >>> ds2 = xr.Dataset(
        ...     {
        ...         "temperature": (["x", "y"], [[1, np.nan], [3, 4]]),
        ...     },
        ...     coords={"x": [0, 1], "y": [0, 1]},
        ... )
        >>> ds1.equals(ds2)
        True

        See Also
        --------
        Dataset.broadcast_equals
        Dataset.identical
        """
        try:
            return self._all_compat(other, "equals")
        except (TypeError, AttributeError):
            return False

    def identical(self, other: Self) -> bool:
        """Like equals, but also checks all dataset attributes and the
        attributes on all variables and coordinates.

        Example
        -------

        >>> a = xr.Dataset(
        ...     {"Width": ("X", [1, 2, 3])},
        ...     coords={"X": [1, 2, 3]},
        ...     attrs={"units": "m"},
        ... )
        >>> b = xr.Dataset(
        ...     {"Width": ("X", [1, 2, 3])},
        ...     coords={"X": [1, 2, 3]},
        ...     attrs={"units": "m"},
        ... )
        >>> c = xr.Dataset(
        ...     {"Width": ("X", [1, 2, 3])},
        ...     coords={"X": [1, 2, 3]},
        ...     attrs={"units": "ft"},
        ... )
        >>> a
        <xarray.Dataset> Size: 48B
        Dimensions:  (X: 3)
        Coordinates:
          * X        (X) int64 24B 1 2 3
        Data variables:
            Width    (X) int64 24B 1 2 3
        Attributes:
            units:    m

        >>> b
        <xarray.Dataset> Size: 48B
        Dimensions:  (X: 3)
        Coordinates:
          * X        (X) int64 24B 1 2 3
        Data variables:
            Width    (X) int64 24B 1 2 3
        Attributes:
            units:    m

        >>> c
        <xarray.Dataset> Size: 48B
        Dimensions:  (X: 3)
        Coordinates:
          * X        (X) int64 24B 1 2 3
        Data variables:
            Width    (X) int64 24B 1 2 3
        Attributes:
            units:    ft

        >>> a.equals(b)
        True

        >>> a.identical(b)
        True

        >>> a.equals(c)
        True

        >>> a.identical(c)
        False

        See Also
        --------
        Dataset.broadcast_equals
        Dataset.equals
        """
        try:
            return utils.dict_equiv(self.attrs, other.attrs) and self._all_compat(
                other, "identical"
            )
        except (TypeError, AttributeError):
            return False

    @property
    def indexes(self) -> Indexes[pd.Index]:
        """Mapping of pandas.Index objects used for label based indexing.

        Raises an error if this Dataset has indexes that cannot be coerced
        to pandas.Index objects.

        See Also
        --------
        Dataset.xindexes

        """
        return self.xindexes.to_pandas_indexes()

    @property
    def xindexes(self) -> Indexes[Index]:
        """Mapping of :py:class:`~xarray.indexes.Index` objects
        used for label based indexing.
        """
        return Indexes(self._indexes, {k: self._variables[k] for k in self._indexes})

    @property
    def coords(self) -> DatasetCoordinates:
        """Mapping of :py:class:`~xarray.DataArray` objects corresponding to
        coordinate variables.

        See Also
        --------
        Coordinates
        """
        return DatasetCoordinates(self)

    @property
    def data_vars(self) -> DataVariables:
        """Dictionary of DataArray objects corresponding to data variables"""
        return DataVariables(self)

    def set_coords(self, names: Hashable | Iterable[Hashable]) -> Self:
        """Given names of one or more variables, set them as coordinates

        Parameters
        ----------
        names : hashable or iterable of hashable
            Name(s) of variables in this dataset to convert into coordinates.

        Examples
        --------
        >>> dataset = xr.Dataset(
        ...     {
        ...         "pressure": ("time", [1.013, 1.2, 3.5]),
        ...         "time": pd.date_range("2023-01-01", periods=3),
        ...     }
        ... )
        >>> dataset
        <xarray.Dataset> Size: 48B
        Dimensions:   (time: 3)
        Coordinates:
          * time      (time) datetime64[ns] 24B 2023-01-01 2023-01-02 2023-01-03
        Data variables:
            pressure  (time) float64 24B 1.013 1.2 3.5

        >>> dataset.set_coords("pressure")
        <xarray.Dataset> Size: 48B
        Dimensions:   (time: 3)
        Coordinates:
            pressure  (time) float64 24B 1.013 1.2 3.5
          * time      (time) datetime64[ns] 24B 2023-01-01 2023-01-02 2023-01-03
        Data variables:
            *empty*

        On calling ``set_coords`` , these data variables are converted to coordinates, as shown in the final dataset.

        Returns
        -------
        Dataset

        See Also
        --------
        Dataset.swap_dims
        Dataset.assign_coords
        """
        # TODO: allow inserting new coordinates with this method, like
        # DataFrame.set_index?
        # nb. check in self._variables, not self.data_vars to insure that the
        # operation is idempotent
        if isinstance(names, str) or not isinstance(names, Iterable):
            names = [names]
        else:
            names = list(names)
        self._assert_all_in_dataset(names)
        obj = self.copy()
        obj._coord_names.update(names)
        return obj

    def reset_coords(
        self,
        names: Dims = None,
        drop: bool = False,
    ) -> Self:
        """Given names of coordinates, reset them to become variables

        Parameters
        ----------
        names : str, Iterable of Hashable or None, optional
            Name(s) of non-index coordinates in this dataset to reset into
            variables. By default, all non-index coordinates are reset.
        drop : bool, default: False
            If True, remove coordinates instead of converting them into
            variables.

        Examples
        --------
        >>> dataset = xr.Dataset(
        ...     {
        ...         "temperature": (
        ...             ["time", "lat", "lon"],
        ...             [[[25, 26], [27, 28]], [[29, 30], [31, 32]]],
        ...         ),
        ...         "precipitation": (
        ...             ["time", "lat", "lon"],
        ...             [[[0.5, 0.8], [0.2, 0.4]], [[0.3, 0.6], [0.7, 0.9]]],
        ...         ),
        ...     },
        ...     coords={
        ...         "time": pd.date_range(start="2023-01-01", periods=2),
        ...         "lat": [40, 41],
        ...         "lon": [-80, -79],
        ...         "altitude": 1000,
        ...     },
        ... )

        # Dataset before resetting coordinates

        >>> dataset
        <xarray.Dataset> Size: 184B
        Dimensions:        (time: 2, lat: 2, lon: 2)
        Coordinates:
          * time           (time) datetime64[ns] 16B 2023-01-01 2023-01-02
          * lat            (lat) int64 16B 40 41
          * lon            (lon) int64 16B -80 -79
            altitude       int64 8B 1000
        Data variables:
            temperature    (time, lat, lon) int64 64B 25 26 27 28 29 30 31 32
            precipitation  (time, lat, lon) float64 64B 0.5 0.8 0.2 0.4 0.3 0.6 0.7 0.9

        # Reset the 'altitude' coordinate

        >>> dataset_reset = dataset.reset_coords("altitude")

        # Dataset after resetting coordinates

        >>> dataset_reset
        <xarray.Dataset> Size: 184B
        Dimensions:        (time: 2, lat: 2, lon: 2)
        Coordinates:
          * time           (time) datetime64[ns] 16B 2023-01-01 2023-01-02
          * lat            (lat) int64 16B 40 41
          * lon            (lon) int64 16B -80 -79
        Data variables:
            temperature    (time, lat, lon) int64 64B 25 26 27 28 29 30 31 32
            precipitation  (time, lat, lon) float64 64B 0.5 0.8 0.2 0.4 0.3 0.6 0.7 0.9
            altitude       int64 8B 1000

        Returns
        -------
        Dataset

        See Also
        --------
        Dataset.set_coords
        """
        if names is None:
            names = self._coord_names - set(self._indexes)
        else:
            if isinstance(names, str) or not isinstance(names, Iterable):
                names = [names]
            else:
                names = list(names)
            self._assert_all_in_dataset(names)
            bad_coords = set(names) & set(self._indexes)
            if bad_coords:
                raise ValueError(
                    f"cannot remove index coordinates with reset_coords: {bad_coords}"
                )
        obj = self.copy()
        obj._coord_names.difference_update(names)
        if drop:
            for name in names:
                del obj._variables[name]
        return obj

    def dump_to_store(self, store: AbstractDataStore, **kwargs) -> None:
        """Store dataset contents to a backends.*DataStore object."""
        from xarray.backends.api import dump_to_store

        # TODO: rename and/or cleanup this method to make it more consistent
        # with to_netcdf()
        dump_to_store(self, store, **kwargs)

    # path=None writes to bytes
    @overload
    def to_netcdf(
        self,
        path: None = None,
        mode: NetcdfWriteModes = "w",
        format: T_NetcdfTypes | None = None,
        group: str | None = None,
        engine: T_NetcdfEngine | None = None,
        encoding: Mapping[Any, Mapping[str, Any]] | None = None,
        unlimited_dims: Iterable[Hashable] | None = None,
        compute: bool = True,
        invalid_netcdf: bool = False,
        auto_complex: bool | None = None,
    ) -> bytes | memoryview: ...

    # compute=False returns dask.Delayed
    @overload
    def to_netcdf(
        self,
        path: str | PathLike,
        mode: NetcdfWriteModes = "w",
        format: T_NetcdfTypes | None = None,
        group: str | None = None,
        engine: T_NetcdfEngine | None = None,
        encoding: Mapping[Any, Mapping[str, Any]] | None = None,
        unlimited_dims: Iterable[Hashable] | None = None,
        *,
        compute: Literal[False],
        invalid_netcdf: bool = False,
        auto_complex: bool | None = None,
    ) -> Delayed: ...

    # default return None
    @overload
    def to_netcdf(
        self,
        path: str | PathLike | io.IOBase,
        mode: NetcdfWriteModes = "w",
        format: T_NetcdfTypes | None = None,
        group: str | None = None,
        engine: T_NetcdfEngine | None = None,
        encoding: Mapping[Any, Mapping[str, Any]] | None = None,
        unlimited_dims: Iterable[Hashable] | None = None,
        compute: Literal[True] = True,
        invalid_netcdf: bool = False,
        auto_complex: bool | None = None,
    ) -> None: ...

    # if compute cannot be evaluated at type check time
    # we may get back either Delayed or None
    @overload
    def to_netcdf(
        self,
        path: str | PathLike,
        mode: NetcdfWriteModes = "w",
        format: T_NetcdfTypes | None = None,
        group: str | None = None,
        engine: T_NetcdfEngine | None = None,
        encoding: Mapping[Any, Mapping[str, Any]] | None = None,
        unlimited_dims: Iterable[Hashable] | None = None,
        compute: bool = True,
        invalid_netcdf: bool = False,
        auto_complex: bool | None = None,
    ) -> Delayed | None: ...

    def to_netcdf(
        self,
        path: str | PathLike | io.IOBase | None = None,
        mode: NetcdfWriteModes = "w",
        format: T_NetcdfTypes | None = None,
        group: str | None = None,
        engine: T_NetcdfEngine | None = None,
        encoding: Mapping[Any, Mapping[str, Any]] | None = None,
        unlimited_dims: Iterable[Hashable] | None = None,
        compute: bool = True,
        invalid_netcdf: bool = False,
        auto_complex: bool | None = None,
    ) -> bytes | memoryview | Delayed | None:
        """Write dataset contents to a netCDF file.

        Parameters
        ----------
        path : str, path-like or file-like, optional
            Path to which to save this dataset. File-like objects are only
            supported by the scipy engine. If no path is provided, this
            function returns the resulting netCDF file as bytes; in this case,
            we need to use scipy, which does not support netCDF version 4 (the
            default format becomes NETCDF3_64BIT).
        mode : {"w", "a"}, default: "w"
            Write ('w') or append ('a') mode. If mode='w', any existing file at
            this location will be overwritten. If mode='a', existing variables
            will be overwritten.
        format : {"NETCDF4", "NETCDF4_CLASSIC", "NETCDF3_64BIT", \
                  "NETCDF3_CLASSIC"}, optional
            File format for the resulting netCDF file:

            * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API
              features.
            * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only
              netCDF 3 compatible API features.
            * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format,
              which fully supports 2+ GB files, but is only compatible with
              clients linked against netCDF version 3.6.0 or later.
            * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not
              handle 2+ GB files very well.

            All formats are supported by the netCDF4-python library.
            scipy.io.netcdf only supports the last two formats.

            The default format is NETCDF4 if you are saving a file to disk and
            have the netCDF4-python library available. Otherwise, xarray falls
            back to using scipy to write netCDF files and defaults to the
            NETCDF3_64BIT format (scipy does not support netCDF4).
        group : str, optional
            Path to the netCDF4 group in the given file to open (only works for
            format='NETCDF4'). The group(s) will be created if necessary.
        engine : {"netcdf4", "scipy", "h5netcdf"}, optional
            Engine to use when writing netCDF files. If not provided, the
            default engine is chosen based on available dependencies, with a
            preference for 'netcdf4' if writing to a file on disk.
        encoding : dict, optional
            Nested dictionary with variable names as keys and dictionaries of
            variable specific encodings as values, e.g.,
            ``{"my_variable": {"dtype": "int16", "scale_factor": 0.1,
            "zlib": True}, ...}``.
            If ``encoding`` is specified the original encoding of the variables of
            the dataset is ignored.

            The `h5netcdf` engine supports both the NetCDF4-style compression
            encoding parameters ``{"zlib": True, "complevel": 9}`` and the h5py
            ones ``{"compression": "gzip", "compression_opts": 9}``.
            This allows using any compression plugin installed in the HDF5
            library, e.g. LZF.

        unlimited_dims : iterable of hashable, optional
            Dimension(s) that should be serialized as unlimited dimensions.
            By default, no dimensions are treated as unlimited dimensions.
            Note that unlimited_dims may also be set via
            ``dataset.encoding["unlimited_dims"]``.
        compute: bool, default: True
            If true compute immediately, otherwise return a
            ``dask.delayed.Delayed`` object that can be computed later.
        invalid_netcdf: bool, default: False
            Only valid along with ``engine="h5netcdf"``. If True, allow writing
            hdf5 files which are invalid netcdf as described in
            https://github.com/h5netcdf/h5netcdf.

        Returns
        -------
            * ``bytes`` or ``memoryview`` if path is None
            * ``dask.delayed.Delayed`` if compute is False
            * ``None`` otherwise

        See Also
        --------
        DataArray.to_netcdf
        """
        if encoding is None:
            encoding = {}
        from xarray.backends.api import to_netcdf

        return to_netcdf(  # type: ignore[return-value]  # mypy cannot resolve the overloads:(
            self,
            path,
            mode=mode,
            format=format,
            group=group,
            engine=engine,
            encoding=encoding,
            unlimited_dims=unlimited_dims,
            compute=compute,
            multifile=False,
            invalid_netcdf=invalid_netcdf,
            auto_complex=auto_complex,
        )

    # compute=True (default) returns ZarrStore
    @overload
    def to_zarr(
        self,
        store: MutableMapping | str | PathLike[str] | None = None,
        chunk_store: MutableMapping | str | PathLike | None = None,
        mode: ZarrWriteModes | None = None,
        synchronizer=None,
        group: str | None = None,
        encoding: Mapping | None = None,
        *,
        compute: Literal[True] = True,
        consolidated: bool | None = None,
        append_dim: Hashable | None = None,
        region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
        safe_chunks: bool = True,
        align_chunks: bool = False,
        storage_options: dict[str, str] | None = None,
        zarr_version: int | None = None,
        zarr_format: int | None = None,
        write_empty_chunks: bool | None = None,
        chunkmanager_store_kwargs: dict[str, Any] | None = None,
    ) -> ZarrStore: ...

    # compute=False returns dask.Delayed
    @overload
    def to_zarr(
        self,
        store: MutableMapping | str | PathLike[str] | None = None,
        chunk_store: MutableMapping | str | PathLike | None = None,
        mode: ZarrWriteModes | None = None,
        synchronizer=None,
        group: str | None = None,
        encoding: Mapping | None = None,
        *,
        compute: Literal[False],
        consolidated: bool | None = None,
        append_dim: Hashable | None = None,
        region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
        safe_chunks: bool = True,
        align_chunks: bool = False,
        storage_options: dict[str, str] | None = None,
        zarr_version: int | None = None,
        zarr_format: int | None = None,
        write_empty_chunks: bool | None = None,
        chunkmanager_store_kwargs: dict[str, Any] | None = None,
    ) -> Delayed: ...

    def to_zarr(
        self,
        store: MutableMapping | str | PathLike[str] | None = None,
        chunk_store: MutableMapping | str | PathLike | None = None,
        mode: ZarrWriteModes | None = None,
        synchronizer=None,
        group: str | None = None,
        encoding: Mapping | None = None,
        *,
        compute: bool = True,
        consolidated: bool | None = None,
        append_dim: Hashable | None = None,
        region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
        safe_chunks: bool = True,
        align_chunks: bool = False,
        storage_options: dict[str, str] | None = None,
        zarr_version: int | None = None,
        zarr_format: int | None = None,
        write_empty_chunks: bool | None = None,
        chunkmanager_store_kwargs: dict[str, Any] | None = None,
    ) -> ZarrStore | Delayed:
        """Write dataset contents to a zarr group.

        Zarr chunks are determined in the following way:

        - From the ``chunks`` attribute in each variable's ``encoding``
          (can be set via `Dataset.chunk`).
        - If the variable is a Dask array, from the dask chunks
        - If neither Dask chunks nor encoding chunks are present, chunks will
          be determined automatically by Zarr
        - If both Dask chunks and encoding chunks are present, encoding chunks
          will be used, provided that there is a many-to-one relationship between
          encoding chunks and dask chunks (i.e. Dask chunks are bigger than and
          evenly divide encoding chunks); otherwise raise a ``ValueError``.
          This restriction ensures that no synchronization / locks are required
          when writing. To disable this restriction, use ``safe_chunks=False``.

        Parameters
        ----------
        store : MutableMapping, str or path-like, optional
            Store or path to directory in local or remote file system.
        chunk_store : MutableMapping, str or path-like, optional
            Store or path to directory in local or remote file system only for Zarr
            array chunks. Requires zarr-python v2.4.0 or later.
        mode : {"w", "w-", "a", "a-", r+", None}, optional
            Persistence mode: "w" means create (overwrite if exists);
            "w-" means create (fail if exists);
            "a" means override all existing variables including dimension coordinates (create if does not exist);
            "a-" means only append those variables that have ``append_dim``.
            "r+" means modify existing array *values* only (raise an error if
            any metadata or shapes would change).
            The default mode is "a" if ``append_dim`` is set. Otherwise, it is
            "r+" if ``region`` is set and ``w-`` otherwise.
        synchronizer : object, optional
            Zarr array synchronizer.
        group : str, optional
            Group path. (a.k.a. `path` in zarr terminology.)
        encoding : dict, optional
            Nested dictionary with variable names as keys and dictionaries of
            variable specific encodings as values, e.g.,
            ``{"my_variable": {"dtype": "int16", "scale_factor": 0.1,}, ...}``
        compute : bool, default: True
            If True write array data immediately, otherwise return a
            ``dask.delayed.Delayed`` object that can be computed to write
            array data later. Metadata is always updated eagerly.
        consolidated : bool, optional
            If True, apply :func:`zarr.convenience.consolidate_metadata`
            after writing metadata and read existing stores with consolidated
            metadata; if False, do not. The default (`consolidated=None`) means
            write consolidated metadata and attempt to read consolidated
            metadata for existing stores (falling back to non-consolidated).

            When the experimental ``zarr_version=3``, ``consolidated`` must be
            either be ``None`` or ``False``.
        append_dim : hashable, optional
            If set, the dimension along which the data will be appended. All
            other dimensions on overridden variables must remain the same size.
        region : dict or "auto", optional
            Optional mapping from dimension names to either a) ``"auto"``, or b) integer
            slices, indicating the region of existing zarr array(s) in which to write
            this dataset's data.

            If ``"auto"`` is provided the existing store will be opened and the region
            inferred by matching indexes. ``"auto"`` can be used as a single string,
            which will automatically infer the region for all dimensions, or as
            dictionary values for specific dimensions mixed together with explicit
            slices for other dimensions.

            Alternatively integer slices can be provided; for example, ``{'x': slice(0,
            1000), 'y': slice(10000, 11000)}`` would indicate that values should be
            written to the region ``0:1000`` along ``x`` and ``10000:11000`` along
            ``y``.

            Two restrictions apply to the use of ``region``:

            - If ``region`` is set, _all_ variables in a dataset must have at
              least one dimension in common with the region. Other variables
              should be written in a separate single call to ``to_zarr()``.
            - Dimensions cannot be included in both ``region`` and
              ``append_dim`` at the same time. To create empty arrays to fill
              in with ``region``, use a separate call to ``to_zarr()`` with
              ``compute=False``. See "Modifying existing Zarr stores" in
              the reference documentation for full details.

            Users are expected to ensure that the specified region aligns with
            Zarr chunk boundaries, and that dask chunks are also aligned.
            Xarray makes limited checks that these multiple chunk boundaries line up.
            It is possible to write incomplete chunks and corrupt the data with this
            option if you are not careful.
        safe_chunks : bool, default: True
            If True, only allow writes to when there is a many-to-one relationship
            between Zarr chunks (specified in encoding) and Dask chunks.
            Set False to override this restriction; however, data may become corrupted
            if Zarr arrays are written in parallel. This option may be useful in combination
            with ``compute=False`` to initialize a Zarr from an existing
            Dataset with arbitrary chunk structure.
            In addition to the many-to-one relationship validation, it also detects partial
            chunks writes when using the region parameter,
            these partial chunks are considered unsafe in the mode "r+" but safe in
            the mode "a".
            Note: Even with these validations it can still be unsafe to write
            two or more chunked arrays in the same location in parallel if they are
            not writing in independent regions, for those cases it is better to use
            a synchronizer.
        align_chunks: bool, default False
            If True, rechunks the Dask array to align with Zarr chunks before writing.
            This ensures each Dask chunk maps to one or more contiguous Zarr chunks,
            which avoids race conditions.
            Internally, the process sets safe_chunks=False and tries to preserve
            the original Dask chunking as much as possible.
            Note: While this alignment avoids write conflicts stemming from chunk
            boundary misalignment, it does not protect against race conditions
            if multiple uncoordinated processes write to the same
            Zarr array concurrently.
        storage_options : dict, optional
            Any additional parameters for the storage backend (ignored for local
            paths).
        zarr_version : int or None, optional

            .. deprecated:: 2024.9.1
            Use ``zarr_format`` instead.

        zarr_format : int or None, optional
            The desired zarr format to target (currently 2 or 3). The default
            of None will attempt to determine the zarr version from ``store`` when
            possible, otherwise defaulting to the default version used by
            the zarr-python library installed.
        write_empty_chunks : bool or None, optional
            If True, all chunks will be stored regardless of their
            contents. If False, each chunk is compared to the array's fill value
            prior to storing. If a chunk is uniformly equal to the fill value, then
            that chunk is not be stored, and the store entry for that chunk's key
            is deleted. This setting enables sparser storage, as only chunks with
            non-fill-value data are stored, at the expense of overhead associated
            with checking the data of each chunk. If None (default) fall back to
            specification(s) in ``encoding`` or Zarr defaults. A ``ValueError``
            will be raised if the value of this (if not None) differs with
            ``encoding``.
        chunkmanager_store_kwargs : dict, optional
            Additional keyword arguments passed on to the `ChunkManager.store` method used to store
            chunked arrays. For example for a dask array additional kwargs will be passed eventually to
            :py:func:`dask.array.store()`. Experimental API that should not be relied upon.

        Returns
        -------
            * ``dask.delayed.Delayed`` if compute is False
            * ZarrStore otherwise

        References
        ----------
        https://zarr.readthedocs.io/

        Notes
        -----
        Zarr chunking behavior:
            If chunks are found in the encoding argument or attribute
            corresponding to any DataArray, those chunks are used.
            If a DataArray is a dask array, it is written with those chunks.
            If not other chunks are found, Zarr uses its own heuristics to
            choose automatic chunk sizes.

        encoding:
            The encoding attribute (if exists) of the DataArray(s) will be
            used. Override any existing encodings by providing the ``encoding`` kwarg.

        ``fill_value`` handling:
            There exists a subtlety in interpreting zarr's ``fill_value`` property. For zarr v2 format
            arrays, ``fill_value`` is *always* interpreted as an invalid value similar to the ``_FillValue`` attribute
            in CF/netCDF. For Zarr v3 format arrays, only an explicit ``_FillValue`` attribute will be used
            to mask the data if requested using ``mask_and_scale=True``. See this `Github issue <https://github.com/pydata/xarray/issues/5475>`_
            for more.

        See Also
        --------
        :ref:`io.zarr`
            The I/O user guide, with more details and examples.
        """
        from xarray.backends.api import to_zarr

        return to_zarr(  # type: ignore[call-overload,misc]
            self,
            store=store,
            chunk_store=chunk_store,
            storage_options=storage_options,
            mode=mode,
            synchronizer=synchronizer,
            group=group,
            encoding=encoding,
            compute=compute,
            consolidated=consolidated,
            append_dim=append_dim,
            region=region,
            safe_chunks=safe_chunks,
            zarr_version=zarr_version,
            zarr_format=zarr_format,
            write_empty_chunks=write_empty_chunks,
            chunkmanager_store_kwargs=chunkmanager_store_kwargs,
        )

    def __repr__(self) -> str:
        return formatting.dataset_repr(self)

    def _repr_html_(self) -> str:
        if OPTIONS["display_style"] == "text":
            return f"<pre>{escape(repr(self))}</pre>"
        return formatting_html.dataset_repr(self)

    def info(self, buf: IO | None = None) -> None:
        """
        Concise summary of a Dataset variables and attributes.

        Parameters
        ----------
        buf : file-like, default: sys.stdout
            writable buffer

        See Also
        --------
        pandas.DataFrame.assign
        ncdump : netCDF's ncdump
        """
        if buf is None:  # pragma: no cover
            buf = sys.stdout

        lines = [
            "xarray.Dataset {",
            "dimensions:",
        ]
        for name, size in self.sizes.items():
            lines.append(f"\t{name} = {size} ;")
        lines.append("\nvariables:")
        for name, da in self.variables.items():
            dims = ", ".join(map(str, da.dims))
            lines.append(f"\t{da.dtype} {name}({dims}) ;")
            for k, v in da.attrs.items():
                lines.append(f"\t\t{name}:{k} = {v} ;")
        lines.append("\n// global attributes:")
        for k, v in self.attrs.items():
            lines.append(f"\t:{k} = {v} ;")
        lines.append("}")

        buf.write("\n".join(lines))

    @property
    def chunks(self) -> Mapping[Hashable, tuple[int, ...]]:
        """
        Mapping from dimension names to block lengths for this dataset's data.

        If this dataset does not contain chunked arrays, the mapping will be empty.

        Cannot be modified directly, but can be modified by calling .chunk().

        Same as Dataset.chunksizes, but maintained for backwards compatibility.

        See Also
        --------
        Dataset.chunk
        Dataset.chunksizes
        xarray.unify_chunks
        """
        return get_chunksizes(self.variables.values())

    @property
    def chunksizes(self) -> Mapping[Hashable, tuple[int, ...]]:
        """
        Mapping from dimension names to block lengths for this dataset's data.

        If this dataset does not contain chunked arrays, the mapping will be empty.

        Cannot be modified directly, but can be modified by calling .chunk().

        Same as Dataset.chunks.

        See Also
        --------
        Dataset.chunk
        Dataset.chunks
        xarray.unify_chunks
        """
        return get_chunksizes(self.variables.values())

    def chunk(
        self,
        chunks: T_ChunksFreq = {},  # noqa: B006  # {} even though it's technically unsafe, is being used intentionally here (#4667)
        name_prefix: str = "xarray-",
        token: str | None = None,
        lock: bool = False,
        inline_array: bool = False,
        chunked_array_type: str | ChunkManagerEntrypoint | None = None,
        from_array_kwargs=None,
        **chunks_kwargs: T_ChunkDimFreq,
    ) -> Self:
        """Coerce all arrays in this dataset into dask arrays with the given
        chunks.

        Non-dask arrays in this dataset will be converted to dask arrays. Dask
        arrays will be rechunked to the given chunk sizes.

        If neither chunks is not provided for one or more dimensions, chunk
        sizes along that dimension will not be updated; non-dask arrays will be
        converted into dask arrays with a single block.

        Along datetime-like dimensions, a :py:class:`groupers.TimeResampler` object is also accepted.

        Parameters
        ----------
        chunks : int, tuple of int, "auto" or mapping of hashable to int or a TimeResampler, optional
            Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, or
            ``{"x": 5, "y": 5}`` or ``{"x": 5, "time": TimeResampler(freq="YE")}``.
        name_prefix : str, default: "xarray-"
            Prefix for the name of any new dask arrays.
        token : str, optional
            Token uniquely identifying this dataset.
        lock : bool, default: False
            Passed on to :py:func:`dask.array.from_array`, if the array is not
            already as dask array.
        inline_array: bool, default: False
            Passed on to :py:func:`dask.array.from_array`, if the array is not
            already as dask array.
        chunked_array_type: str, optional
            Which chunked array type to coerce this datasets' arrays to.
            Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system.
            Experimental API that should not be relied upon.
        from_array_kwargs: dict, optional
            Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
            chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
            For example, with dask as the default chunked array type, this method would pass additional kwargs
            to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
        **chunks_kwargs : {dim: chunks, ...}, optional
            The keyword arguments form of ``chunks``.
            One of chunks or chunks_kwargs must be provided

        Returns
        -------
        chunked : xarray.Dataset

        See Also
        --------
        Dataset.chunks
        Dataset.chunksizes
        xarray.unify_chunks
        dask.array.from_array
        """
        from xarray.core.dataarray import DataArray
        from xarray.groupers import TimeResampler

        if chunks is None and not chunks_kwargs:
            warnings.warn(
                "None value for 'chunks' is deprecated. "
                "It will raise an error in the future. Use instead '{}'",
                category=DeprecationWarning,
                stacklevel=2,
            )
            chunks = {}
        chunks_mapping: Mapping[Any, Any]
        if not isinstance(chunks, Mapping) and chunks is not None:
            if isinstance(chunks, tuple | list):
                utils.emit_user_level_warning(
                    "Supplying chunks as dimension-order tuples is deprecated. "
                    "It will raise an error in the future. Instead use a dict with dimensions as keys.",
                    category=DeprecationWarning,
                )
            chunks_mapping = dict.fromkeys(self.dims, chunks)
        else:
            chunks_mapping = either_dict_or_kwargs(chunks, chunks_kwargs, "chunk")

        bad_dims = chunks_mapping.keys() - self.sizes.keys()
        if bad_dims:
            raise ValueError(
                f"chunks keys {tuple(bad_dims)} not found in data dimensions {tuple(self.sizes.keys())}"
            )

        def _resolve_frequency(
            name: Hashable, resampler: TimeResampler
        ) -> tuple[int, ...]:
            variable = self._variables.get(name, None)
            if variable is None:
                raise ValueError(
                    f"Cannot chunk by resampler {resampler!r} for virtual variables."
                )
            elif not _contains_datetime_like_objects(variable):
                raise ValueError(
                    f"chunks={resampler!r} only supported for datetime variables. "
                    f"Received variable {name!r} with dtype {variable.dtype!r} instead."
                )

            assert variable.ndim == 1
            chunks = (
                DataArray(
                    np.ones(variable.shape, dtype=int),
                    dims=(name,),
                    coords={name: variable},
                )
                .resample({name: resampler})
                .sum()
            )
            # When bins (binning) or time periods are missing (resampling)
            # we can end up with NaNs. Drop them.
            if chunks.dtype.kind == "f":
                chunks = chunks.dropna(name).astype(int)
            chunks_tuple: tuple[int, ...] = tuple(chunks.data.tolist())
            return chunks_tuple

        chunks_mapping_ints: Mapping[Any, T_ChunkDim] = {
            name: (
                _resolve_frequency(name, chunks)
                if isinstance(chunks, TimeResampler)
                else chunks
            )
            for name, chunks in chunks_mapping.items()
        }

        chunkmanager = guess_chunkmanager(chunked_array_type)
        if from_array_kwargs is None:
            from_array_kwargs = {}

        variables = {
            k: _maybe_chunk(
                k,
                v,
                chunks_mapping_ints,
                token,
                lock,
                name_prefix,
                inline_array=inline_array,
                chunked_array_type=chunkmanager,
                from_array_kwargs=from_array_kwargs.copy(),
            )
            for k, v in self.variables.items()
        }
        return self._replace(variables)

    def _validate_indexers(
        self, indexers: Mapping[Any, Any], missing_dims: ErrorOptionsWithWarn = "raise"
    ) -> Iterator[tuple[Hashable, int | slice | np.ndarray | Variable]]:
        """Here we make sure
        + indexer has a valid keys
        + indexer is in a valid data type
        + string indexers are cast to the appropriate date type if the
          associated index is a DatetimeIndex or CFTimeIndex
        """
        from xarray.core.dataarray import DataArray

        indexers = drop_dims_from_indexers(indexers, self.dims, missing_dims)

        # all indexers should be int, slice, np.ndarrays, or Variable
        for k, v in indexers.items():
            if isinstance(v, int | slice | Variable):
                yield k, v
            elif isinstance(v, DataArray):
                yield k, v.variable
            elif isinstance(v, tuple):
                yield k, as_variable(v)
            elif isinstance(v, Dataset):
                raise TypeError("cannot use a Dataset as an indexer")
            elif isinstance(v, Sequence) and len(v) == 0:
                yield k, np.empty((0,), dtype="int64")
            else:
                if not is_duck_array(v):
                    v = np.asarray(v)

                if v.dtype.kind in "US":
                    index = self._indexes[k].to_pandas_index()
                    if isinstance(index, pd.DatetimeIndex):
                        v = duck_array_ops.astype(v, dtype="datetime64[ns]")
                    elif isinstance(index, CFTimeIndex):
                        v = _parse_array_of_cftime_strings(v, index.date_type)

                if v.ndim > 1:
                    raise IndexError(
                        "Unlabeled multi-dimensional array cannot be "
                        f"used for indexing: {k}"
                    )
                yield k, v

    def _validate_interp_indexers(
        self, indexers: Mapping[Any, Any]
    ) -> Iterator[tuple[Hashable, Variable]]:
        """Variant of _validate_indexers to be used for interpolation"""
        for k, v in self._validate_indexers(indexers):
            if isinstance(v, Variable):
                yield k, v
            elif is_scalar(v):
                yield k, Variable((), v, attrs=self.coords[k].attrs)
            elif isinstance(v, np.ndarray):
                yield k, Variable(dims=(k,), data=v, attrs=self.coords[k].attrs)
            else:
                raise TypeError(type(v))

    def _get_indexers_coords_and_indexes(self, indexers):
        """Extract coordinates and indexes from indexers.

        Only coordinate with a name different from any of self.variables will
        be attached.
        """
        from xarray.core.dataarray import DataArray

        coords_list = []
        for k, v in indexers.items():
            if isinstance(v, DataArray):
                if v.dtype.kind == "b":
                    if v.ndim != 1:  # we only support 1-d boolean array
                        raise ValueError(
                            f"{v.ndim:d}d-boolean array is used for indexing along "
                            f"dimension {k!r}, but only 1d boolean arrays are "
                            "supported."
                        )
                    # Make sure in case of boolean DataArray, its
                    # coordinate also should be indexed.
                    v_coords = v[v.values.nonzero()[0]].coords
                else:
                    v_coords = v.coords
                coords_list.append(v_coords)

        # we don't need to call align() explicitly or check indexes for
        # alignment, because merge_variables already checks for exact alignment
        # between dimension coordinates
        coords, indexes = merge_coordinates_without_align(coords_list)
        assert_coordinate_consistent(self, coords)

        # silently drop the conflicted variables.
        attached_coords = {k: v for k, v in coords.items() if k not in self._variables}
        attached_indexes = {
            k: v for k, v in indexes.items() if k not in self._variables
        }
        return attached_coords, attached_indexes

    def isel(
        self,
        indexers: Mapping[Any, Any] | None = None,
        drop: bool = False,
        missing_dims: ErrorOptionsWithWarn = "raise",
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new dataset with each array indexed along the specified
        dimension(s).

        This method selects values from each array using its `__getitem__`
        method, except this method does not require knowing the order of
        each array's dimensions.

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given
            by integers, slice objects or arrays.
            indexer can be a integer, slice, array-like or DataArray.
            If DataArrays are passed as indexers, xarray-style indexing will be
            carried out. See :ref:`indexing` for the details.
            One of indexers or indexers_kwargs must be provided.
        drop : bool, default: False
            If ``drop=True``, drop coordinates variables indexed by integers
            instead of making them scalar.
        missing_dims : {"raise", "warn", "ignore"}, default: "raise"
            What to do if dimensions that should be selected from are not present in the
            Dataset:
            - "raise": raise an exception
            - "warn": raise a warning, and ignore the missing dimensions
            - "ignore": ignore the missing dimensions

        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        obj : Dataset
            A new Dataset with the same contents as this dataset, except each
            array and dimension is indexed by the appropriate indexers.
            If indexer DataArrays have coordinates that do not conflict with
            this object, then these coordinates will be attached.
            In general, each array's data will be a view of the array's data
            in this dataset, unless vectorized indexing was triggered by using
            an array indexer, in which case the data will be a copy.

        Examples
        --------

        >>> dataset = xr.Dataset(
        ...     {
        ...         "math_scores": (
        ...             ["student", "test"],
        ...             [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
        ...         ),
        ...         "english_scores": (
        ...             ["student", "test"],
        ...             [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
        ...         ),
        ...     },
        ...     coords={
        ...         "student": ["Alice", "Bob", "Charlie"],
        ...         "test": ["Test 1", "Test 2", "Test 3"],
        ...     },
        ... )

        # A specific element from the dataset is selected

        >>> dataset.isel(student=1, test=0)
        <xarray.Dataset> Size: 68B
        Dimensions:         ()
        Coordinates:
            student         <U7 28B 'Bob'
            test            <U6 24B 'Test 1'
        Data variables:
            math_scores     int64 8B 78
            english_scores  int64 8B 75

        # Indexing with a slice using isel

        >>> slice_of_data = dataset.isel(student=slice(0, 2), test=slice(0, 2))
        >>> slice_of_data
        <xarray.Dataset> Size: 168B
        Dimensions:         (student: 2, test: 2)
        Coordinates:
          * student         (student) <U7 56B 'Alice' 'Bob'
          * test            (test) <U6 48B 'Test 1' 'Test 2'
        Data variables:
            math_scores     (student, test) int64 32B 90 85 78 80
            english_scores  (student, test) int64 32B 88 90 75 82

        >>> index_array = xr.DataArray([0, 2], dims="student")
        >>> indexed_data = dataset.isel(student=index_array)
        >>> indexed_data
        <xarray.Dataset> Size: 224B
        Dimensions:         (student: 2, test: 3)
        Coordinates:
          * student         (student) <U7 56B 'Alice' 'Charlie'
          * test            (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'
        Data variables:
            math_scores     (student, test) int64 48B 90 85 92 95 92 98
            english_scores  (student, test) int64 48B 88 90 92 93 96 91

        See Also
        --------
        :func:`Dataset.sel <Dataset.sel>`
        :func:`DataArray.isel <DataArray.isel>`

        :doc:`xarray-tutorial:intermediate/indexing/indexing`
            Tutorial material on indexing with Xarray objects

        :doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic`
            Tutorial material on basics of indexing

        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel")
        if any(is_fancy_indexer(idx) for idx in indexers.values()):
            return self._isel_fancy(indexers, drop=drop, missing_dims=missing_dims)

        # Much faster algorithm for when all indexers are ints, slices, one-dimensional
        # lists, or zero or one-dimensional np.ndarray's
        indexers = drop_dims_from_indexers(indexers, self.dims, missing_dims)

        variables = {}
        dims: dict[Hashable, int] = {}
        coord_names = self._coord_names.copy()

        indexes, index_variables = isel_indexes(self.xindexes, indexers)

        for name, var in self._variables.items():
            # preserve variable order
            if name in index_variables:
                var = index_variables[name]
            else:
                var_indexers = {k: v for k, v in indexers.items() if k in var.dims}
                if var_indexers:
                    var = var.isel(var_indexers)
                    if drop and var.ndim == 0 and name in coord_names:
                        coord_names.remove(name)
                        continue
            variables[name] = var
            dims.update(zip(var.dims, var.shape, strict=True))

        return self._construct_direct(
            variables=variables,
            coord_names=coord_names,
            dims=dims,
            attrs=self._attrs,
            indexes=indexes,
            encoding=self._encoding,
            close=self._close,
        )

    def _isel_fancy(
        self,
        indexers: Mapping[Any, Any],
        *,
        drop: bool,
        missing_dims: ErrorOptionsWithWarn = "raise",
    ) -> Self:
        valid_indexers = dict(self._validate_indexers(indexers, missing_dims))

        variables: dict[Hashable, Variable] = {}
        indexes, index_variables = isel_indexes(self.xindexes, valid_indexers)

        for name, var in self.variables.items():
            if name in index_variables:
                new_var = index_variables[name]
            else:
                var_indexers = {
                    k: v for k, v in valid_indexers.items() if k in var.dims
                }
                if var_indexers:
                    new_var = var.isel(indexers=var_indexers)
                    # drop scalar coordinates
                    # https://github.com/pydata/xarray/issues/6554
                    if name in self.coords and drop and new_var.ndim == 0:
                        continue
                else:
                    new_var = var.copy(deep=False)
                if name not in indexes:
                    new_var = new_var.to_base_variable()
            variables[name] = new_var

        coord_names = self._coord_names & variables.keys()
        selected = self._replace_with_new_dims(variables, coord_names, indexes)

        # Extract coordinates from indexers
        coord_vars, new_indexes = selected._get_indexers_coords_and_indexes(indexers)
        variables.update(coord_vars)
        indexes.update(new_indexes)
        coord_names = self._coord_names & variables.keys() | coord_vars.keys()
        return self._replace_with_new_dims(variables, coord_names, indexes=indexes)

    def sel(
        self,
        indexers: Mapping[Any, Any] | None = None,
        method: str | None = None,
        tolerance: int | float | Iterable[int | float] | None = None,
        drop: bool = False,
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new dataset with each array indexed by tick labels
        along the specified dimension(s).

        In contrast to `Dataset.isel`, indexers for this method should use
        labels instead of integers.

        Under the hood, this method is powered by using pandas's powerful Index
        objects. This makes label based indexing essentially just as fast as
        using integer indexing.

        It also means this method uses pandas's (well documented) logic for
        indexing. This means you can use string shortcuts for datetime indexes
        (e.g., '2000-01' to select all values in January 2000). It also means
        that slices are treated as inclusive of both the start and stop values,
        unlike normal Python indexing.

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given
            by scalars, slices or arrays of tick labels. For dimensions with
            multi-index, the indexer may also be a dict-like object with keys
            matching index level names.
            If DataArrays are passed as indexers, xarray-style indexing will be
            carried out. See :ref:`indexing` for the details.
            One of indexers or indexers_kwargs must be provided.
        method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional
            Method to use for inexact matches:

            * None (default): only exact matches
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        drop : bool, optional
            If ``drop=True``, drop coordinates variables in `indexers` instead
            of making them scalar.
        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        obj : Dataset
            A new Dataset with the same contents as this dataset, except each
            variable and dimension is indexed by the appropriate indexers.
            If indexer DataArrays have coordinates that do not conflict with
            this object, then these coordinates will be attached.
            In general, each array's data will be a view of the array's data
            in this dataset, unless vectorized indexing was triggered by using
            an array indexer, in which case the data will be a copy.

        See Also
        --------
        :func:`Dataset.isel <Dataset.isel>`
        :func:`DataArray.sel <DataArray.sel>`

        :doc:`xarray-tutorial:intermediate/indexing/indexing`
            Tutorial material on indexing with Xarray objects

        :doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic`
            Tutorial material on basics of indexing

        """
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel")
        query_results = map_index_queries(
            self, indexers=indexers, method=method, tolerance=tolerance
        )

        if drop:
            no_scalar_variables = {}
            for k, v in query_results.variables.items():
                if v.dims:
                    no_scalar_variables[k] = v
                elif k in self._coord_names:
                    query_results.drop_coords.append(k)
            query_results.variables = no_scalar_variables

        result = self.isel(indexers=query_results.dim_indexers, drop=drop)
        return result._overwrite_indexes(*query_results.as_tuple()[1:])

    def _shuffle(self, dim, *, indices: GroupIndices, chunks: T_Chunks) -> Self:
        # Shuffling is only different from `isel` for chunked arrays.
        # Extract them out, and treat them specially. The rest, we route through isel.
        # This makes it easy to ensure correct handling of indexes.
        is_chunked = {
            name: var
            for name, var in self._variables.items()
            if is_chunked_array(var._data)
        }
        subset = self[[name for name in self._variables if name not in is_chunked]]

        no_slices: list[list[int]] = [
            (
                list(range(*idx.indices(self.sizes[dim])))
                if isinstance(idx, slice)
                else idx
            )
            for idx in indices
        ]
        no_slices = [idx for idx in no_slices if idx]

        shuffled = (
            subset
            if dim not in subset.dims
            else subset.isel({dim: np.concatenate(no_slices)})
        )
        for name, var in is_chunked.items():
            shuffled[name] = var._shuffle(
                indices=no_slices,
                dim=dim,
                chunks=chunks,
            )
        return shuffled

    def head(
        self,
        indexers: Mapping[Any, int] | int | None = None,
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new dataset with the first `n` values of each array
        for the specified dimension(s).

        Parameters
        ----------
        indexers : dict or int, default: 5
            A dict with keys matching dimensions and integer values `n`
            or a single integer `n` applied over all dimensions.
            One of indexers or indexers_kwargs must be provided.
        **indexers_kwargs : {dim: n, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Examples
        --------
        >>> dates = pd.date_range(start="2023-01-01", periods=5)
        >>> pageviews = [1200, 1500, 900, 1800, 2000]
        >>> visitors = [800, 1000, 600, 1200, 1500]
        >>> dataset = xr.Dataset(
        ...     {
        ...         "pageviews": (("date"), pageviews),
        ...         "visitors": (("date"), visitors),
        ...     },
        ...     coords={"date": dates},
        ... )
        >>> busiest_days = dataset.sortby("pageviews", ascending=False)
        >>> busiest_days.head()
        <xarray.Dataset> Size: 120B
        Dimensions:    (date: 5)
        Coordinates:
          * date       (date) datetime64[ns] 40B 2023-01-05 2023-01-04 ... 2023-01-03
        Data variables:
            pageviews  (date) int64 40B 2000 1800 1500 1200 900
            visitors   (date) int64 40B 1500 1200 1000 800 600

        # Retrieve the 3 most busiest days in terms of pageviews

        >>> busiest_days.head(3)
        <xarray.Dataset> Size: 72B
        Dimensions:    (date: 3)
        Coordinates:
          * date       (date) datetime64[ns] 24B 2023-01-05 2023-01-04 2023-01-02
        Data variables:
            pageviews  (date) int64 24B 2000 1800 1500
            visitors   (date) int64 24B 1500 1200 1000

        # Using a dictionary to specify the number of elements for specific dimensions

        >>> busiest_days.head({"date": 3})
        <xarray.Dataset> Size: 72B
        Dimensions:    (date: 3)
        Coordinates:
          * date       (date) datetime64[ns] 24B 2023-01-05 2023-01-04 2023-01-02
        Data variables:
            pageviews  (date) int64 24B 2000 1800 1500
            visitors   (date) int64 24B 1500 1200 1000

        See Also
        --------
        Dataset.tail
        Dataset.thin
        DataArray.head
        """
        if not indexers_kwargs:
            if indexers is None:
                indexers = 5
            if not isinstance(indexers, int) and not is_dict_like(indexers):
                raise TypeError("indexers must be either dict-like or a single integer")
        if isinstance(indexers, int):
            indexers = dict.fromkeys(self.dims, indexers)
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "head")
        for k, v in indexers.items():
            if not isinstance(v, int):
                raise TypeError(
                    "expected integer type indexer for "
                    f"dimension {k!r}, found {type(v)!r}"
                )
            elif v < 0:
                raise ValueError(
                    "expected positive integer as indexer "
                    f"for dimension {k!r}, found {v}"
                )
        indexers_slices = {k: slice(val) for k, val in indexers.items()}
        return self.isel(indexers_slices)

    def tail(
        self,
        indexers: Mapping[Any, int] | int | None = None,
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new dataset with the last `n` values of each array
        for the specified dimension(s).

        Parameters
        ----------
        indexers : dict or int, default: 5
            A dict with keys matching dimensions and integer values `n`
            or a single integer `n` applied over all dimensions.
            One of indexers or indexers_kwargs must be provided.
        **indexers_kwargs : {dim: n, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Examples
        --------
        >>> activity_names = ["Walking", "Running", "Cycling", "Swimming", "Yoga"]
        >>> durations = [30, 45, 60, 45, 60]  # in minutes
        >>> energies = [150, 300, 250, 400, 100]  # in calories
        >>> dataset = xr.Dataset(
        ...     {
        ...         "duration": (["activity"], durations),
        ...         "energy_expenditure": (["activity"], energies),
        ...     },
        ...     coords={"activity": activity_names},
        ... )
        >>> sorted_dataset = dataset.sortby("energy_expenditure", ascending=False)
        >>> sorted_dataset
        <xarray.Dataset> Size: 240B
        Dimensions:             (activity: 5)
        Coordinates:
          * activity            (activity) <U8 160B 'Swimming' 'Running' ... 'Yoga'
        Data variables:
            duration            (activity) int64 40B 45 45 60 30 60
            energy_expenditure  (activity) int64 40B 400 300 250 150 100

        # Activities with the least energy expenditures using tail()

        >>> sorted_dataset.tail(3)
        <xarray.Dataset> Size: 144B
        Dimensions:             (activity: 3)
        Coordinates:
          * activity            (activity) <U8 96B 'Cycling' 'Walking' 'Yoga'
        Data variables:
            duration            (activity) int64 24B 60 30 60
            energy_expenditure  (activity) int64 24B 250 150 100

        >>> sorted_dataset.tail({"activity": 3})
        <xarray.Dataset> Size: 144B
        Dimensions:             (activity: 3)
        Coordinates:
          * activity            (activity) <U8 96B 'Cycling' 'Walking' 'Yoga'
        Data variables:
            duration            (activity) int64 24B 60 30 60
            energy_expenditure  (activity) int64 24B 250 150 100

        See Also
        --------
        Dataset.head
        Dataset.thin
        DataArray.tail
        """
        if not indexers_kwargs:
            if indexers is None:
                indexers = 5
            if not isinstance(indexers, int) and not is_dict_like(indexers):
                raise TypeError("indexers must be either dict-like or a single integer")
        if isinstance(indexers, int):
            indexers = dict.fromkeys(self.dims, indexers)
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "tail")
        for k, v in indexers.items():
            if not isinstance(v, int):
                raise TypeError(
                    "expected integer type indexer for "
                    f"dimension {k!r}, found {type(v)!r}"
                )
            elif v < 0:
                raise ValueError(
                    "expected positive integer as indexer "
                    f"for dimension {k!r}, found {v}"
                )
        indexers_slices = {
            k: slice(-val, None) if val != 0 else slice(val)
            for k, val in indexers.items()
        }
        return self.isel(indexers_slices)

    def thin(
        self,
        indexers: Mapping[Any, int] | int | None = None,
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new dataset with each array indexed along every `n`-th
        value for the specified dimension(s)

        Parameters
        ----------
        indexers : dict or int
            A dict with keys matching dimensions and integer values `n`
            or a single integer `n` applied over all dimensions.
            One of indexers or indexers_kwargs must be provided.
        **indexers_kwargs : {dim: n, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Examples
        --------
        >>> x_arr = np.arange(0, 26)
        >>> x_arr
        array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
               17, 18, 19, 20, 21, 22, 23, 24, 25])
        >>> x = xr.DataArray(
        ...     np.reshape(x_arr, (2, 13)),
        ...     dims=("x", "y"),
        ...     coords={"x": [0, 1], "y": np.arange(0, 13)},
        ... )
        >>> x_ds = xr.Dataset({"foo": x})
        >>> x_ds
        <xarray.Dataset> Size: 328B
        Dimensions:  (x: 2, y: 13)
        Coordinates:
          * x        (x) int64 16B 0 1
          * y        (y) int64 104B 0 1 2 3 4 5 6 7 8 9 10 11 12
        Data variables:
            foo      (x, y) int64 208B 0 1 2 3 4 5 6 7 8 ... 17 18 19 20 21 22 23 24 25

        >>> x_ds.thin(3)
        <xarray.Dataset> Size: 88B
        Dimensions:  (x: 1, y: 5)
        Coordinates:
          * x        (x) int64 8B 0
          * y        (y) int64 40B 0 3 6 9 12
        Data variables:
            foo      (x, y) int64 40B 0 3 6 9 12
        >>> x.thin({"x": 2, "y": 5})
        <xarray.DataArray (x: 1, y: 3)> Size: 24B
        array([[ 0,  5, 10]])
        Coordinates:
          * x        (x) int64 8B 0
          * y        (y) int64 24B 0 5 10

        See Also
        --------
        Dataset.head
        Dataset.tail
        DataArray.thin
        """
        if (
            not indexers_kwargs
            and not isinstance(indexers, int)
            and not is_dict_like(indexers)
        ):
            raise TypeError("indexers must be either dict-like or a single integer")
        if isinstance(indexers, int):
            indexers = dict.fromkeys(self.dims, indexers)
        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "thin")
        for k, v in indexers.items():
            if not isinstance(v, int):
                raise TypeError(
                    "expected integer type indexer for "
                    f"dimension {k!r}, found {type(v)!r}"
                )
            elif v < 0:
                raise ValueError(
                    "expected positive integer as indexer "
                    f"for dimension {k!r}, found {v}"
                )
            elif v == 0:
                raise ValueError("step cannot be zero")
        indexers_slices = {k: slice(None, None, val) for k, val in indexers.items()}
        return self.isel(indexers_slices)

    def broadcast_like(
        self,
        other: T_DataArrayOrSet,
        exclude: Iterable[Hashable] | None = None,
    ) -> Self:
        """Broadcast this DataArray against another Dataset or DataArray.
        This is equivalent to xr.broadcast(other, self)[1]

        Parameters
        ----------
        other : Dataset or DataArray
            Object against which to broadcast this array.
        exclude : iterable of hashable, optional
            Dimensions that must not be broadcasted

        """
        if exclude is None:
            exclude = set()
        else:
            exclude = set(exclude)
        args = align(other, self, join="outer", copy=False, exclude=exclude)

        dims_map, common_coords = _get_broadcast_dims_map_common_coords(args, exclude)

        return _broadcast_helper(args[1], exclude, dims_map, common_coords)

    def _reindex_callback(
        self,
        aligner: alignment.Aligner,
        dim_pos_indexers: dict[Hashable, Any],
        variables: dict[Hashable, Variable],
        indexes: dict[Hashable, Index],
        fill_value: Any,
        exclude_dims: frozenset[Hashable],
        exclude_vars: frozenset[Hashable],
    ) -> Self:
        """Callback called from ``Aligner`` to create a new reindexed Dataset."""

        new_variables = variables.copy()
        new_indexes = indexes.copy()

        # re-assign variable metadata
        for name, new_var in new_variables.items():
            var = self._variables.get(name)
            if var is not None:
                new_var.attrs = var.attrs
                new_var.encoding = var.encoding

        # pass through indexes from excluded dimensions
        # no extra check needed for multi-coordinate indexes, potential conflicts
        # should already have been detected when aligning the indexes
        for name, idx in self._indexes.items():
            var = self._variables[name]
            if set(var.dims) <= exclude_dims:
                new_indexes[name] = idx
                new_variables[name] = var

        if not dim_pos_indexers:
            # fast path for no reindexing necessary
            if set(new_indexes) - set(self._indexes):
                # this only adds new indexes and their coordinate variables
                reindexed = self._overwrite_indexes(new_indexes, new_variables)
            else:
                reindexed = self.copy(deep=aligner.copy)
        else:
            to_reindex = {
                k: v
                for k, v in self.variables.items()
                if k not in variables and k not in exclude_vars
            }
            reindexed_vars = alignment.reindex_variables(
                to_reindex,
                dim_pos_indexers,
                copy=aligner.copy,
                fill_value=fill_value,
                sparse=aligner.sparse,
            )
            new_variables.update(reindexed_vars)
            new_coord_names = self._coord_names | set(new_indexes)
            reindexed = self._replace_with_new_dims(
                new_variables, new_coord_names, indexes=new_indexes
            )

        reindexed.encoding = self.encoding

        return reindexed

    def reindex_like(
        self,
        other: T_Xarray,
        method: ReindexMethodOptions = None,
        tolerance: float | Iterable[float] | str | None = None,
        copy: bool = True,
        fill_value: Any = xrdtypes.NA,
    ) -> Self:
        """
        Conform this object onto the indexes of another object, for indexes which the
        objects share. Missing values are filled with ``fill_value``. The default fill
        value is NaN.

        Parameters
        ----------
        other : Dataset or DataArray
            Object with an 'indexes' attribute giving a mapping from dimension
            names to pandas.Index objects, which provides coordinates upon
            which to index the variables in this dataset. The indexes on this
            other object need not be the same as the indexes on this
            dataset. Any mismatched index values will be filled in with
            NaN, and any mismatched dimension names will simply be ignored.
        method : {None, "nearest", "pad", "ffill", "backfill", "bfill", None}, optional
            Method to use for filling index values from other not found in this
            dataset:

            - None (default): don't fill gaps
            - "pad" / "ffill": propagate last valid index value forward
            - "backfill" / "bfill": propagate next valid index value backward
            - "nearest": use nearest valid index value

        tolerance : float | Iterable[float] | str | None, default: None
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
            Tolerance may be a scalar value, which applies the same tolerance
            to all values, or list-like, which applies variable tolerance per
            element. List-like must be the same size as the index and its dtype
            must exactly match the index’s type.
        copy : bool, default: True
            If ``copy=True``, data in the return value is always copied. If
            ``copy=False`` and reindexing is unnecessary, or can be performed
            with only slice operations, then the output may share memory with
            the input. In either case, a new xarray object is always returned.
        fill_value : scalar or dict-like, optional
            Value to use for newly missing values. If a dict-like maps
            variable names to fill values.

        Returns
        -------
        reindexed : Dataset
            Another dataset, with this dataset's data but coordinates from the
            other object.

        See Also
        --------
        Dataset.reindex
        DataArray.reindex_like
        align

        """
        return alignment.reindex_like(
            self,
            other=other,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )

    def reindex(
        self,
        indexers: Mapping[Any, Any] | None = None,
        method: ReindexMethodOptions = None,
        tolerance: float | Iterable[float] | str | None = None,
        copy: bool = True,
        fill_value: Any = xrdtypes.NA,
        **indexers_kwargs: Any,
    ) -> Self:
        """Conform this object onto a new set of indexes, filling in
        missing values with ``fill_value``. The default fill value is NaN.

        Parameters
        ----------
        indexers : dict, optional
            Dictionary with keys given by dimension names and values given by
            arrays of coordinates tick labels. Any mismatched coordinate
            values will be filled in with NaN, and any mismatched dimension
            names will simply be ignored.
            One of indexers or indexers_kwargs must be provided.
        method : {None, "nearest", "pad", "ffill", "backfill", "bfill", None}, optional
            Method to use for filling index values in ``indexers`` not found in
            this dataset:

            - None (default): don't fill gaps
            - "pad" / "ffill": propagate last valid index value forward
            - "backfill" / "bfill": propagate next valid index value backward
            - "nearest": use nearest valid index value

        tolerance : float | Iterable[float] | str | None, default: None
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
            Tolerance may be a scalar value, which applies the same tolerance
            to all values, or list-like, which applies variable tolerance per
            element. List-like must be the same size as the index and its dtype
            must exactly match the index’s type.
        copy : bool, default: True
            If ``copy=True``, data in the return value is always copied. If
            ``copy=False`` and reindexing is unnecessary, or can be performed
            with only slice operations, then the output may share memory with
            the input. In either case, a new xarray object is always returned.
        fill_value : scalar or dict-like, optional
            Value to use for newly missing values. If a dict-like,
            maps variable names (including coordinates) to fill values.
        sparse : bool, default: False
            use sparse-array.
        **indexers_kwargs : {dim: indexer, ...}, optional
            Keyword arguments in the same form as ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        reindexed : Dataset
            Another dataset, with this dataset's data but replaced coordinates.

        See Also
        --------
        Dataset.reindex_like
        align
        pandas.Index.get_indexer

        Examples
        --------
        Create a dataset with some fictional data.

        >>> x = xr.Dataset(
        ...     {
        ...         "temperature": ("station", 20 * np.random.rand(4)),
        ...         "pressure": ("station", 500 * np.random.rand(4)),
        ...     },
        ...     coords={"station": ["boston", "nyc", "seattle", "denver"]},
        ... )
        >>> x
        <xarray.Dataset> Size: 176B
        Dimensions:      (station: 4)
        Coordinates:
          * station      (station) <U7 112B 'boston' 'nyc' 'seattle' 'denver'
        Data variables:
            temperature  (station) float64 32B 10.98 14.3 12.06 10.9
            pressure     (station) float64 32B 211.8 322.9 218.8 445.9
        >>> x.indexes
        Indexes:
            station  Index(['boston', 'nyc', 'seattle', 'denver'], dtype='object', name='station')

        Create a new index and reindex the dataset. By default values in the new index that
        do not have corresponding records in the dataset are assigned `NaN`.

        >>> new_index = ["boston", "austin", "seattle", "lincoln"]
        >>> x.reindex({"station": new_index})
        <xarray.Dataset> Size: 176B
        Dimensions:      (station: 4)
        Coordinates:
          * station      (station) <U7 112B 'boston' 'austin' 'seattle' 'lincoln'
        Data variables:
            temperature  (station) float64 32B 10.98 nan 12.06 nan
            pressure     (station) float64 32B 211.8 nan 218.8 nan

        We can fill in the missing values by passing a value to the keyword `fill_value`.

        >>> x.reindex({"station": new_index}, fill_value=0)
        <xarray.Dataset> Size: 176B
        Dimensions:      (station: 4)
        Coordinates:
          * station      (station) <U7 112B 'boston' 'austin' 'seattle' 'lincoln'
        Data variables:
            temperature  (station) float64 32B 10.98 0.0 12.06 0.0
            pressure     (station) float64 32B 211.8 0.0 218.8 0.0

        We can also use different fill values for each variable.

        >>> x.reindex(
        ...     {"station": new_index}, fill_value={"temperature": 0, "pressure": 100}
        ... )
        <xarray.Dataset> Size: 176B
        Dimensions:      (station: 4)
        Coordinates:
          * station      (station) <U7 112B 'boston' 'austin' 'seattle' 'lincoln'
        Data variables:
            temperature  (station) float64 32B 10.98 0.0 12.06 0.0
            pressure     (station) float64 32B 211.8 100.0 218.8 100.0

        Because the index is not monotonically increasing or decreasing, we cannot use arguments
        to the keyword method to fill the `NaN` values.

        >>> x.reindex({"station": new_index}, method="nearest")
        Traceback (most recent call last):
        ...
            raise ValueError('index must be monotonic increasing or decreasing')
        ValueError: index must be monotonic increasing or decreasing

        To further illustrate the filling functionality in reindex, we will create a
        dataset with a monotonically increasing index (for example, a sequence of dates).

        >>> x2 = xr.Dataset(
        ...     {
        ...         "temperature": (
        ...             "time",
        ...             [15.57, 12.77, np.nan, 0.3081, 16.59, 15.12],
        ...         ),
        ...         "pressure": ("time", 500 * np.random.rand(6)),
        ...     },
        ...     coords={"time": pd.date_range("01/01/2019", periods=6, freq="D")},
        ... )
        >>> x2
        <xarray.Dataset> Size: 144B
        Dimensions:      (time: 6)
        Coordinates:
          * time         (time) datetime64[ns] 48B 2019-01-01 2019-01-02 ... 2019-01-06
        Data variables:
            temperature  (time) float64 48B 15.57 12.77 nan 0.3081 16.59 15.12
            pressure     (time) float64 48B 481.8 191.7 395.9 264.4 284.0 462.8

        Suppose we decide to expand the dataset to cover a wider date range.

        >>> time_index2 = pd.date_range("12/29/2018", periods=10, freq="D")
        >>> x2.reindex({"time": time_index2})
        <xarray.Dataset> Size: 240B
        Dimensions:      (time: 10)
        Coordinates:
          * time         (time) datetime64[ns] 80B 2018-12-29 2018-12-30 ... 2019-01-07
        Data variables:
            temperature  (time) float64 80B nan nan nan 15.57 ... 0.3081 16.59 15.12 nan
            pressure     (time) float64 80B nan nan nan 481.8 ... 264.4 284.0 462.8 nan

        The index entries that did not have a value in the original data frame (for example, `2018-12-29`)
        are by default filled with NaN. If desired, we can fill in the missing values using one of several options.

        For example, to back-propagate the last valid value to fill the `NaN` values,
        pass `bfill` as an argument to the `method` keyword.

        >>> x3 = x2.reindex({"time": time_index2}, method="bfill")
        >>> x3
        <xarray.Dataset> Size: 240B
        Dimensions:      (time: 10)
        Coordinates:
          * time         (time) datetime64[ns] 80B 2018-12-29 2018-12-30 ... 2019-01-07
        Data variables:
            temperature  (time) float64 80B 15.57 15.57 15.57 15.57 ... 16.59 15.12 nan
            pressure     (time) float64 80B 481.8 481.8 481.8 481.8 ... 284.0 462.8 nan

        Please note that the `NaN` value present in the original dataset (at index value `2019-01-03`)
        will not be filled by any of the value propagation schemes.

        >>> x2.where(x2.temperature.isnull(), drop=True)
        <xarray.Dataset> Size: 24B
        Dimensions:      (time: 1)
        Coordinates:
          * time         (time) datetime64[ns] 8B 2019-01-03
        Data variables:
            temperature  (time) float64 8B nan
            pressure     (time) float64 8B 395.9
        >>> x3.where(x3.temperature.isnull(), drop=True)
        <xarray.Dataset> Size: 48B
        Dimensions:      (time: 2)
        Coordinates:
          * time         (time) datetime64[ns] 16B 2019-01-03 2019-01-07
        Data variables:
            temperature  (time) float64 16B nan nan
            pressure     (time) float64 16B 395.9 nan

        This is because filling while reindexing does not look at dataset values, but only compares
        the original and desired indexes. If you do want to fill in the `NaN` values present in the
        original dataset, use the :py:meth:`~Dataset.fillna()` method.

        """
        indexers = utils.either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")
        return alignment.reindex(
            self,
            indexers=indexers,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
        )

    def _reindex(
        self,
        indexers: Mapping[Any, Any] | None = None,
        method: str | None = None,
        tolerance: int | float | Iterable[int | float] | None = None,
        copy: bool = True,
        fill_value: Any = xrdtypes.NA,
        sparse: bool = False,
        **indexers_kwargs: Any,
    ) -> Self:
        """
        Same as reindex but supports sparse option.
        """
        indexers = utils.either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")
        return alignment.reindex(
            self,
            indexers=indexers,
            method=method,
            tolerance=tolerance,
            copy=copy,
            fill_value=fill_value,
            sparse=sparse,
        )

    def interp(
        self,
        coords: Mapping[Any, Any] | None = None,
        method: InterpOptions = "linear",
        assume_sorted: bool = False,
        kwargs: Mapping[str, Any] | None = None,
        method_non_numeric: str = "nearest",
        **coords_kwargs: Any,
    ) -> Self:
        """
        Interpolate a Dataset onto new coordinates.

        Performs univariate or multivariate interpolation of a Dataset onto new coordinates,
        utilizing either NumPy or SciPy interpolation routines.

        Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.

        Parameters
        ----------
        coords : dict, optional
            Mapping from dimension names to the new coordinates.
            New coordinate can be a scalar, array-like or DataArray.
            If DataArrays are passed as new coordinates, their dimensions are
            used for the broadcasting. Missing values are skipped.
        method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \
            "quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" }
            Interpolation method to use (see descriptions above).
        assume_sorted : bool, default: False
            If False, values of coordinates that are interpolated over can be
            in any order and they are sorted first. If True, interpolated
            coordinates are assumed to be an array of monotonically increasing
            values.
        kwargs : dict, optional
            Additional keyword arguments passed to the interpolator. Valid
            options and their behavior depend which interpolant is used.
        method_non_numeric : {"nearest", "pad", "ffill", "backfill", "bfill"}, optional
            Method for non-numeric types. Passed on to :py:meth:`Dataset.reindex`.
            ``"nearest"`` is used by default.
        **coords_kwargs : {dim: coordinate, ...}, optional
            The keyword arguments form of ``coords``.
            One of coords or coords_kwargs must be provided.


        Returns
        -------
        interpolated : Dataset
            New dataset on the new coordinates.

        Notes
        -----
        - SciPy is required for certain interpolation methods.
        - When interpolating along multiple dimensions with methods `linear` and `nearest`,
            the process attempts to decompose the interpolation into independent interpolations
            along one dimension at a time.
        - The specific interpolation method and dimensionality determine which
            interpolant is used:

            1. **Interpolation along one dimension of 1D data (`method='linear'`)**
                - Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.

            2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
                - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
                    use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp`
                    (as in the case of `method='linear'` for 1D data).
                - If `method='polynomial'`, the `order` keyword argument must also be provided.

            3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
                - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
                    - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
                    - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
                    - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
                    - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
                        (`makima` is handled by passing the `makima` flag).

            4. **Interpolation along multiple dimensions of multi-dimensional data**
                - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
                    "cubic", "quintic", "pchip"}.

        See Also
        --------
        :mod:`scipy.interpolate`

        :doc:`xarray-tutorial:fundamentals/02.2_manipulating_dimensions`
            Tutorial material on manipulating data resolution using :py:func:`~xarray.Dataset.interp`

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     data_vars={
        ...         "a": ("x", [5, 7, 4]),
        ...         "b": (
        ...             ("x", "y"),
        ...             [[1, 4, 2, 9], [2, 7, 6, np.nan], [6, np.nan, 5, 8]],
        ...         ),
        ...     },
        ...     coords={"x": [0, 1, 2], "y": [10, 12, 14, 16]},
        ... )
        >>> ds
        <xarray.Dataset> Size: 176B
        Dimensions:  (x: 3, y: 4)
        Coordinates:
          * x        (x) int64 24B 0 1 2
          * y        (y) int64 32B 10 12 14 16
        Data variables:
            a        (x) int64 24B 5 7 4
            b        (x, y) float64 96B 1.0 4.0 2.0 9.0 2.0 7.0 6.0 nan 6.0 nan 5.0 8.0

        1D interpolation with the default method (linear):

        >>> ds.interp(x=[0, 0.75, 1.25, 1.75])
        <xarray.Dataset> Size: 224B
        Dimensions:  (x: 4, y: 4)
        Coordinates:
          * y        (y) int64 32B 10 12 14 16
          * x        (x) float64 32B 0.0 0.75 1.25 1.75
        Data variables:
            a        (x) float64 32B 5.0 6.5 6.25 4.75
            b        (x, y) float64 128B 1.0 4.0 2.0 nan 1.75 ... nan 5.0 nan 5.25 nan

        1D interpolation with a different method:

        >>> ds.interp(x=[0, 0.75, 1.25, 1.75], method="nearest")
        <xarray.Dataset> Size: 224B
        Dimensions:  (x: 4, y: 4)
        Coordinates:
          * y        (y) int64 32B 10 12 14 16
          * x        (x) float64 32B 0.0 0.75 1.25 1.75
        Data variables:
            a        (x) float64 32B 5.0 7.0 7.0 4.0
            b        (x, y) float64 128B 1.0 4.0 2.0 9.0 2.0 7.0 ... nan 6.0 nan 5.0 8.0

        1D extrapolation:

        >>> ds.interp(
        ...     x=[1, 1.5, 2.5, 3.5],
        ...     method="linear",
        ...     kwargs={"fill_value": "extrapolate"},
        ... )
        <xarray.Dataset> Size: 224B
        Dimensions:  (x: 4, y: 4)
        Coordinates:
          * y        (y) int64 32B 10 12 14 16
          * x        (x) float64 32B 1.0 1.5 2.5 3.5
        Data variables:
            a        (x) float64 32B 7.0 5.5 2.5 -0.5
            b        (x, y) float64 128B 2.0 7.0 6.0 nan 4.0 ... nan 12.0 nan 3.5 nan

        2D interpolation:

        >>> ds.interp(x=[0, 0.75, 1.25, 1.75], y=[11, 13, 15], method="linear")
        <xarray.Dataset> Size: 184B
        Dimensions:  (x: 4, y: 3)
        Coordinates:
          * x        (x) float64 32B 0.0 0.75 1.25 1.75
          * y        (y) int64 24B 11 13 15
        Data variables:
            a        (x) float64 32B 5.0 6.5 6.25 4.75
            b        (x, y) float64 96B 2.5 3.0 nan 4.0 5.625 ... nan nan nan nan nan
        """
        from xarray.core import missing

        if kwargs is None:
            kwargs = {}

        coords = either_dict_or_kwargs(coords, coords_kwargs, "interp")
        indexers = dict(self._validate_interp_indexers(coords))
        obj = self if assume_sorted else self.sortby(list(coords))

        def maybe_variable(obj, k):
            # workaround to get variable for dimension without coordinate.
            try:
                return obj._variables[k]
            except KeyError:
                return as_variable((k, range(obj.sizes[k])))

        def _validate_interp_indexer(x, new_x):
            # In the case of datetimes, the restrictions placed on indexers
            # used with interp are stronger than those which are placed on
            # isel, so we need an additional check after _validate_indexers.
            if _contains_datetime_like_objects(
                x
            ) and not _contains_datetime_like_objects(new_x):
                raise TypeError(
                    "When interpolating over a datetime-like "
                    "coordinate, the coordinates to "
                    "interpolate to must be either datetime "
                    "strings or datetimes. "
                    f"Instead got\n{new_x}"
                )
            return x, new_x

        validated_indexers = {
            k: _validate_interp_indexer(maybe_variable(obj, k), v)
            for k, v in indexers.items()
        }

        # optimization: subset to coordinate range of the target index
        if method in ["linear", "nearest"]:
            for k, v in validated_indexers.items():
                obj, newidx = missing._localize(obj, {k: v})
                validated_indexers[k] = newidx[k]

        has_chunked_array = bool(
            any(is_chunked_array(v._data) for v in obj._variables.values())
        )
        if has_chunked_array:
            # optimization: create dask coordinate arrays once per Dataset
            # rather than once per Variable when dask.array.unify_chunks is called later
            # GH4739
            dask_indexers = {
                k: (index.to_base_variable().chunk(), dest.to_base_variable().chunk())
                for k, (index, dest) in validated_indexers.items()
            }

        variables: dict[Hashable, Variable] = {}
        reindex_vars: list[Hashable] = []
        for name, var in obj._variables.items():
            if name in indexers:
                continue

            use_indexers = (
                dask_indexers if is_duck_dask_array(var._data) else validated_indexers
            )

            dtype_kind = var.dtype.kind
            if dtype_kind in "uifc":
                # For normal number types do the interpolation:
                var_indexers = {k: v for k, v in use_indexers.items() if k in var.dims}
                variables[name] = missing.interp(var, var_indexers, method, **kwargs)
            elif dtype_kind in "ObU" and (use_indexers.keys() & var.dims):
                if all(var.sizes[d] == 1 for d in (use_indexers.keys() & var.dims)):
                    # Broadcastable, can be handled quickly without reindex:
                    to_broadcast = (var.squeeze(),) + tuple(
                        dest for _, dest in use_indexers.values()
                    )
                    variables[name] = broadcast_variables(*to_broadcast)[0].copy(
                        deep=True
                    )
                else:
                    # For types that we do not understand do stepwise
                    # interpolation to avoid modifying the elements.
                    # reindex the variable instead because it supports
                    # booleans and objects and retains the dtype but inside
                    # this loop there might be some duplicate code that slows it
                    # down, therefore collect these signals and run it later:
                    reindex_vars.append(name)
            elif all(d not in indexers for d in var.dims):
                # For anything else we can only keep variables if they
                # are not dependent on any coords that are being
                # interpolated along:
                variables[name] = var

        if reindex_vars and (
            reindex_indexers := {
                k: v for k, (_, v) in validated_indexers.items() if v.dims == (k,)
            }
        ):
            reindexed = alignment.reindex(
                obj[reindex_vars],
                indexers=reindex_indexers,
                method=method_non_numeric,
                exclude_vars=variables.keys(),
            )
            indexes = dict(reindexed._indexes)
            variables.update(reindexed.variables)
        else:
            # Get the indexes that are not being interpolated along
            indexes = {k: v for k, v in obj._indexes.items() if k not in indexers}

        # Get the coords that also exist in the variables:
        coord_names = obj._coord_names & variables.keys()
        selected = self._replace_with_new_dims(
            variables.copy(), coord_names, indexes=indexes
        )

        # Attach indexer as coordinate
        for k, v in indexers.items():
            assert isinstance(v, Variable)
            if v.dims == (k,):
                index = PandasIndex(v, k, coord_dtype=v.dtype)
                index_vars = index.create_variables({k: v})
                indexes[k] = index
                variables.update(index_vars)
            else:
                variables[k] = v

        # Extract coordinates from indexers
        coord_vars, new_indexes = selected._get_indexers_coords_and_indexes(coords)
        variables.update(coord_vars)
        indexes.update(new_indexes)

        coord_names = obj._coord_names & variables.keys() | coord_vars.keys()
        return self._replace_with_new_dims(variables, coord_names, indexes=indexes)

    def interp_like(
        self,
        other: T_Xarray,
        method: InterpOptions = "linear",
        assume_sorted: bool = False,
        kwargs: Mapping[str, Any] | None = None,
        method_non_numeric: str = "nearest",
    ) -> Self:
        """Interpolate this object onto the coordinates of another object.

        Performs univariate or multivariate interpolation of a Dataset onto new coordinates,
        utilizing either NumPy or SciPy interpolation routines.

        Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.

        Parameters
        ----------
        other : Dataset or DataArray
            Object with an 'indexes' attribute giving a mapping from dimension
            names to an 1d array-like, which provides coordinates upon
            which to index the variables in this dataset. Missing values are skipped.
        method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \
            "quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" }
            Interpolation method to use (see descriptions above).
        assume_sorted : bool, default: False
            If False, values of coordinates that are interpolated over can be
            in any order and they are sorted first. If True, interpolated
            coordinates are assumed to be an array of monotonically increasing
            values.
        kwargs : dict, optional
            Additional keyword arguments passed to the interpolator. Valid
            options and their behavior depend which interpolant is use
        method_non_numeric : {"nearest", "pad", "ffill", "backfill", "bfill"}, optional
            Method for non-numeric types. Passed on to :py:meth:`Dataset.reindex`.
            ``"nearest"`` is used by default.

        Returns
        -------
        interpolated : Dataset
            Another dataset by interpolating this dataset's data along the
            coordinates of the other object.

        Notes
        -----
        - scipy is required.
        - If the dataset has object-type coordinates, reindex is used for these
            coordinates instead of the interpolation.
        - When interpolating along multiple dimensions with methods `linear` and `nearest`,
            the process attempts to decompose the interpolation into independent interpolations
            along one dimension at a time.
        - The specific interpolation method and dimensionality determine which
            interpolant is used:

            1. **Interpolation along one dimension of 1D data (`method='linear'`)**
                - Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.

            2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
                - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
                    use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp`
                    (as in the case of `method='linear'` for 1D data).
                - If `method='polynomial'`, the `order` keyword argument must also be provided.

            3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
                - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
                    - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
                    - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
                    - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
                    - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
                        (`makima` is handled by passing the `makima` flag).

            4. **Interpolation along multiple dimensions of multi-dimensional data**
                - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
                    "cubic", "quintic", "pchip"}.

        See Also
        --------
        :func:`Dataset.interp`
        :func:`Dataset.reindex_like`
        :mod:`scipy.interpolate`
        """
        if kwargs is None:
            kwargs = {}

        # pick only dimension coordinates with a single index
        coords: dict[Hashable, Variable] = {}
        other_indexes = other.xindexes
        for dim in self.dims:
            other_dim_coords = other_indexes.get_all_coords(dim, errors="ignore")
            if len(other_dim_coords) == 1:
                coords[dim] = other_dim_coords[dim]

        numeric_coords: dict[Hashable, Variable] = {}
        object_coords: dict[Hashable, Variable] = {}
        for k, v in coords.items():
            if v.dtype.kind in "uifcMm":
                numeric_coords[k] = v
            else:
                object_coords[k] = v

        ds = self
        if object_coords:
            # We do not support interpolation along object coordinate.
            # reindex instead.
            ds = self.reindex(object_coords)
        return ds.interp(
            coords=numeric_coords,
            method=method,
            assume_sorted=assume_sorted,
            kwargs=kwargs,
            method_non_numeric=method_non_numeric,
        )

    # Helper methods for rename()
    def _rename_vars(
        self, name_dict, dims_dict
    ) -> tuple[dict[Hashable, Variable], set[Hashable]]:
        variables = {}
        coord_names = set()
        for k, v in self.variables.items():
            var = v.copy(deep=False)
            var.dims = tuple(dims_dict.get(dim, dim) for dim in v.dims)
            name = name_dict.get(k, k)
            if name in variables:
                raise ValueError(f"the new name {name!r} conflicts")
            variables[name] = var
            if k in self._coord_names:
                coord_names.add(name)
        return variables, coord_names

    def _rename_dims(self, name_dict: Mapping[Any, Hashable]) -> dict[Hashable, int]:
        return {name_dict.get(k, k): v for k, v in self.sizes.items()}

    def _rename_indexes(
        self, name_dict: Mapping[Any, Hashable], dims_dict: Mapping[Any, Hashable]
    ) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
        if not self._indexes:
            return {}, {}

        indexes = {}
        variables = {}

        for index, coord_names in self.xindexes.group_by_index():
            new_index = index.rename(name_dict, dims_dict)
            new_coord_names = [name_dict.get(k, k) for k in coord_names]
            indexes.update(dict.fromkeys(new_coord_names, new_index))
            new_index_vars = new_index.create_variables(
                {
                    new: self._variables[old]
                    for old, new in zip(coord_names, new_coord_names, strict=True)
                }
            )
            variables.update(new_index_vars)

        return indexes, variables

    def _rename_all(
        self, name_dict: Mapping[Any, Hashable], dims_dict: Mapping[Any, Hashable]
    ) -> tuple[
        dict[Hashable, Variable],
        set[Hashable],
        dict[Hashable, int],
        dict[Hashable, Index],
    ]:
        variables, coord_names = self._rename_vars(name_dict, dims_dict)
        dims = self._rename_dims(dims_dict)

        indexes, index_vars = self._rename_indexes(name_dict, dims_dict)
        variables = {k: index_vars.get(k, v) for k, v in variables.items()}

        return variables, coord_names, dims, indexes

    def _rename(
        self,
        name_dict: Mapping[Any, Hashable] | None = None,
        **names: Hashable,
    ) -> Self:
        """Also used internally by DataArray so that the warning (if any)
        is raised at the right stack level.
        """
        name_dict = either_dict_or_kwargs(name_dict, names, "rename")
        for k in name_dict.keys():
            if k not in self and k not in self.dims:
                raise ValueError(
                    f"cannot rename {k!r} because it is not a "
                    "variable or dimension in this dataset"
                )

            create_dim_coord = False
            new_k = name_dict[k]

            if k == new_k:
                continue  # Same name, nothing to do

            if k in self.dims and new_k in self._coord_names:
                coord_dims = self._variables[name_dict[k]].dims
                if coord_dims == (k,):
                    create_dim_coord = True
            elif k in self._coord_names and new_k in self.dims:
                coord_dims = self._variables[k].dims
                if coord_dims == (new_k,):
                    create_dim_coord = True

            if create_dim_coord:
                warnings.warn(
                    f"rename {k!r} to {name_dict[k]!r} does not create an index "
                    "anymore. Try using swap_dims instead or use set_index "
                    "after rename to create an indexed coordinate.",
                    UserWarning,
                    stacklevel=3,
                )

        variables, coord_names, dims, indexes = self._rename_all(
            name_dict=name_dict, dims_dict=name_dict
        )
        return self._replace(variables, coord_names, dims=dims, indexes=indexes)

    def rename(
        self,
        name_dict: Mapping[Any, Hashable] | None = None,
        **names: Hashable,
    ) -> Self:
        """Returns a new object with renamed variables, coordinates and dimensions.

        Parameters
        ----------
        name_dict : dict-like, optional
            Dictionary whose keys are current variable, coordinate or dimension names and
            whose values are the desired names.
        **names : optional
            Keyword form of ``name_dict``.
            One of name_dict or names must be provided.

        Returns
        -------
        renamed : Dataset
            Dataset with renamed variables, coordinates and dimensions.

        See Also
        --------
        Dataset.swap_dims
        Dataset.rename_vars
        Dataset.rename_dims
        DataArray.rename
        """
        return self._rename(name_dict=name_dict, **names)

    def rename_dims(
        self,
        dims_dict: Mapping[Any, Hashable] | None = None,
        **dims: Hashable,
    ) -> Self:
        """Returns a new object with renamed dimensions only.

        Parameters
        ----------
        dims_dict : dict-like, optional
            Dictionary whose keys are current dimension names and
            whose values are the desired names. The desired names must
            not be the name of an existing dimension or Variable in the Dataset.
        **dims : optional
            Keyword form of ``dims_dict``.
            One of dims_dict or dims must be provided.

        Returns
        -------
        renamed : Dataset
            Dataset with renamed dimensions.

        See Also
        --------
        Dataset.swap_dims
        Dataset.rename
        Dataset.rename_vars
        DataArray.rename
        """
        dims_dict = either_dict_or_kwargs(dims_dict, dims, "rename_dims")
        for k, v in dims_dict.items():
            if k not in self.dims:
                raise ValueError(
                    f"cannot rename {k!r} because it is not found "
                    f"in the dimensions of this dataset {tuple(self.dims)}"
                )
            if v in self.dims or v in self:
                raise ValueError(
                    f"Cannot rename {k} to {v} because {v} already exists. "
                    "Try using swap_dims instead."
                )

        variables, coord_names, sizes, indexes = self._rename_all(
            name_dict={}, dims_dict=dims_dict
        )
        return self._replace(variables, coord_names, dims=sizes, indexes=indexes)

    def rename_vars(
        self,
        name_dict: Mapping[Any, Hashable] | None = None,
        **names: Hashable,
    ) -> Self:
        """Returns a new object with renamed variables including coordinates

        Parameters
        ----------
        name_dict : dict-like, optional
            Dictionary whose keys are current variable or coordinate names and
            whose values are the desired names.
        **names : optional
            Keyword form of ``name_dict``.
            One of name_dict or names must be provided.

        Returns
        -------
        renamed : Dataset
            Dataset with renamed variables including coordinates

        See Also
        --------
        Dataset.swap_dims
        Dataset.rename
        Dataset.rename_dims
        DataArray.rename
        """
        name_dict = either_dict_or_kwargs(name_dict, names, "rename_vars")
        for k in name_dict:
            if k not in self:
                raise ValueError(
                    f"cannot rename {k!r} because it is not a "
                    "variable or coordinate in this dataset"
                )
        variables, coord_names, dims, indexes = self._rename_all(
            name_dict=name_dict, dims_dict={}
        )
        return self._replace(variables, coord_names, dims=dims, indexes=indexes)

    def swap_dims(
        self, dims_dict: Mapping[Any, Hashable] | None = None, **dims_kwargs
    ) -> Self:
        """Returns a new object with swapped dimensions.

        Parameters
        ----------
        dims_dict : dict-like
            Dictionary whose keys are current dimension names and whose values
            are new names.
        **dims_kwargs : {existing_dim: new_dim, ...}, optional
            The keyword arguments form of ``dims_dict``.
            One of dims_dict or dims_kwargs must be provided.

        Returns
        -------
        swapped : Dataset
            Dataset with swapped dimensions.

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     data_vars={"a": ("x", [5, 7]), "b": ("x", [0.1, 2.4])},
        ...     coords={"x": ["a", "b"], "y": ("x", [0, 1])},
        ... )
        >>> ds
        <xarray.Dataset> Size: 56B
        Dimensions:  (x: 2)
        Coordinates:
          * x        (x) <U1 8B 'a' 'b'
            y        (x) int64 16B 0 1
        Data variables:
            a        (x) int64 16B 5 7
            b        (x) float64 16B 0.1 2.4

        >>> ds.swap_dims({"x": "y"})
        <xarray.Dataset> Size: 56B
        Dimensions:  (y: 2)
        Coordinates:
            x        (y) <U1 8B 'a' 'b'
          * y        (y) int64 16B 0 1
        Data variables:
            a        (y) int64 16B 5 7
            b        (y) float64 16B 0.1 2.4

        >>> ds.swap_dims({"x": "z"})
        <xarray.Dataset> Size: 56B
        Dimensions:  (z: 2)
        Coordinates:
            x        (z) <U1 8B 'a' 'b'
            y        (z) int64 16B 0 1
        Dimensions without coordinates: z
        Data variables:
            a        (z) int64 16B 5 7
            b        (z) float64 16B 0.1 2.4

        See Also
        --------
        Dataset.rename
        DataArray.swap_dims
        """
        # TODO: deprecate this method in favor of a (less confusing)
        # rename_dims() method that only renames dimensions.

        dims_dict = either_dict_or_kwargs(dims_dict, dims_kwargs, "swap_dims")
        for current_name, new_name in dims_dict.items():
            if current_name not in self.dims:
                raise ValueError(
                    f"cannot swap from dimension {current_name!r} because it is "
                    f"not one of the dimensions of this dataset {tuple(self.dims)}"
                )
            if new_name in self.variables and self.variables[new_name].dims != (
                current_name,
            ):
                raise ValueError(
                    f"replacement dimension {new_name!r} is not a 1D "
                    f"variable along the old dimension {current_name!r}"
                )

        result_dims = {dims_dict.get(dim, dim) for dim in self.dims}

        coord_names = self._coord_names.copy()
        coord_names.update({dim for dim in dims_dict.values() if dim in self.variables})

        variables: dict[Hashable, Variable] = {}
        indexes: dict[Hashable, Index] = {}
        for current_name, current_variable in self.variables.items():
            dims = tuple(dims_dict.get(dim, dim) for dim in current_variable.dims)
            var: Variable
            if current_name in result_dims:
                var = current_variable.to_index_variable()
                var.dims = dims
                if current_name in self._indexes:
                    indexes[current_name] = self._indexes[current_name]
                    variables[current_name] = var
                else:
                    index, index_vars = create_default_index_implicit(var)
                    indexes.update(dict.fromkeys(index_vars, index))
                    variables.update(index_vars)
                    coord_names.update(index_vars)
            else:
                var = current_variable.to_base_variable()
                var.dims = dims
                variables[current_name] = var

        return self._replace_with_new_dims(variables, coord_names, indexes=indexes)

    def expand_dims(
        self,
        dim: Hashable | Sequence[Hashable] | Mapping[Any, Any] | None = None,
        axis: int | Sequence[int] | None = None,
        create_index_for_new_dim: bool = True,
        **dim_kwargs: Any,
    ) -> Self:
        """Return a new object with an additional axis (or axes) inserted at
        the corresponding position in the array shape.  The new object is a
        view into the underlying array, not a copy.

        If dim is already a scalar coordinate, it will be promoted to a 1D
        coordinate consisting of a single value.

        The automatic creation of indexes to back new 1D coordinate variables
        controlled by the create_index_for_new_dim kwarg.

        Parameters
        ----------
        dim : hashable, sequence of hashable, mapping, or None
            Dimensions to include on the new variable. If provided as hashable
            or sequence of hashable, then dimensions are inserted with length
            1. If provided as a mapping, then the keys are the new dimensions
            and the values are either integers (giving the length of the new
            dimensions) or array-like (giving the coordinates of the new
            dimensions).
        axis : int, sequence of int, or None, default: None
            Axis position(s) where new axis is to be inserted (position(s) on
            the result array). If a sequence of integers is passed,
            multiple axes are inserted. In this case, dim arguments should be
            same length list. If axis=None is passed, all the axes will be
            inserted to the start of the result array.
        create_index_for_new_dim : bool, default: True
            Whether to create new ``PandasIndex`` objects when the object being expanded contains scalar variables with names in ``dim``.
        **dim_kwargs : int or sequence or ndarray
            The keywords are arbitrary dimensions being inserted and the values
            are either the lengths of the new dims (if int is given), or their
            coordinates. Note, this is an alternative to passing a dict to the
            dim kwarg and will only be used if dim is None.

        Returns
        -------
        expanded : Dataset
            This object, but with additional dimension(s).

        Examples
        --------
        >>> dataset = xr.Dataset({"temperature": ([], 25.0)})
        >>> dataset
        <xarray.Dataset> Size: 8B
        Dimensions:      ()
        Data variables:
            temperature  float64 8B 25.0

        # Expand the dataset with a new dimension called "time"

        >>> dataset.expand_dims(dim="time")
        <xarray.Dataset> Size: 8B
        Dimensions:      (time: 1)
        Dimensions without coordinates: time
        Data variables:
            temperature  (time) float64 8B 25.0

        # 1D data

        >>> temperature_1d = xr.DataArray([25.0, 26.5, 24.8], dims="x")
        >>> dataset_1d = xr.Dataset({"temperature": temperature_1d})
        >>> dataset_1d
        <xarray.Dataset> Size: 24B
        Dimensions:      (x: 3)
        Dimensions without coordinates: x
        Data variables:
            temperature  (x) float64 24B 25.0 26.5 24.8

        # Expand the dataset with a new dimension called "time" using axis argument

        >>> dataset_1d.expand_dims(dim="time", axis=0)
        <xarray.Dataset> Size: 24B
        Dimensions:      (time: 1, x: 3)
        Dimensions without coordinates: time, x
        Data variables:
            temperature  (time, x) float64 24B 25.0 26.5 24.8

        # 2D data

        >>> temperature_2d = xr.DataArray(np.random.rand(3, 4), dims=("y", "x"))
        >>> dataset_2d = xr.Dataset({"temperature": temperature_2d})
        >>> dataset_2d
        <xarray.Dataset> Size: 96B
        Dimensions:      (y: 3, x: 4)
        Dimensions without coordinates: y, x
        Data variables:
            temperature  (y, x) float64 96B 0.5488 0.7152 0.6028 ... 0.7917 0.5289

        # Expand the dataset with a new dimension called "time" using axis argument

        >>> dataset_2d.expand_dims(dim="time", axis=2)
        <xarray.Dataset> Size: 96B
        Dimensions:      (y: 3, x: 4, time: 1)
        Dimensions without coordinates: y, x, time
        Data variables:
            temperature  (y, x, time) float64 96B 0.5488 0.7152 0.6028 ... 0.7917 0.5289

        # Expand a scalar variable along a new dimension of the same name with and without creating a new index

        >>> ds = xr.Dataset(coords={"x": 0})
        >>> ds
        <xarray.Dataset> Size: 8B
        Dimensions:  ()
        Coordinates:
            x        int64 8B 0
        Data variables:
            *empty*

        >>> ds.expand_dims("x")
        <xarray.Dataset> Size: 8B
        Dimensions:  (x: 1)
        Coordinates:
          * x        (x) int64 8B 0
        Data variables:
            *empty*

        >>> ds.expand_dims("x").indexes
        Indexes:
            x        Index([0], dtype='int64', name='x')

        >>> ds.expand_dims("x", create_index_for_new_dim=False).indexes
        Indexes:
            *empty*

        See Also
        --------
        DataArray.expand_dims
        """
        if dim is None:
            pass
        elif isinstance(dim, Mapping):
            # We're later going to modify dim in place; don't tamper with
            # the input
            dim = dict(dim)
        elif isinstance(dim, int):
            raise TypeError(
                "dim should be hashable or sequence of hashables or mapping"
            )
        elif isinstance(dim, str) or not isinstance(dim, Sequence):
            dim = {dim: 1}
        elif isinstance(dim, Sequence):
            if len(dim) != len(set(dim)):
                raise ValueError("dims should not contain duplicate values.")
            dim = dict.fromkeys(dim, 1)

        dim = either_dict_or_kwargs(dim, dim_kwargs, "expand_dims")
        assert isinstance(dim, MutableMapping)

        if axis is None:
            axis = list(range(len(dim)))
        elif not isinstance(axis, Sequence):
            axis = [axis]

        if len(dim) != len(axis):
            raise ValueError("lengths of dim and axis should be identical.")
        for d in dim:
            if d in self.dims:
                raise ValueError(f"Dimension {d} already exists.")
            if d in self._variables and not utils.is_scalar(self._variables[d]):
                raise ValueError(f"{d} already exists as coordinate or variable name.")

        variables: dict[Hashable, Variable] = {}
        indexes: dict[Hashable, Index] = dict(self._indexes)
        coord_names = self._coord_names.copy()
        # If dim is a dict, then ensure that the values are either integers
        # or iterables.
        for k, v in dim.items():
            if hasattr(v, "__iter__"):
                # If the value for the new dimension is an iterable, then
                # save the coordinates to the variables dict, and set the
                # value within the dim dict to the length of the iterable
                # for later use.

                if create_index_for_new_dim:
                    index = PandasIndex(v, k)
                    indexes[k] = index
                    name_and_new_1d_var = index.create_variables()
                else:
                    name_and_new_1d_var = {k: Variable(data=v, dims=k)}
                variables.update(name_and_new_1d_var)
                coord_names.add(k)
                dim[k] = variables[k].size
            elif isinstance(v, int):
                pass  # Do nothing if the dimensions value is just an int
            else:
                raise TypeError(
                    f"The value of new dimension {k} must be an iterable or an int"
                )

        for k, v in self._variables.items():
            if k not in dim:
                if k in coord_names:  # Do not change coordinates
                    variables[k] = v
                else:
                    result_ndim = len(v.dims) + len(axis)
                    for a in axis:
                        if a < -result_ndim or result_ndim - 1 < a:
                            raise IndexError(
                                f"Axis {a} of variable {k} is out of bounds of the "
                                f"expanded dimension size {result_ndim}"
                            )

                    axis_pos = [a if a >= 0 else result_ndim + a for a in axis]
                    if len(axis_pos) != len(set(axis_pos)):
                        raise ValueError("axis should not contain duplicate values")
                    # We need to sort them to make sure `axis` equals to the
                    # axis positions of the result array.
                    zip_axis_dim = sorted(zip(axis_pos, dim.items(), strict=True))

                    all_dims = list(zip(v.dims, v.shape, strict=True))
                    for d, c in zip_axis_dim:
                        all_dims.insert(d, c)
                    variables[k] = v.set_dims(dict(all_dims))
            elif k not in variables:
                if k in coord_names and create_index_for_new_dim:
                    # If dims includes a label of a non-dimension coordinate,
                    # it will be promoted to a 1D coordinate with a single value.
                    index, index_vars = create_default_index_implicit(v.set_dims(k))
                    indexes[k] = index
                    variables.update(index_vars)
                else:
                    if create_index_for_new_dim:
                        warnings.warn(
                            f"No index created for dimension {k} because variable {k} is not a coordinate. "
                            f"To create an index for {k}, please first call `.set_coords('{k}')` on this object.",
                            UserWarning,
                            stacklevel=2,
                        )

                    # create 1D variable without creating a new index
                    new_1d_var = v.set_dims(k)
                    variables.update({k: new_1d_var})

        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes
        )

    def set_index(
        self,
        indexes: Mapping[Any, Hashable | Sequence[Hashable]] | None = None,
        append: bool = False,
        **indexes_kwargs: Hashable | Sequence[Hashable],
    ) -> Self:
        """Set Dataset (multi-)indexes using one or more existing coordinates
        or variables.

        This legacy method is limited to pandas (multi-)indexes and
        1-dimensional "dimension" coordinates. See
        :py:meth:`~Dataset.set_xindex` for setting a pandas or a custom
        Xarray-compatible index from one or more arbitrary coordinates.

        Parameters
        ----------
        indexes : {dim: index, ...}
            Mapping from names matching dimensions and values given
            by (lists of) the names of existing coordinates or variables to set
            as new (multi-)index.
        append : bool, default: False
            If True, append the supplied index(es) to the existing index(es).
            Otherwise replace the existing index(es) (default).
        **indexes_kwargs : optional
            The keyword arguments form of ``indexes``.
            One of indexes or indexes_kwargs must be provided.

        Returns
        -------
        obj : Dataset
            Another dataset, with this dataset's data but replaced coordinates.

        Examples
        --------
        >>> arr = xr.DataArray(
        ...     data=np.ones((2, 3)),
        ...     dims=["x", "y"],
        ...     coords={"x": range(2), "y": range(3), "a": ("x", [3, 4])},
        ... )
        >>> ds = xr.Dataset({"v": arr})
        >>> ds
        <xarray.Dataset> Size: 104B
        Dimensions:  (x: 2, y: 3)
        Coordinates:
          * x        (x) int64 16B 0 1
          * y        (y) int64 24B 0 1 2
            a        (x) int64 16B 3 4
        Data variables:
            v        (x, y) float64 48B 1.0 1.0 1.0 1.0 1.0 1.0
        >>> ds.set_index(x="a")
        <xarray.Dataset> Size: 88B
        Dimensions:  (x: 2, y: 3)
        Coordinates:
          * x        (x) int64 16B 3 4
          * y        (y) int64 24B 0 1 2
        Data variables:
            v        (x, y) float64 48B 1.0 1.0 1.0 1.0 1.0 1.0

        See Also
        --------
        Dataset.reset_index
        Dataset.set_xindex
        Dataset.swap_dims
        """
        dim_coords = either_dict_or_kwargs(indexes, indexes_kwargs, "set_index")

        new_indexes: dict[Hashable, Index] = {}
        new_variables: dict[Hashable, Variable] = {}
        drop_indexes: set[Hashable] = set()
        drop_variables: set[Hashable] = set()
        replace_dims: dict[Hashable, Hashable] = {}
        all_var_names: set[Hashable] = set()

        for dim, _var_names in dim_coords.items():
            if isinstance(_var_names, str) or not isinstance(_var_names, Sequence):
                var_names = [_var_names]
            else:
                var_names = list(_var_names)

            invalid_vars = set(var_names) - set(self._variables)
            if invalid_vars:
                raise ValueError(
                    ", ".join([str(v) for v in invalid_vars])
                    + " variable(s) do not exist"
                )

            all_var_names.update(var_names)
            drop_variables.update(var_names)

            # drop any pre-existing index involved and its corresponding coordinates
            index_coord_names = self.xindexes.get_all_coords(dim, errors="ignore")
            all_index_coord_names = set(index_coord_names)
            for k in var_names:
                all_index_coord_names.update(
                    self.xindexes.get_all_coords(k, errors="ignore")
                )

            drop_indexes.update(all_index_coord_names)
            drop_variables.update(all_index_coord_names)

            if len(var_names) == 1 and (not append or dim not in self._indexes):
                var_name = var_names[0]
                var = self._variables[var_name]
                # an error with a better message will be raised for scalar variables
                # when creating the PandasIndex
                if var.ndim > 0 and var.dims != (dim,):
                    raise ValueError(
                        f"dimension mismatch: try setting an index for dimension {dim!r} with "
                        f"variable {var_name!r} that has dimensions {var.dims}"
                    )
                idx = PandasIndex.from_variables({dim: var}, options={})
                idx_vars = idx.create_variables({var_name: var})

                # trick to preserve coordinate order in this case
                if dim in self._coord_names:
                    drop_variables.remove(dim)
            else:
                if append:
                    current_variables = {
                        k: self._variables[k] for k in index_coord_names
                    }
                else:
                    current_variables = {}
                idx, idx_vars = PandasMultiIndex.from_variables_maybe_expand(
                    dim,
                    current_variables,
                    {k: self._variables[k] for k in var_names},
                )
                for n in idx.index.names:
                    replace_dims[n] = dim

            new_indexes.update(dict.fromkeys(idx_vars, idx))
            new_variables.update(idx_vars)

        # re-add deindexed coordinates (convert to base variables)
        for k in drop_variables:
            if (
                k not in new_variables
                and k not in all_var_names
                and k in self._coord_names
            ):
                new_variables[k] = self._variables[k].to_base_variable()

        indexes_: dict[Any, Index] = {
            k: v for k, v in self._indexes.items() if k not in drop_indexes
        }
        indexes_.update(new_indexes)

        variables = {
            k: v for k, v in self._variables.items() if k not in drop_variables
        }
        variables.update(new_variables)

        # update dimensions if necessary, GH: 3512
        for k, v in variables.items():
            if any(d in replace_dims for d in v.dims):
                new_dims = [replace_dims.get(d, d) for d in v.dims]
                variables[k] = v._replace(dims=new_dims)

        coord_names = self._coord_names - drop_variables | set(new_variables)

        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes_
        )

    def reset_index(
        self,
        dims_or_levels: Hashable | Sequence[Hashable],
        *,
        drop: bool = False,
    ) -> Self:
        """Reset the specified index(es) or multi-index level(s).

        This legacy method is specific to pandas (multi-)indexes and
        1-dimensional "dimension" coordinates. See the more generic
        :py:meth:`~Dataset.drop_indexes` and :py:meth:`~Dataset.set_xindex`
        method to respectively drop and set pandas or custom indexes for
        arbitrary coordinates.

        Parameters
        ----------
        dims_or_levels : Hashable or Sequence of Hashable
            Name(s) of the dimension(s) and/or multi-index level(s) that will
            be reset.
        drop : bool, default: False
            If True, remove the specified indexes and/or multi-index levels
            instead of extracting them as new coordinates (default: False).

        Returns
        -------
        obj : Dataset
            Another dataset, with this dataset's data but replaced coordinates.

        See Also
        --------
        Dataset.set_index
        Dataset.set_xindex
        Dataset.drop_indexes
        """
        if isinstance(dims_or_levels, str) or not isinstance(dims_or_levels, Sequence):
            dims_or_levels = [dims_or_levels]

        invalid_coords = set(dims_or_levels) - set(self._indexes)
        if invalid_coords:
            raise ValueError(
                f"{tuple(invalid_coords)} are not coordinates with an index"
            )

        drop_indexes: set[Hashable] = set()
        drop_variables: set[Hashable] = set()
        seen: set[Index] = set()
        new_indexes: dict[Hashable, Index] = {}
        new_variables: dict[Hashable, Variable] = {}

        def drop_or_convert(var_names):
            if drop:
                drop_variables.update(var_names)
            else:
                base_vars = {
                    k: self._variables[k].to_base_variable() for k in var_names
                }
                new_variables.update(base_vars)

        for name in dims_or_levels:
            index = self._indexes[name]

            if index in seen:
                continue
            seen.add(index)

            idx_var_names = set(self.xindexes.get_all_coords(name))
            drop_indexes.update(idx_var_names)

            if isinstance(index, PandasMultiIndex):
                # special case for pd.MultiIndex
                level_names = index.index.names
                keep_level_vars = {
                    k: self._variables[k]
                    for k in level_names
                    if k not in dims_or_levels
                }

                if index.dim not in dims_or_levels and keep_level_vars:
                    # do not drop the multi-index completely
                    # instead replace it by a new (multi-)index with dropped level(s)
                    idx = index.keep_levels(keep_level_vars)
                    idx_vars = idx.create_variables(keep_level_vars)
                    new_indexes.update(dict.fromkeys(idx_vars, idx))
                    new_variables.update(idx_vars)
                    if not isinstance(idx, PandasMultiIndex):
                        # multi-index reduced to single index
                        # backward compatibility: unique level coordinate renamed to dimension
                        drop_variables.update(keep_level_vars)
                    drop_or_convert(
                        [k for k in level_names if k not in keep_level_vars]
                    )
                else:
                    # always drop the multi-index dimension variable
                    drop_variables.add(index.dim)
                    drop_or_convert(level_names)
            else:
                drop_or_convert(idx_var_names)

        indexes = {k: v for k, v in self._indexes.items() if k not in drop_indexes}
        indexes.update(new_indexes)

        variables = {
            k: v for k, v in self._variables.items() if k not in drop_variables
        }
        variables.update(new_variables)

        coord_names = self._coord_names - drop_variables

        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes
        )

    def set_xindex(
        self,
        coord_names: str | Sequence[Hashable],
        index_cls: type[Index] | None = None,
        **options,
    ) -> Self:
        """Set a new, Xarray-compatible index from one or more existing
        coordinate(s).

        Parameters
        ----------
        coord_names : str or list
            Name(s) of the coordinate(s) used to build the index.
            If several names are given, their order matters.
        index_cls : subclass of :class:`~xarray.indexes.Index`, optional
            The type of index to create. By default, try setting
            a ``PandasIndex`` if ``len(coord_names) == 1``,
            otherwise a ``PandasMultiIndex``.
        **options
            Options passed to the index constructor.

        Returns
        -------
        obj : Dataset
            Another dataset, with this dataset's data and with a new index.

        """
        # the Sequence check is required for mypy
        if is_scalar(coord_names) or not isinstance(coord_names, Sequence):
            coord_names = [coord_names]

        if index_cls is None:
            if len(coord_names) == 1:
                index_cls = PandasIndex
            else:
                index_cls = PandasMultiIndex
        elif not issubclass(index_cls, Index):
            raise TypeError(f"{index_cls} is not a subclass of xarray.Index")

        invalid_coords = set(coord_names) - self._coord_names

        if invalid_coords:
            msg = ["invalid coordinate(s)"]
            no_vars = invalid_coords - set(self._variables)
            data_vars = invalid_coords - no_vars
            if no_vars:
                msg.append(f"those variables don't exist: {no_vars}")
            if data_vars:
                msg.append(
                    f"those variables are data variables: {data_vars}, use `set_coords` first"
                )
            raise ValueError("\n".join(msg))

        # we could be more clever here (e.g., drop-in index replacement if index
        # coordinates do not conflict), but let's not allow this for now
        indexed_coords = set(coord_names) & set(self._indexes)

        if indexed_coords:
            raise ValueError(
                f"those coordinates already have an index: {indexed_coords}"
            )

        coord_vars = {name: self._variables[name] for name in coord_names}

        index = index_cls.from_variables(coord_vars, options=options)

        new_coord_vars = index.create_variables(coord_vars)

        # special case for setting a pandas multi-index from level coordinates
        # TODO: remove it once we depreciate pandas multi-index dimension (tuple
        # elements) coordinate
        if isinstance(index, PandasMultiIndex):
            coord_names = [index.dim] + list(coord_names)

        # Check for extra variables that don't match the coordinate names
        extra_vars = set(new_coord_vars) - set(coord_names)
        if extra_vars:
            extra_vars_str = ", ".join(f"'{name}'" for name in extra_vars)
            coord_names_str = ", ".join(f"'{name}'" for name in coord_names)
            raise ValueError(
                f"The index created extra variables {extra_vars_str} that are not "
                f"in the list of coordinates {coord_names_str}. "
                f"Use a factory method pattern instead:\n"
                f"  index = {index_cls.__name__}.from_variables(ds, {list(coord_names)!r})\n"
                f"  coords = xr.Coordinates.from_xindex(index)\n"
                f"  ds = ds.assign_coords(coords)"
            )

        variables: dict[Hashable, Variable]
        indexes: dict[Hashable, Index]

        if len(coord_names) == 1:
            variables = self._variables.copy()
            indexes = self._indexes.copy()

            name = list(coord_names).pop()
            if name in new_coord_vars:
                variables[name] = new_coord_vars[name]
            indexes[name] = index
        else:
            # reorder variables and indexes so that coordinates having the same
            # index are next to each other
            variables = {}
            for name, var in self._variables.items():
                if name not in coord_names:
                    variables[name] = var

            indexes = {}
            for name, idx in self._indexes.items():
                if name not in coord_names:
                    indexes[name] = idx

            for name in coord_names:
                try:
                    variables[name] = new_coord_vars[name]
                except KeyError:
                    variables[name] = self._variables[name]
                indexes[name] = index

        return self._replace(
            variables=variables,
            coord_names=self._coord_names | set(coord_names),
            indexes=indexes,
        )

    def reorder_levels(
        self,
        dim_order: Mapping[Any, Sequence[int | Hashable]] | None = None,
        **dim_order_kwargs: Sequence[int | Hashable],
    ) -> Self:
        """Rearrange index levels using input order.

        Parameters
        ----------
        dim_order : dict-like of Hashable to Sequence of int or Hashable, optional
            Mapping from names matching dimensions and values given
            by lists representing new level orders. Every given dimension
            must have a multi-index.
        **dim_order_kwargs : Sequence of int or Hashable, optional
            The keyword arguments form of ``dim_order``.
            One of dim_order or dim_order_kwargs must be provided.

        Returns
        -------
        obj : Dataset
            Another dataset, with this dataset's data but replaced
            coordinates.
        """
        dim_order = either_dict_or_kwargs(dim_order, dim_order_kwargs, "reorder_levels")
        variables = self._variables.copy()
        indexes = dict(self._indexes)
        new_indexes: dict[Hashable, Index] = {}
        new_variables: dict[Hashable, IndexVariable] = {}

        for dim, order in dim_order.items():
            index = self._indexes[dim]

            if not isinstance(index, PandasMultiIndex):
                raise ValueError(f"coordinate {dim} has no MultiIndex")

            level_vars = {k: self._variables[k] for k in order}
            idx = index.reorder_levels(level_vars)
            idx_vars = idx.create_variables(level_vars)
            new_indexes.update(dict.fromkeys(idx_vars, idx))
            new_variables.update(idx_vars)

        indexes = {k: v for k, v in self._indexes.items() if k not in new_indexes}
        indexes.update(new_indexes)

        variables = {k: v for k, v in self._variables.items() if k not in new_variables}
        variables.update(new_variables)

        return self._replace(variables, indexes=indexes)

    def _get_stack_index(
        self,
        dim,
        multi=False,
        create_index=False,
    ) -> tuple[Index | None, dict[Hashable, Variable]]:
        """Used by stack and unstack to get one pandas (multi-)index among
        the indexed coordinates along dimension `dim`.

        If exactly one index is found, return it with its corresponding
        coordinate variables(s), otherwise return None and an empty dict.

        If `create_index=True`, create a new index if none is found or raise
        an error if multiple indexes are found.

        """
        stack_index: Index | None = None
        stack_coords: dict[Hashable, Variable] = {}

        for name, index in self._indexes.items():
            var = self._variables[name]
            if (
                var.ndim == 1
                and var.dims[0] == dim
                and (
                    # stack: must be a single coordinate index
                    (not multi and not self.xindexes.is_multi(name))
                    # unstack: must be an index that implements .unstack
                    or (multi and type(index).unstack is not Index.unstack)
                )
            ):
                if stack_index is not None and index is not stack_index:
                    # more than one index found, stop
                    if create_index:
                        raise ValueError(
                            f"cannot stack dimension {dim!r} with `create_index=True` "
                            "and with more than one index found along that dimension"
                        )
                    return None, {}
                stack_index = index
                stack_coords[name] = var

        if create_index and stack_index is None:
            if dim in self._variables:
                var = self._variables[dim]
            else:
                _, _, var = _get_virtual_variable(self._variables, dim, self.sizes)
            # dummy index (only `stack_coords` will be used to construct the multi-index)
            stack_index = PandasIndex([0], dim)
            stack_coords = {dim: var}

        return stack_index, stack_coords

    def _stack_once(
        self,
        dims: Sequence[Hashable | EllipsisType],
        new_dim: Hashable,
        index_cls: type[Index],
        create_index: bool | None = True,
    ) -> Self:
        if dims == ...:
            raise ValueError("Please use [...] for dims, rather than just ...")
        if ... in dims:
            dims = list(infix_dims(dims, self.dims))

        new_variables: dict[Hashable, Variable] = {}
        stacked_var_names: list[Hashable] = []
        drop_indexes: list[Hashable] = []

        for name, var in self.variables.items():
            if any(d in var.dims for d in dims):
                add_dims = [d for d in dims if d not in var.dims]
                vdims = list(var.dims) + add_dims
                shape = [self.sizes[d] for d in vdims]
                exp_var = var.set_dims(vdims, shape)
                stacked_var = exp_var.stack(**{new_dim: dims})
                new_variables[name] = stacked_var
                stacked_var_names.append(name)
            else:
                new_variables[name] = var.copy(deep=False)

        # drop indexes of stacked coordinates (if any)
        for name in stacked_var_names:
            drop_indexes += list(self.xindexes.get_all_coords(name, errors="ignore"))

        new_indexes = {}
        new_coord_names = set(self._coord_names)
        if create_index or create_index is None:
            product_vars: dict[Any, Variable] = {}
            for dim in dims:
                idx, idx_vars = self._get_stack_index(dim, create_index=create_index)
                if idx is not None:
                    product_vars.update(idx_vars)

            if len(product_vars) == len(dims):
                idx = index_cls.stack(product_vars, new_dim)
                new_indexes[new_dim] = idx
                new_indexes.update(dict.fromkeys(product_vars, idx))
                idx_vars = idx.create_variables(product_vars)
                # keep consistent multi-index coordinate order
                for k in idx_vars:
                    new_variables.pop(k, None)
                new_variables.update(idx_vars)
                new_coord_names.update(idx_vars)

        indexes = {k: v for k, v in self._indexes.items() if k not in drop_indexes}
        indexes.update(new_indexes)

        return self._replace_with_new_dims(
            new_variables, coord_names=new_coord_names, indexes=indexes
        )

    @partial(deprecate_dims, old_name="dimensions")
    def stack(
        self,
        dim: Mapping[Any, Sequence[Hashable | EllipsisType]] | None = None,
        create_index: bool | None = True,
        index_cls: type[Index] = PandasMultiIndex,
        **dim_kwargs: Sequence[Hashable | EllipsisType],
    ) -> Self:
        """
        Stack any number of existing dimensions into a single new dimension.

        New dimensions will be added at the end, and by default the corresponding
        coordinate variables will be combined into a MultiIndex.

        Parameters
        ----------
        dim : mapping of hashable to sequence of hashable
            Mapping of the form `new_name=(dim1, dim2, ...)`. Names of new
            dimensions, and the existing dimensions that they replace. An
            ellipsis (`...`) will be replaced by all unlisted dimensions.
            Passing a list containing an ellipsis (`stacked_dim=[...]`) will stack over
            all dimensions.
        create_index : bool or None, default: True

            - True: create a multi-index for each of the stacked dimensions.
            - False: don't create any index.
            - None. create a multi-index only if exactly one single (1-d) coordinate
              index is found for every dimension to stack.

        index_cls: Index-class, default: PandasMultiIndex
            Can be used to pass a custom multi-index type (must be an Xarray index that
            implements `.stack()`). By default, a pandas multi-index wrapper is used.
        **dim_kwargs
            The keyword arguments form of ``dim``.
            One of dim or dim_kwargs must be provided.

        Returns
        -------
        stacked : Dataset
            Dataset with stacked data.

        See Also
        --------
        Dataset.unstack
        """
        dim = either_dict_or_kwargs(dim, dim_kwargs, "stack")
        result = self
        for new_dim, dims in dim.items():
            result = result._stack_once(dims, new_dim, index_cls, create_index)
        return result

    def to_stacked_array(
        self,
        new_dim: Hashable,
        sample_dims: Collection[Hashable],
        variable_dim: Hashable = "variable",
        name: Hashable | None = None,
    ) -> DataArray:
        """Combine variables of differing dimensionality into a DataArray
        without broadcasting.

        This method is similar to Dataset.to_dataarray but does not broadcast the
        variables.

        Parameters
        ----------
        new_dim : hashable
            Name of the new stacked coordinate
        sample_dims : Collection of hashables
            List of dimensions that **will not** be stacked. Each array in the
            dataset must share these dimensions. For machine learning
            applications, these define the dimensions over which samples are
            drawn.
        variable_dim : hashable, default: "variable"
            Name of the level in the stacked coordinate which corresponds to
            the variables.
        name : hashable, optional
            Name of the new data array.

        Returns
        -------
        stacked : DataArray
            DataArray with the specified dimensions and data variables
            stacked together. The stacked coordinate is named ``new_dim``
            and represented by a MultiIndex object with a level containing the
            data variable names. The name of this level is controlled using
            the ``variable_dim`` argument.

        See Also
        --------
        Dataset.to_dataarray
        Dataset.stack
        DataArray.to_unstacked_dataset

        Examples
        --------
        >>> data = xr.Dataset(
        ...     data_vars={
        ...         "a": (("x", "y"), [[0, 1, 2], [3, 4, 5]]),
        ...         "b": ("x", [6, 7]),
        ...     },
        ...     coords={"y": ["u", "v", "w"]},
        ... )

        >>> data
        <xarray.Dataset> Size: 76B
        Dimensions:  (x: 2, y: 3)
        Coordinates:
          * y        (y) <U1 12B 'u' 'v' 'w'
        Dimensions without coordinates: x
        Data variables:
            a        (x, y) int64 48B 0 1 2 3 4 5
            b        (x) int64 16B 6 7

        >>> data.to_stacked_array("z", sample_dims=["x"])
        <xarray.DataArray 'a' (x: 2, z: 4)> Size: 64B
        array([[0, 1, 2, 6],
               [3, 4, 5, 7]])
        Coordinates:
          * z         (z) object 32B MultiIndex
          * variable  (z) <U1 16B 'a' 'a' 'a' 'b'
          * y         (z) object 32B 'u' 'v' 'w' nan
        Dimensions without coordinates: x

        """
        from xarray.structure.concat import concat

        # add stacking dims by order of appearance
        stacking_dims_list: list[Hashable] = []
        for da in self.data_vars.values():
            for dim in da.dims:
                if dim not in sample_dims and dim not in stacking_dims_list:
                    stacking_dims_list.append(dim)
        stacking_dims = tuple(stacking_dims_list)

        for key, da in self.data_vars.items():
            missing_sample_dims = set(sample_dims) - set(da.dims)
            if missing_sample_dims:
                raise ValueError(
                    "Variables in the dataset must contain all ``sample_dims`` "
                    f"({sample_dims!r}) but '{key}' misses {sorted(map(str, missing_sample_dims))}"
                )

        def stack_dataarray(da):
            # add missing dims/ coords and the name of the variable

            missing_stack_coords = {variable_dim: da.name}
            for dim in set(stacking_dims) - set(da.dims):
                missing_stack_coords[dim] = None

            missing_stack_dims = list(missing_stack_coords)

            return (
                da.assign_coords(**missing_stack_coords)
                .expand_dims(missing_stack_dims)
                .stack({new_dim: (variable_dim,) + stacking_dims})
            )

        # concatenate the arrays
        stackable_vars = [stack_dataarray(da) for da in self.data_vars.values()]
        data_array = concat(
            stackable_vars,
            dim=new_dim,
            data_vars="all",
            coords="different",
            compat="equals",
            join="outer",
        )

        if name is not None:
            data_array.name = name

        return data_array

    def _unstack_once(
        self,
        dim: Hashable,
        index_and_vars: tuple[Index, dict[Hashable, Variable]],
        fill_value,
        sparse: bool = False,
    ) -> Self:
        index, index_vars = index_and_vars
        variables: dict[Hashable, Variable] = {}
        indexes = {k: v for k, v in self._indexes.items() if k != dim}

        new_indexes, clean_index = index.unstack()
        indexes.update(new_indexes)

        for idx in new_indexes.values():
            variables.update(idx.create_variables(index_vars))

        for name, var in self.variables.items():
            if name not in index_vars:
                if dim in var.dims:
                    if isinstance(fill_value, Mapping):
                        fill_value_ = fill_value[name]
                    else:
                        fill_value_ = fill_value

                    variables[name] = var._unstack_once(
                        index=clean_index,
                        dim=dim,
                        fill_value=fill_value_,
                        sparse=sparse,
                    )
                else:
                    variables[name] = var

        coord_names = set(self._coord_names) - {dim} | set(new_indexes)

        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes
        )

    def _unstack_full_reindex(
        self,
        dim: Hashable,
        index_and_vars: tuple[Index, dict[Hashable, Variable]],
        fill_value,
        sparse: bool,
    ) -> Self:
        index, index_vars = index_and_vars
        variables: dict[Hashable, Variable] = {}
        indexes = {k: v for k, v in self._indexes.items() if k != dim}

        new_indexes, clean_index = index.unstack()
        indexes.update(new_indexes)

        new_index_variables = {}
        for idx in new_indexes.values():
            new_index_variables.update(idx.create_variables(index_vars))

        new_dim_sizes = {k: v.size for k, v in new_index_variables.items()}
        variables.update(new_index_variables)

        # take a shortcut in case the MultiIndex was not modified.
        full_idx = pd.MultiIndex.from_product(
            clean_index.levels, names=clean_index.names
        )
        if clean_index.equals(full_idx):
            obj = self
        else:
            # TODO: we may depreciate implicit re-indexing with a pandas.MultiIndex
            xr_full_idx = PandasMultiIndex(full_idx, dim)
            indexers = Indexes(
                dict.fromkeys(index_vars, xr_full_idx),
                xr_full_idx.create_variables(index_vars),
            )
            obj = self._reindex(
                indexers, copy=False, fill_value=fill_value, sparse=sparse
            )

        for name, var in obj.variables.items():
            if name not in index_vars:
                if dim in var.dims:
                    variables[name] = var.unstack({dim: new_dim_sizes})
                else:
                    variables[name] = var

        coord_names = set(self._coord_names) - {dim} | set(new_dim_sizes)

        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes
        )

    def unstack(
        self,
        dim: Dims = None,
        *,
        fill_value: Any = xrdtypes.NA,
        sparse: bool = False,
    ) -> Self:
        """
        Unstack existing dimensions corresponding to MultiIndexes into
        multiple new dimensions.

        New dimensions will be added at the end.

        Parameters
        ----------
        dim : str, Iterable of Hashable or None, optional
            Dimension(s) over which to unstack. By default unstacks all
            MultiIndexes.
        fill_value : scalar or dict-like, default: nan
            value to be filled. If a dict-like, maps variable names to
            fill values. If not provided or if the dict-like does not
            contain all variables, the dtype's NA value will be used.
        sparse : bool, default: False
            use sparse-array if True

        Returns
        -------
        unstacked : Dataset
            Dataset with unstacked data.

        See Also
        --------
        Dataset.stack
        """

        if dim is None:
            dims = list(self.dims)
        else:
            if isinstance(dim, str) or not isinstance(dim, Iterable):
                dims = [dim]
            else:
                dims = list(dim)

            missing_dims = set(dims) - set(self.dims)
            if missing_dims:
                raise ValueError(
                    f"Dimensions {tuple(missing_dims)} not found in data dimensions {tuple(self.dims)}"
                )

        # each specified dimension must have exactly one multi-index
        stacked_indexes: dict[Any, tuple[Index, dict[Hashable, Variable]]] = {}
        for d in dims:
            idx, idx_vars = self._get_stack_index(d, multi=True)
            if idx is not None:
                stacked_indexes[d] = idx, idx_vars

        if dim is None:
            dims = list(stacked_indexes)
        else:
            non_multi_dims = set(dims) - set(stacked_indexes)
            if non_multi_dims:
                raise ValueError(
                    "cannot unstack dimensions that do not "
                    f"have exactly one multi-index: {tuple(non_multi_dims)}"
                )

        result = self.copy(deep=False)

        # we want to avoid allocating an object-dtype ndarray for a MultiIndex,
        # so we can't just access self.variables[v].data for every variable.
        # We only check the non-index variables.
        # https://github.com/pydata/xarray/issues/5902
        nonindexes = [
            self.variables[k] for k in set(self.variables) - set(self._indexes)
        ]
        # Notes for each of these cases:
        # 1. Dask arrays don't support assignment by index, which the fast unstack
        #    function requires.
        #    https://github.com/pydata/xarray/pull/4746#issuecomment-753282125
        # 2. Sparse doesn't currently support (though we could special-case it)
        #    https://github.com/pydata/sparse/issues/422
        # 3. pint requires checking if it's a NumPy array until
        #    https://github.com/pydata/xarray/pull/4751 is resolved,
        #    Once that is resolved, explicitly exclude pint arrays.
        #    pint doesn't implement `np.full_like` in a way that's
        #    currently compatible.
        sparse_array_type = array_type("sparse")
        needs_full_reindex = any(
            is_duck_dask_array(v.data)
            or isinstance(v.data, sparse_array_type)
            or not isinstance(v.data, np.ndarray)
            for v in nonindexes
        )

        for d in dims:
            if needs_full_reindex:
                result = result._unstack_full_reindex(
                    d, stacked_indexes[d], fill_value, sparse
                )
            else:
                result = result._unstack_once(d, stacked_indexes[d], fill_value, sparse)
        return result

    def update(self, other: CoercibleMapping) -> Self:
        """Update this dataset's variables with those from another dataset.

        Just like :py:meth:`dict.update` this is a in-place operation.
        For a non-inplace version, see :py:meth:`Dataset.merge`.

        Parameters
        ----------
        other : Dataset or mapping
            Variables with which to update this dataset. One of:

            - Dataset
            - mapping {var name: DataArray}
            - mapping {var name: Variable}
            - mapping {var name: (dimension name, array-like)}
            - mapping {var name: (tuple of dimension names, array-like)}

        Returns
        -------
        updated : Dataset
            Updated dataset. Note that since the update is in-place this is the input
            dataset.

            It is deprecated since version 0.17 and scheduled to be removed in 0.21.

        Raises
        ------
        ValueError
            If any dimensions would have inconsistent sizes in the updated
            dataset.

        See Also
        --------
        Dataset.assign
        Dataset.merge
        """
        merge_result = dataset_update_method(self, other)
        return self._replace(inplace=True, **merge_result._asdict())

    def merge(
        self,
        other: CoercibleMapping | DataArray,
        overwrite_vars: Hashable | Iterable[Hashable] = frozenset(),
        compat: CompatOptions | CombineKwargDefault = _COMPAT_DEFAULT,
        join: JoinOptions | CombineKwargDefault = _JOIN_DEFAULT,
        fill_value: Any = xrdtypes.NA,
        combine_attrs: CombineAttrsOptions = "override",
    ) -> Self:
        """Merge the arrays of two datasets into a single dataset.

        This method generally does not allow for overriding data, with the
        exception of attributes, which are ignored on the second dataset.
        Variables with the same name are checked for conflicts via the equals
        or identical methods.

        Parameters
        ----------
        other : Dataset or mapping
            Dataset or variables to merge with this dataset.
        overwrite_vars : hashable or iterable of hashable, optional
            If provided, update variables of these name(s) without checking for
            conflicts in this dataset.
        compat : {"identical", "equals", "broadcast_equals", \
                  "no_conflicts", "override", "minimal"}, default: "no_conflicts"
            String indicating how to compare variables of the same name for
            potential conflicts:

            - 'identical': all values, dimensions and attributes must be the
              same.
            - 'equals': all values and dimensions must be the same.
            - 'broadcast_equals': all values must be equal when variables are
              broadcast against each other to ensure common dimensions.
            - 'no_conflicts': only values which are not null in both datasets
              must be equal. The returned dataset then contains the combination
              of all non-null values.
            - 'override': skip comparing and pick variable from first dataset
            - 'minimal': drop conflicting coordinates

        join : {"outer", "inner", "left", "right", "exact", "override"}, \
               default: "outer"
            Method for joining ``self`` and ``other`` along shared dimensions:

            - 'outer': use the union of the indexes
            - 'inner': use the intersection of the indexes
            - 'left': use indexes from ``self``
            - 'right': use indexes from ``other``
            - 'exact': error instead of aligning non-equal indexes
            - 'override': use indexes from ``self`` that are the same size
              as those of ``other`` in that dimension

        fill_value : scalar or dict-like, optional
            Value to use for newly missing values. If a dict-like, maps
            variable names (including coordinates) to fill values.
        combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
                         "override"} or callable, default: "override"
            A callable or a string indicating how to combine attrs of the objects being
            merged:

            - "drop": empty attrs on returned Dataset.
            - "identical": all attrs must be the same on every object.
            - "no_conflicts": attrs from all objects are combined, any that have
              the same name must also have the same value.
            - "drop_conflicts": attrs from all objects are combined, any that have
              the same name but different values are dropped.
            - "override": skip comparing and copy attrs from the first dataset to
              the result.

            If a callable, it must expect a sequence of ``attrs`` dicts and a context object
            as its only parameters.

        Returns
        -------
        merged : Dataset
            Merged dataset.

        Raises
        ------
        MergeError
            If any variables conflict (see ``compat``).

        See Also
        --------
        Dataset.update
        """
        from xarray.core.dataarray import DataArray

        other = other.to_dataset() if isinstance(other, DataArray) else other
        merge_result = dataset_merge_method(
            self,
            other,
            overwrite_vars=overwrite_vars,
            compat=compat,
            join=join,
            fill_value=fill_value,
            combine_attrs=combine_attrs,
        )
        return self._replace(**merge_result._asdict())

    def _assert_all_in_dataset(
        self, names: Iterable[Hashable], virtual_okay: bool = False
    ) -> None:
        bad_names = set(names) - set(self._variables)
        if virtual_okay:
            bad_names -= self.virtual_variables
        if bad_names:
            ordered_bad_names = [name for name in names if name in bad_names]
            raise ValueError(
                f"These variables cannot be found in this dataset: {ordered_bad_names}"
            )

    def drop_vars(
        self,
        names: str | Iterable[Hashable] | Callable[[Self], str | Iterable[Hashable]],
        *,
        errors: ErrorOptions = "raise",
    ) -> Self:
        """Drop variables from this dataset.

        Parameters
        ----------
        names : Hashable or iterable of Hashable or Callable
            Name(s) of variables to drop. If a Callable, this object is passed as its
            only argument and its result is used.
        errors : {"raise", "ignore"}, default: "raise"
            If 'raise', raises a ValueError error if any of the variable
            passed are not in the dataset. If 'ignore', any given names that are in the
            dataset are dropped and no error is raised.

        Examples
        --------

        >>> dataset = xr.Dataset(
        ...     {
        ...         "temperature": (
        ...             ["time", "latitude", "longitude"],
        ...             [[[25.5, 26.3], [27.1, 28.0]]],
        ...         ),
        ...         "humidity": (
        ...             ["time", "latitude", "longitude"],
        ...             [[[65.0, 63.8], [58.2, 59.6]]],
        ...         ),
        ...         "wind_speed": (
        ...             ["time", "latitude", "longitude"],
        ...             [[[10.2, 8.5], [12.1, 9.8]]],
        ...         ),
        ...     },
        ...     coords={
        ...         "time": pd.date_range("2023-07-01", periods=1),
        ...         "latitude": [40.0, 40.2],
        ...         "longitude": [-75.0, -74.8],
        ...     },
        ... )
        >>> dataset
        <xarray.Dataset> Size: 136B
        Dimensions:      (time: 1, latitude: 2, longitude: 2)
        Coordinates:
          * time         (time) datetime64[ns] 8B 2023-07-01
          * latitude     (latitude) float64 16B 40.0 40.2
          * longitude    (longitude) float64 16B -75.0 -74.8
        Data variables:
            temperature  (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
            humidity     (time, latitude, longitude) float64 32B 65.0 63.8 58.2 59.6
            wind_speed   (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8

        Drop the 'humidity' variable

        >>> dataset.drop_vars(["humidity"])
        <xarray.Dataset> Size: 104B
        Dimensions:      (time: 1, latitude: 2, longitude: 2)
        Coordinates:
          * time         (time) datetime64[ns] 8B 2023-07-01
          * latitude     (latitude) float64 16B 40.0 40.2
          * longitude    (longitude) float64 16B -75.0 -74.8
        Data variables:
            temperature  (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
            wind_speed   (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8

        Drop the 'humidity', 'temperature' variables

        >>> dataset.drop_vars(["humidity", "temperature"])
        <xarray.Dataset> Size: 72B
        Dimensions:     (time: 1, latitude: 2, longitude: 2)
        Coordinates:
          * time        (time) datetime64[ns] 8B 2023-07-01
          * latitude    (latitude) float64 16B 40.0 40.2
          * longitude   (longitude) float64 16B -75.0 -74.8
        Data variables:
            wind_speed  (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8

        Drop all indexes

        >>> dataset.drop_vars(lambda x: x.indexes)
        <xarray.Dataset> Size: 96B
        Dimensions:      (time: 1, latitude: 2, longitude: 2)
        Dimensions without coordinates: time, latitude, longitude
        Data variables:
            temperature  (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
            humidity     (time, latitude, longitude) float64 32B 65.0 63.8 58.2 59.6
            wind_speed   (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8

        Attempt to drop non-existent variable with errors="ignore"

        >>> dataset.drop_vars(["pressure"], errors="ignore")
        <xarray.Dataset> Size: 136B
        Dimensions:      (time: 1, latitude: 2, longitude: 2)
        Coordinates:
          * time         (time) datetime64[ns] 8B 2023-07-01
          * latitude     (latitude) float64 16B 40.0 40.2
          * longitude    (longitude) float64 16B -75.0 -74.8
        Data variables:
            temperature  (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
            humidity     (time, latitude, longitude) float64 32B 65.0 63.8 58.2 59.6
            wind_speed   (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8

        Attempt to drop non-existent variable with errors="raise"

        >>> dataset.drop_vars(["pressure"], errors="raise")
        Traceback (most recent call last):
        ValueError: These variables cannot be found in this dataset: ['pressure']

        Raises
        ------
        ValueError
             Raised if you attempt to drop a variable which is not present, and the kwarg ``errors='raise'``.

        Returns
        -------
        dropped : Dataset

        See Also
        --------
        DataArray.drop_vars

        """
        if callable(names):
            names = names(self)
        # the Iterable check is required for mypy
        if is_scalar(names) or not isinstance(names, Iterable):
            names_set = {names}
        else:
            names_set = set(names)
        if errors == "raise":
            self._assert_all_in_dataset(names_set)

        # GH6505
        other_names = set()
        for var in names_set:
            maybe_midx = self._indexes.get(var, None)
            if isinstance(maybe_midx, PandasMultiIndex):
                idx_coord_names = set(list(maybe_midx.index.names) + [maybe_midx.dim])
                idx_other_names = idx_coord_names - set(names_set)
                other_names.update(idx_other_names)
        if other_names:
            names_set |= set(other_names)
            emit_user_level_warning(
                f"Deleting a single level of a MultiIndex is deprecated. Previously, this deleted all levels of a MultiIndex. "
                f"Please also drop the following variables: {other_names!r} to avoid an error in the future.",
                DeprecationWarning,
            )

        assert_no_index_corrupted(self.xindexes, names_set)

        variables = {k: v for k, v in self._variables.items() if k not in names_set}
        coord_names = {k for k in self._coord_names if k in variables}
        indexes = {k: v for k, v in self._indexes.items() if k not in names_set}
        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes
        )

    def drop_indexes(
        self,
        coord_names: Hashable | Iterable[Hashable],
        *,
        errors: ErrorOptions = "raise",
    ) -> Self:
        """Drop the indexes assigned to the given coordinates.

        Parameters
        ----------
        coord_names : hashable or iterable of hashable
            Name(s) of the coordinate(s) for which to drop the index.
        errors : {"raise", "ignore"}, default: "raise"
            If 'raise', raises a ValueError error if any of the coordinates
            passed have no index or are not in the dataset.
            If 'ignore', no error is raised.

        Returns
        -------
        dropped : Dataset
            A new dataset with dropped indexes.

        """
        # the Iterable check is required for mypy
        if is_scalar(coord_names) or not isinstance(coord_names, Iterable):
            coord_names = {coord_names}
        else:
            coord_names = set(coord_names)

        if errors == "raise":
            invalid_coords = coord_names - self._coord_names
            if invalid_coords:
                raise ValueError(
                    f"The coordinates {tuple(invalid_coords)} are not found in the "
                    f"dataset coordinates {tuple(self.coords.keys())}"
                )

            unindexed_coords = set(coord_names) - set(self._indexes)
            if unindexed_coords:
                raise ValueError(
                    f"those coordinates do not have an index: {unindexed_coords}"
                )

        assert_no_index_corrupted(self.xindexes, coord_names, action="remove index(es)")

        variables = {}
        for name, var in self._variables.items():
            if name in coord_names:
                variables[name] = var.to_base_variable()
            else:
                variables[name] = var

        indexes = {k: v for k, v in self._indexes.items() if k not in coord_names}

        return self._replace(variables=variables, indexes=indexes)

    def drop(
        self,
        labels=None,
        dim=None,
        *,
        errors: ErrorOptions = "raise",
        **labels_kwargs,
    ) -> Self:
        """Backward compatible method based on `drop_vars` and `drop_sel`

        Using either `drop_vars` or `drop_sel` is encouraged

        See Also
        --------
        Dataset.drop_vars
        Dataset.drop_sel
        """
        if errors not in ["raise", "ignore"]:
            raise ValueError('errors must be either "raise" or "ignore"')

        if is_dict_like(labels) and not isinstance(labels, dict):
            emit_user_level_warning(
                "dropping coordinates using `drop` is deprecated; use drop_vars.",
                DeprecationWarning,
            )
            return self.drop_vars(labels, errors=errors)

        if labels_kwargs or isinstance(labels, dict):
            if dim is not None:
                raise ValueError("cannot specify dim and dict-like arguments.")
            labels = either_dict_or_kwargs(labels, labels_kwargs, "drop")

        if dim is None and (is_scalar(labels) or isinstance(labels, Iterable)):
            emit_user_level_warning(
                "dropping variables using `drop` is deprecated; use drop_vars.",
                DeprecationWarning,
            )
            # for mypy
            if is_scalar(labels):
                labels = [labels]
            return self.drop_vars(labels, errors=errors)
        if dim is not None:
            warnings.warn(
                "dropping labels using list-like labels is deprecated; using "
                "dict-like arguments with `drop_sel`, e.g. `ds.drop_sel(dim=[labels]).",
                DeprecationWarning,
                stacklevel=2,
            )
            return self.drop_sel({dim: labels}, errors=errors, **labels_kwargs)

        emit_user_level_warning(
            "dropping labels using `drop` is deprecated; use `drop_sel` instead.",
            DeprecationWarning,
        )
        return self.drop_sel(labels, errors=errors)

    def drop_sel(
        self, labels=None, *, errors: ErrorOptions = "raise", **labels_kwargs
    ) -> Self:
        """Drop index labels from this dataset.

        Parameters
        ----------
        labels : mapping of hashable to Any
            Index labels to drop
        errors : {"raise", "ignore"}, default: "raise"
            If 'raise', raises a ValueError error if
            any of the index labels passed are not
            in the dataset. If 'ignore', any given labels that are in the
            dataset are dropped and no error is raised.
        **labels_kwargs : {dim: label, ...}, optional
            The keyword arguments form of ``dim`` and ``labels``

        Returns
        -------
        dropped : Dataset

        Examples
        --------
        >>> data = np.arange(6).reshape(2, 3)
        >>> labels = ["a", "b", "c"]
        >>> ds = xr.Dataset({"A": (["x", "y"], data), "y": labels})
        >>> ds
        <xarray.Dataset> Size: 60B
        Dimensions:  (x: 2, y: 3)
        Coordinates:
          * y        (y) <U1 12B 'a' 'b' 'c'
        Dimensions without coordinates: x
        Data variables:
            A        (x, y) int64 48B 0 1 2 3 4 5
        >>> ds.drop_sel(y=["a", "c"])
        <xarray.Dataset> Size: 20B
        Dimensions:  (x: 2, y: 1)
        Coordinates:
          * y        (y) <U1 4B 'b'
        Dimensions without coordinates: x
        Data variables:
            A        (x, y) int64 16B 1 4
        >>> ds.drop_sel(y="b")
        <xarray.Dataset> Size: 40B
        Dimensions:  (x: 2, y: 2)
        Coordinates:
          * y        (y) <U1 8B 'a' 'c'
        Dimensions without coordinates: x
        Data variables:
            A        (x, y) int64 32B 0 2 3 5
        """
        if errors not in ["raise", "ignore"]:
            raise ValueError('errors must be either "raise" or "ignore"')

        labels = either_dict_or_kwargs(labels, labels_kwargs, "drop_sel")

        ds = self
        for dim, labels_for_dim in labels.items():
            # Don't cast to set, as it would harm performance when labels
            # is a large numpy array
            if utils.is_scalar(labels_for_dim):
                labels_for_dim = [labels_for_dim]
            labels_for_dim = np.asarray(labels_for_dim)
            try:
                index = self.get_index(dim)
            except KeyError as err:
                raise ValueError(
                    f"dimension {dim!r} does not have coordinate labels"
                ) from err
            new_index = index.drop(labels_for_dim, errors=errors)
            ds = ds.loc[{dim: new_index}]
        return ds

    def drop_isel(self, indexers=None, **indexers_kwargs) -> Self:
        """Drop index positions from this Dataset.

        Parameters
        ----------
        indexers : mapping of hashable to Any
            Index locations to drop
        **indexers_kwargs : {dim: position, ...}, optional
            The keyword arguments form of ``dim`` and ``positions``

        Returns
        -------
        dropped : Dataset

        Raises
        ------
        IndexError

        Examples
        --------
        >>> data = np.arange(6).reshape(2, 3)
        >>> labels = ["a", "b", "c"]
        >>> ds = xr.Dataset({"A": (["x", "y"], data), "y": labels})
        >>> ds
        <xarray.Dataset> Size: 60B
        Dimensions:  (x: 2, y: 3)
        Coordinates:
          * y        (y) <U1 12B 'a' 'b' 'c'
        Dimensions without coordinates: x
        Data variables:
            A        (x, y) int64 48B 0 1 2 3 4 5
        >>> ds.drop_isel(y=[0, 2])
        <xarray.Dataset> Size: 20B
        Dimensions:  (x: 2, y: 1)
        Coordinates:
          * y        (y) <U1 4B 'b'
        Dimensions without coordinates: x
        Data variables:
            A        (x, y) int64 16B 1 4
        >>> ds.drop_isel(y=1)
        <xarray.Dataset> Size: 40B
        Dimensions:  (x: 2, y: 2)
        Coordinates:
          * y        (y) <U1 8B 'a' 'c'
        Dimensions without coordinates: x
        Data variables:
            A        (x, y) int64 32B 0 2 3 5
        """

        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "drop_isel")

        ds = self
        dimension_index = {}
        for dim, pos_for_dim in indexers.items():
            # Don't cast to set, as it would harm performance when labels
            # is a large numpy array
            if utils.is_scalar(pos_for_dim):
                pos_for_dim = [pos_for_dim]
            pos_for_dim = np.asarray(pos_for_dim)
            index = self.get_index(dim)
            new_index = index.delete(pos_for_dim)
            dimension_index[dim] = new_index
        ds = ds.loc[dimension_index]
        return ds

    def drop_dims(
        self,
        drop_dims: str | Iterable[Hashable],
        *,
        errors: ErrorOptions = "raise",
    ) -> Self:
        """Drop dimensions and associated variables from this dataset.

        Parameters
        ----------
        drop_dims : str or Iterable of Hashable
            Dimension or dimensions to drop.
        errors : {"raise", "ignore"}, default: "raise"
            If 'raise', raises a ValueError error if any of the
            dimensions passed are not in the dataset. If 'ignore', any given
            dimensions that are in the dataset are dropped and no error is raised.

        Returns
        -------
        obj : Dataset
            The dataset without the given dimensions (or any variables
            containing those dimensions).
        """
        if errors not in ["raise", "ignore"]:
            raise ValueError('errors must be either "raise" or "ignore"')

        if isinstance(drop_dims, str) or not isinstance(drop_dims, Iterable):
            drop_dims = {drop_dims}
        else:
            drop_dims = set(drop_dims)

        if errors == "raise":
            missing_dims = drop_dims - set(self.dims)
            if missing_dims:
                raise ValueError(
                    f"Dimensions {tuple(missing_dims)} not found in data dimensions {tuple(self.dims)}"
                )

        drop_vars = {k for k, v in self._variables.items() if set(v.dims) & drop_dims}
        return self.drop_vars(drop_vars)

    @deprecate_dims
    def transpose(
        self,
        *dim: Hashable,
        missing_dims: ErrorOptionsWithWarn = "raise",
    ) -> Self:
        """Return a new Dataset object with all array dimensions transposed.

        Although the order of dimensions on each array will change, the dataset
        dimensions themselves will remain in fixed (sorted) order.

        Parameters
        ----------
        *dim : hashable, optional
            By default, reverse the dimensions on each array. Otherwise,
            reorder the dimensions to this order.
        missing_dims : {"raise", "warn", "ignore"}, default: "raise"
            What to do if dimensions that should be selected from are not present in the
            Dataset:
            - "raise": raise an exception
            - "warn": raise a warning, and ignore the missing dimensions
            - "ignore": ignore the missing dimensions

        Returns
        -------
        transposed : Dataset
            Each array in the dataset (including) coordinates will be
            transposed to the given order.

        Notes
        -----
        This operation returns a view of each array's data. It is
        lazy for dask-backed DataArrays but not for numpy-backed DataArrays
        -- the data will be fully loaded into memory.

        See Also
        --------
        numpy.transpose
        DataArray.transpose
        """
        # Raise error if list is passed as dim
        if (len(dim) > 0) and (isinstance(dim[0], list)):
            list_fix = [f"{x!r}" if isinstance(x, str) else f"{x}" for x in dim[0]]
            raise TypeError(
                f"transpose requires dim to be passed as multiple arguments. Expected `{', '.join(list_fix)}`. Received `{dim[0]}` instead"
            )

        # Use infix_dims to check once for missing dimensions
        if len(dim) != 0:
            _ = list(infix_dims(dim, self.dims, missing_dims))

        ds = self.copy()
        for name, var in self._variables.items():
            var_dims = tuple(d for d in dim if d in (var.dims + (...,)))
            ds._variables[name] = var.transpose(*var_dims)
        return ds

    def dropna(
        self,
        dim: Hashable,
        *,
        how: Literal["any", "all"] = "any",
        thresh: int | None = None,
        subset: Iterable[Hashable] | None = None,
    ) -> Self:
        """Returns a new dataset with dropped labels for missing values along
        the provided dimension.

        Parameters
        ----------
        dim : hashable
            Dimension along which to drop missing values. Dropping along
            multiple dimensions simultaneously is not yet supported.
        how : {"any", "all"}, default: "any"
            - any : if any NA values are present, drop that label
            - all : if all values are NA, drop that label

        thresh : int or None, optional
            If supplied, require this many non-NA values (summed over all the subset variables).
        subset : iterable of hashable or None, optional
            Which variables to check for missing values. By default, all
            variables in the dataset are checked.

        Examples
        --------
        >>> dataset = xr.Dataset(
        ...     {
        ...         "temperature": (
        ...             ["time", "location"],
        ...             [[23.4, 24.1], [np.nan, 22.1], [21.8, 24.2], [20.5, 25.3]],
        ...         )
        ...     },
        ...     coords={"time": [1, 2, 3, 4], "location": ["A", "B"]},
        ... )
        >>> dataset
        <xarray.Dataset> Size: 104B
        Dimensions:      (time: 4, location: 2)
        Coordinates:
          * time         (time) int64 32B 1 2 3 4
          * location     (location) <U1 8B 'A' 'B'
        Data variables:
            temperature  (time, location) float64 64B 23.4 24.1 nan ... 24.2 20.5 25.3

        Drop NaN values from the dataset

        >>> dataset.dropna(dim="time")
        <xarray.Dataset> Size: 80B
        Dimensions:      (time: 3, location: 2)
        Coordinates:
          * time         (time) int64 24B 1 3 4
          * location     (location) <U1 8B 'A' 'B'
        Data variables:
            temperature  (time, location) float64 48B 23.4 24.1 21.8 24.2 20.5 25.3

        Drop labels with any NaN values

        >>> dataset.dropna(dim="time", how="any")
        <xarray.Dataset> Size: 80B
        Dimensions:      (time: 3, location: 2)
        Coordinates:
          * time         (time) int64 24B 1 3 4
          * location     (location) <U1 8B 'A' 'B'
        Data variables:
            temperature  (time, location) float64 48B 23.4 24.1 21.8 24.2 20.5 25.3

        Drop labels with all NAN values

        >>> dataset.dropna(dim="time", how="all")
        <xarray.Dataset> Size: 104B
        Dimensions:      (time: 4, location: 2)
        Coordinates:
          * time         (time) int64 32B 1 2 3 4
          * location     (location) <U1 8B 'A' 'B'
        Data variables:
            temperature  (time, location) float64 64B 23.4 24.1 nan ... 24.2 20.5 25.3

        Drop labels with less than 2 non-NA values

        >>> dataset.dropna(dim="time", thresh=2)
        <xarray.Dataset> Size: 80B
        Dimensions:      (time: 3, location: 2)
        Coordinates:
          * time         (time) int64 24B 1 3 4
          * location     (location) <U1 8B 'A' 'B'
        Data variables:
            temperature  (time, location) float64 48B 23.4 24.1 21.8 24.2 20.5 25.3

        Returns
        -------
        Dataset

        See Also
        --------
        DataArray.dropna
        pandas.DataFrame.dropna
        """
        # TODO: consider supporting multiple dimensions? Or not, given that
        # there are some ugly edge cases, e.g., pandas's dropna differs
        # depending on the order of the supplied axes.

        if dim not in self.dims:
            raise ValueError(
                f"Dimension {dim!r} not found in data dimensions {tuple(self.dims)}"
            )

        if subset is None:
            subset = iter(self.data_vars)

        count = np.zeros(self.sizes[dim], dtype=np.int64)
        size = np.int_(0)  # for type checking

        for k in subset:
            array = self._variables[k]
            if dim in array.dims:
                dims = [d for d in array.dims if d != dim]
                count += to_numpy(array.count(dims).data)
                size += math.prod([self.sizes[d] for d in dims])

        if thresh is not None:
            mask = count >= thresh
        elif how == "any":
            mask = count == size
        elif how == "all":
            mask = count > 0
        elif how is not None:
            raise ValueError(f"invalid how option: {how}")
        else:
            raise TypeError("must specify how or thresh")

        return self.isel({dim: mask})

    def fillna(self, value: Any) -> Self:
        """Fill missing values in this object.

        This operation follows the normal broadcasting and alignment rules that
        xarray uses for binary arithmetic, except the result is aligned to this
        object (``join='left'``) instead of aligned to the intersection of
        index coordinates (``join='inner'``).

        Parameters
        ----------
        value : scalar, ndarray, DataArray, dict or Dataset
            Used to fill all matching missing values in this dataset's data
            variables. Scalars, ndarrays or DataArrays arguments are used to
            fill all data with aligned coordinates (for DataArrays).
            Dictionaries or datasets match data variables and then align
            coordinates if necessary.

        Returns
        -------
        Dataset

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {
        ...         "A": ("x", [np.nan, 2, np.nan, 0]),
        ...         "B": ("x", [3, 4, np.nan, 1]),
        ...         "C": ("x", [np.nan, np.nan, np.nan, 5]),
        ...         "D": ("x", [np.nan, 3, np.nan, 4]),
        ...     },
        ...     coords={"x": [0, 1, 2, 3]},
        ... )
        >>> ds
        <xarray.Dataset> Size: 160B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
        Data variables:
            A        (x) float64 32B nan 2.0 nan 0.0
            B        (x) float64 32B 3.0 4.0 nan 1.0
            C        (x) float64 32B nan nan nan 5.0
            D        (x) float64 32B nan 3.0 nan 4.0

        Replace all `NaN` values with 0s.

        >>> ds.fillna(0)
        <xarray.Dataset> Size: 160B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
        Data variables:
            A        (x) float64 32B 0.0 2.0 0.0 0.0
            B        (x) float64 32B 3.0 4.0 0.0 1.0
            C        (x) float64 32B 0.0 0.0 0.0 5.0
            D        (x) float64 32B 0.0 3.0 0.0 4.0

        Replace all `NaN` elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

        >>> values = {"A": 0, "B": 1, "C": 2, "D": 3}
        >>> ds.fillna(value=values)
        <xarray.Dataset> Size: 160B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
        Data variables:
            A        (x) float64 32B 0.0 2.0 0.0 0.0
            B        (x) float64 32B 3.0 4.0 1.0 1.0
            C        (x) float64 32B 2.0 2.0 2.0 5.0
            D        (x) float64 32B 3.0 3.0 3.0 4.0
        """
        if utils.is_dict_like(value):
            value_keys = getattr(value, "data_vars", value).keys()
            if not set(value_keys) <= set(self.data_vars.keys()):
                raise ValueError(
                    "all variables in the argument to `fillna` "
                    "must be contained in the original dataset"
                )
        out = ops.fillna(self, value)
        return out

    def interpolate_na(
        self,
        dim: Hashable | None = None,
        method: InterpOptions = "linear",
        limit: int | None = None,
        use_coordinate: bool | Hashable = True,
        max_gap: (
            int
            | float
            | str
            | pd.Timedelta
            | np.timedelta64
            | datetime.timedelta
            | None
        ) = None,
        **kwargs: Any,
    ) -> Self:
        """Fill in NaNs by interpolating according to different methods.

        Parameters
        ----------
        dim : Hashable or None, optional
            Specifies the dimension along which to interpolate.
        method : {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial", \
            "barycentric", "krogh", "pchip", "spline", "akima"}, default: "linear"
            String indicating which method to use for interpolation:

            - 'linear': linear interpolation. Additional keyword
              arguments are passed to :py:func:`numpy.interp`
            - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial':
              are passed to :py:func:`scipy.interpolate.interp1d`. If
              ``method='polynomial'``, the ``order`` keyword argument must also be
              provided.
            - 'barycentric', 'krogh', 'pchip', 'spline', 'akima': use their
              respective :py:class:`scipy.interpolate` classes.

        use_coordinate : bool or Hashable, default: True
            Specifies which index to use as the x values in the interpolation
            formulated as `y = f(x)`. If False, values are treated as if
            equally-spaced along ``dim``. If True, the IndexVariable `dim` is
            used. If ``use_coordinate`` is a string, it specifies the name of a
            coordinate variable to use as the index.
        limit : int, default: None
            Maximum number of consecutive NaNs to fill. Must be greater than 0
            or None for no limit. This filling is done regardless of the size of
            the gap in the data. To only interpolate over gaps less than a given length,
            see ``max_gap``.
        max_gap : int, float, str, pandas.Timedelta, numpy.timedelta64, datetime.timedelta \
            or None, default: None
            Maximum size of gap, a continuous sequence of NaNs, that will be filled.
            Use None for no limit. When interpolating along a datetime64 dimension
            and ``use_coordinate=True``, ``max_gap`` can be one of the following:

            - a string that is valid input for pandas.to_timedelta
            - a :py:class:`numpy.timedelta64` object
            - a :py:class:`pandas.Timedelta` object
            - a :py:class:`datetime.timedelta` object

            Otherwise, ``max_gap`` must be an int or a float. Use of ``max_gap`` with unlabeled
            dimensions has not been implemented yet. Gap length is defined as the difference
            between coordinate values at the first data point after a gap and the last value
            before a gap. For gaps at the beginning (end), gap length is defined as the difference
            between coordinate values at the first (last) valid data point and the first (last) NaN.
            For example, consider::

                <xarray.DataArray (x: 9)>
                array([nan, nan, nan,  1., nan, nan,  4., nan, nan])
                Coordinates:
                  * x        (x) int64 0 1 2 3 4 5 6 7 8

            The gap lengths are 3-0 = 3; 6-3 = 3; and 8-6 = 2 respectively
        **kwargs : dict, optional
            parameters passed verbatim to the underlying interpolation function

        Returns
        -------
        interpolated: Dataset
            Filled in Dataset.

        Warning
        --------
        When passing fill_value as a keyword argument with method="linear", it does not use
        ``numpy.interp`` but it uses ``scipy.interpolate.interp1d``, which provides the fill_value parameter.

        See Also
        --------
        numpy.interp
        scipy.interpolate

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {
        ...         "A": ("x", [np.nan, 2, 3, np.nan, 0]),
        ...         "B": ("x", [3, 4, np.nan, 1, 7]),
        ...         "C": ("x", [np.nan, np.nan, np.nan, 5, 0]),
        ...         "D": ("x", [np.nan, 3, np.nan, -1, 4]),
        ...     },
        ...     coords={"x": [0, 1, 2, 3, 4]},
        ... )
        >>> ds
        <xarray.Dataset> Size: 200B
        Dimensions:  (x: 5)
        Coordinates:
          * x        (x) int64 40B 0 1 2 3 4
        Data variables:
            A        (x) float64 40B nan 2.0 3.0 nan 0.0
            B        (x) float64 40B 3.0 4.0 nan 1.0 7.0
            C        (x) float64 40B nan nan nan 5.0 0.0
            D        (x) float64 40B nan 3.0 nan -1.0 4.0

        >>> ds.interpolate_na(dim="x", method="linear")
        <xarray.Dataset> Size: 200B
        Dimensions:  (x: 5)
        Coordinates:
          * x        (x) int64 40B 0 1 2 3 4
        Data variables:
            A        (x) float64 40B nan 2.0 3.0 1.5 0.0
            B        (x) float64 40B 3.0 4.0 2.5 1.0 7.0
            C        (x) float64 40B nan nan nan 5.0 0.0
            D        (x) float64 40B nan 3.0 1.0 -1.0 4.0

        >>> ds.interpolate_na(dim="x", method="linear", fill_value="extrapolate")
        <xarray.Dataset> Size: 200B
        Dimensions:  (x: 5)
        Coordinates:
          * x        (x) int64 40B 0 1 2 3 4
        Data variables:
            A        (x) float64 40B 1.0 2.0 3.0 1.5 0.0
            B        (x) float64 40B 3.0 4.0 2.5 1.0 7.0
            C        (x) float64 40B 20.0 15.0 10.0 5.0 0.0
            D        (x) float64 40B 5.0 3.0 1.0 -1.0 4.0
        """
        from xarray.core.missing import _apply_over_vars_with_dim, interp_na

        new = _apply_over_vars_with_dim(
            interp_na,
            self,
            dim=dim,
            method=method,
            limit=limit,
            use_coordinate=use_coordinate,
            max_gap=max_gap,
            **kwargs,
        )
        return new

    def ffill(self, dim: Hashable, limit: int | None = None) -> Self:
        """Fill NaN values by propagating values forward

        *Requires bottleneck.*

        Parameters
        ----------
        dim : Hashable
            Specifies the dimension along which to propagate values when filling.
        limit : int or None, optional
            The maximum number of consecutive NaN values to forward fill. In
            other words, if there is a gap with more than this number of
            consecutive NaNs, it will only be partially filled. Must be greater
            than 0 or None for no limit. Must be None or greater than or equal
            to axis length if filling along chunked axes (dimensions).

        Examples
        --------
        >>> time = pd.date_range("2023-01-01", periods=10, freq="D")
        >>> data = np.array(
        ...     [1, np.nan, np.nan, np.nan, 5, np.nan, np.nan, 8, np.nan, 10]
        ... )
        >>> dataset = xr.Dataset({"data": (("time",), data)}, coords={"time": time})
        >>> dataset
        <xarray.Dataset> Size: 160B
        Dimensions:  (time: 10)
        Coordinates:
          * time     (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
        Data variables:
            data     (time) float64 80B 1.0 nan nan nan 5.0 nan nan 8.0 nan 10.0

        # Perform forward fill (ffill) on the dataset

        >>> dataset.ffill(dim="time")
        <xarray.Dataset> Size: 160B
        Dimensions:  (time: 10)
        Coordinates:
          * time     (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
        Data variables:
            data     (time) float64 80B 1.0 1.0 1.0 1.0 5.0 5.0 5.0 8.0 8.0 10.0

        # Limit the forward filling to a maximum of 2 consecutive NaN values

        >>> dataset.ffill(dim="time", limit=2)
        <xarray.Dataset> Size: 160B
        Dimensions:  (time: 10)
        Coordinates:
          * time     (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
        Data variables:
            data     (time) float64 80B 1.0 1.0 1.0 nan 5.0 5.0 5.0 8.0 8.0 10.0

        Returns
        -------
        Dataset

        See Also
        --------
        Dataset.bfill
        """
        from xarray.core.missing import _apply_over_vars_with_dim, ffill

        new = _apply_over_vars_with_dim(ffill, self, dim=dim, limit=limit)
        return new

    def bfill(self, dim: Hashable, limit: int | None = None) -> Self:
        """Fill NaN values by propagating values backward

        *Requires bottleneck.*

        Parameters
        ----------
        dim : Hashable
            Specifies the dimension along which to propagate values when
            filling.
        limit : int or None, optional
            The maximum number of consecutive NaN values to backward fill. In
            other words, if there is a gap with more than this number of
            consecutive NaNs, it will only be partially filled. Must be greater
            than 0 or None for no limit. Must be None or greater than or equal
            to axis length if filling along chunked axes (dimensions).

        Examples
        --------
        >>> time = pd.date_range("2023-01-01", periods=10, freq="D")
        >>> data = np.array(
        ...     [1, np.nan, np.nan, np.nan, 5, np.nan, np.nan, 8, np.nan, 10]
        ... )
        >>> dataset = xr.Dataset({"data": (("time",), data)}, coords={"time": time})
        >>> dataset
        <xarray.Dataset> Size: 160B
        Dimensions:  (time: 10)
        Coordinates:
          * time     (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
        Data variables:
            data     (time) float64 80B 1.0 nan nan nan 5.0 nan nan 8.0 nan 10.0

        # filled dataset, fills NaN values by propagating values backward

        >>> dataset.bfill(dim="time")
        <xarray.Dataset> Size: 160B
        Dimensions:  (time: 10)
        Coordinates:
          * time     (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
        Data variables:
            data     (time) float64 80B 1.0 5.0 5.0 5.0 5.0 8.0 8.0 8.0 10.0 10.0

        # Limit the backward filling to a maximum of 2 consecutive NaN values

        >>> dataset.bfill(dim="time", limit=2)
        <xarray.Dataset> Size: 160B
        Dimensions:  (time: 10)
        Coordinates:
          * time     (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
        Data variables:
            data     (time) float64 80B 1.0 nan 5.0 5.0 5.0 8.0 8.0 8.0 10.0 10.0

        Returns
        -------
        Dataset

        See Also
        --------
        Dataset.ffill
        """
        from xarray.core.missing import _apply_over_vars_with_dim, bfill

        new = _apply_over_vars_with_dim(bfill, self, dim=dim, limit=limit)
        return new

    def combine_first(self, other: Self) -> Self:
        """Combine two Datasets, default to data_vars of self.

        The new coordinates follow the normal broadcasting and alignment rules
        of ``join='outer'``.  Vacant cells in the expanded coordinates are
        filled with np.nan.

        Parameters
        ----------
        other : Dataset
            Used to fill all matching missing values in this array.

        Returns
        -------
        Dataset
        """
        out = ops.fillna(self, other, join="outer", dataset_join="outer")
        return out

    def reduce(
        self,
        func: Callable,
        dim: Dims = None,
        *,
        keep_attrs: bool | None = None,
        keepdims: bool = False,
        numeric_only: bool = False,
        **kwargs: Any,
    ) -> Self:
        """Reduce this dataset by applying `func` along some dimension(s).

        Parameters
        ----------
        func : callable
            Function which can be called in the form
            `f(x, axis=axis, **kwargs)` to return the result of reducing an
            np.ndarray over an integer valued axis.
        dim : str, Iterable of Hashable or None, optional
            Dimension(s) over which to apply `func`. By default `func` is
            applied over all dimensions.
        keep_attrs : bool or None, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.
        keepdims : bool, default: False
            If True, the dimensions which are reduced are left in the result
            as dimensions of size one. Coordinates that use these dimensions
            are removed.
        numeric_only : bool, default: False
            If True, only apply ``func`` to variables with a numeric dtype.
        **kwargs : Any
            Additional keyword arguments passed on to ``func``.

        Returns
        -------
        reduced : Dataset
            Dataset with this object's DataArrays replaced with new DataArrays
            of summarized data and the indicated dimension(s) removed.

        Examples
        --------

        >>> dataset = xr.Dataset(
        ...     {
        ...         "math_scores": (
        ...             ["student", "test"],
        ...             [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
        ...         ),
        ...         "english_scores": (
        ...             ["student", "test"],
        ...             [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
        ...         ),
        ...     },
        ...     coords={
        ...         "student": ["Alice", "Bob", "Charlie"],
        ...         "test": ["Test 1", "Test 2", "Test 3"],
        ...     },
        ... )

        # Calculate the 75th percentile of math scores for each student using np.percentile

        >>> percentile_scores = dataset.reduce(np.percentile, q=75, dim="test")
        >>> percentile_scores
        <xarray.Dataset> Size: 132B
        Dimensions:         (student: 3)
        Coordinates:
          * student         (student) <U7 84B 'Alice' 'Bob' 'Charlie'
        Data variables:
            math_scores     (student) float64 24B 91.0 82.5 96.5
            english_scores  (student) float64 24B 91.0 80.5 94.5
        """
        if kwargs.get("axis") is not None:
            raise ValueError(
                "passing 'axis' to Dataset reduce methods is ambiguous."
                " Please use 'dim' instead."
            )

        dims = parse_dims_as_set(dim, set(self._dims.keys()))

        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)

        variables: dict[Hashable, Variable] = {}
        for name, var in self._variables.items():
            reduce_dims = [d for d in var.dims if d in dims]
            if name in self.coords:
                if not reduce_dims:
                    variables[name] = var
            elif (
                # Some reduction functions (e.g. std, var) need to run on variables
                # that don't have the reduce dims: PR5393
                not pd.api.types.is_extension_array_dtype(var.dtype)  # noqa: TID251
                and (
                    not reduce_dims
                    or not numeric_only
                    or np.issubdtype(var.dtype, np.number)
                    or (var.dtype == np.bool_)
                )
            ):
                # prefer to aggregate over axis=None rather than
                # axis=(0, 1) if they will be equivalent, because
                # the former is often more efficient
                # keep single-element dims as list, to support Hashables
                reduce_maybe_single = (
                    None
                    if len(reduce_dims) == var.ndim and var.ndim != 1
                    else reduce_dims
                )
                variables[name] = var.reduce(
                    func,
                    dim=reduce_maybe_single,
                    keep_attrs=keep_attrs,
                    keepdims=keepdims,
                    **kwargs,
                )

        coord_names = {k for k in self.coords if k in variables}
        indexes = {k: v for k, v in self._indexes.items() if k in variables}
        attrs = self.attrs if keep_attrs else None
        return self._replace_with_new_dims(
            variables, coord_names=coord_names, attrs=attrs, indexes=indexes
        )

    def map(
        self,
        func: Callable,
        keep_attrs: bool | None = None,
        args: Iterable[Any] = (),
        **kwargs: Any,
    ) -> Self:
        """Apply a function to each data variable in this dataset

        Parameters
        ----------
        func : callable
            Function which can be called in the form `func(x, *args, **kwargs)`
            to transform each DataArray `x` in this dataset into another
            DataArray.
        keep_attrs : bool or None, optional
            If True, both the dataset's and variables' attributes (`attrs`) will be
            copied from the original objects to the new ones. If False, the new dataset
            and variables will be returned without copying the attributes.
        args : iterable, optional
            Positional arguments passed on to `func`.
        **kwargs : Any
            Keyword arguments passed on to `func`.

        Returns
        -------
        applied : Dataset
            Resulting dataset from applying ``func`` to each data variable.

        Examples
        --------
        >>> da = xr.DataArray(np.random.randn(2, 3))
        >>> ds = xr.Dataset({"foo": da, "bar": ("x", [-1, 2])})
        >>> ds
        <xarray.Dataset> Size: 64B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Dimensions without coordinates: dim_0, dim_1, x
        Data variables:
            foo      (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 -0.9773
            bar      (x) int64 16B -1 2
        >>> ds.map(np.fabs)
        <xarray.Dataset> Size: 64B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Dimensions without coordinates: dim_0, dim_1, x
        Data variables:
            foo      (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 0.9773
            bar      (x) float64 16B 1.0 2.0
        """
        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)
        variables = {
            k: maybe_wrap_array(v, func(v, *args, **kwargs))
            for k, v in self.data_vars.items()
        }
        if keep_attrs:
            for k, v in variables.items():
                v._copy_attrs_from(self.data_vars[k])
        attrs = self.attrs if keep_attrs else None
        return type(self)(variables, attrs=attrs)

    def apply(
        self,
        func: Callable,
        keep_attrs: bool | None = None,
        args: Iterable[Any] = (),
        **kwargs: Any,
    ) -> Self:
        """
        Backward compatible implementation of ``map``

        See Also
        --------
        Dataset.map
        """
        warnings.warn(
            "Dataset.apply may be deprecated in the future. Using Dataset.map is encouraged",
            PendingDeprecationWarning,
            stacklevel=2,
        )
        return self.map(func, keep_attrs, args, **kwargs)

    def assign(
        self,
        variables: Mapping[Any, Any] | None = None,
        **variables_kwargs: Any,
    ) -> Self:
        """Assign new data variables to a Dataset, returning a new object
        with all the original variables in addition to the new ones.

        Parameters
        ----------
        variables : mapping of hashable to Any
            Mapping from variables names to the new values. If the new values
            are callable, they are computed on the Dataset and assigned to new
            data variables. If the values are not callable, (e.g. a DataArray,
            scalar, or array), they are simply assigned.
        **variables_kwargs
            The keyword arguments form of ``variables``.
            One of variables or variables_kwargs must be provided.

        Returns
        -------
        ds : Dataset
            A new Dataset with the new variables in addition to all the
            existing variables.

        Notes
        -----
        Since ``kwargs`` is a dictionary, the order of your arguments may not
        be preserved, and so the order of the new variables is not well
        defined. Assigning multiple variables within the same ``assign`` is
        possible, but you cannot reference other variables created within the
        same ``assign`` call.

        The new assigned variables that replace existing coordinates in the
        original dataset are still listed as coordinates in the returned
        Dataset.

        See Also
        --------
        pandas.DataFrame.assign

        Examples
        --------
        >>> x = xr.Dataset(
        ...     {
        ...         "temperature_c": (
        ...             ("lat", "lon"),
        ...             20 * np.random.rand(4).reshape(2, 2),
        ...         ),
        ...         "precipitation": (("lat", "lon"), np.random.rand(4).reshape(2, 2)),
        ...     },
        ...     coords={"lat": [10, 20], "lon": [150, 160]},
        ... )
        >>> x
        <xarray.Dataset> Size: 96B
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 16B 10 20
          * lon            (lon) int64 16B 150 160
        Data variables:
            temperature_c  (lat, lon) float64 32B 10.98 14.3 12.06 10.9
            precipitation  (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918

        Where the value is a callable, evaluated on dataset:

        >>> x.assign(temperature_f=lambda x: x.temperature_c * 9 / 5 + 32)
        <xarray.Dataset> Size: 128B
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 16B 10 20
          * lon            (lon) int64 16B 150 160
        Data variables:
            temperature_c  (lat, lon) float64 32B 10.98 14.3 12.06 10.9
            precipitation  (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
            temperature_f  (lat, lon) float64 32B 51.76 57.75 53.7 51.62

        Alternatively, the same behavior can be achieved by directly referencing an existing dataarray:

        >>> x.assign(temperature_f=x["temperature_c"] * 9 / 5 + 32)
        <xarray.Dataset> Size: 128B
        Dimensions:        (lat: 2, lon: 2)
        Coordinates:
          * lat            (lat) int64 16B 10 20
          * lon            (lon) int64 16B 150 160
        Data variables:
            temperature_c  (lat, lon) float64 32B 10.98 14.3 12.06 10.9
            precipitation  (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
            temperature_f  (lat, lon) float64 32B 51.76 57.75 53.7 51.62

        """
        variables = either_dict_or_kwargs(variables, variables_kwargs, "assign")
        data = self.copy()

        # do all calculations first...
        results: CoercibleMapping = data._calc_assign_results(variables)

        # split data variables to add/replace vs. coordinates to replace
        results_data_vars: dict[Hashable, CoercibleValue] = {}
        results_coords: dict[Hashable, CoercibleValue] = {}
        for k, v in results.items():
            if k in data._coord_names:
                results_coords[k] = v
            else:
                results_data_vars[k] = v

        # ... and then assign
        data.coords.update(results_coords)
        data.update(results_data_vars)

        return data

    def to_dataarray(
        self, dim: Hashable = "variable", name: Hashable | None = None
    ) -> DataArray:
        """Convert this dataset into an xarray.DataArray

        The data variables of this dataset will be broadcast against each other
        and stacked along the first axis of the new array. All coordinates of
        this dataset will remain coordinates.

        Parameters
        ----------
        dim : Hashable, default: "variable"
            Name of the new dimension.
        name : Hashable or None, optional
            Name of the new data array.

        Returns
        -------
        array : xarray.DataArray
        """
        from xarray.core.dataarray import DataArray

        data_vars = [self.variables[k] for k in self.data_vars]
        broadcast_vars = broadcast_variables(*data_vars)
        data = duck_array_ops.stack([b.data for b in broadcast_vars], axis=0)

        dims = (dim,) + broadcast_vars[0].dims
        variable = Variable(dims, data, self.attrs, fastpath=True)

        coords = {k: v.variable for k, v in self.coords.items()}
        indexes = filter_indexes_from_coords(self._indexes, set(coords))
        new_dim_index = PandasIndex(list(self.data_vars), dim)
        indexes[dim] = new_dim_index
        coords.update(new_dim_index.create_variables())

        return DataArray._construct_direct(variable, coords, name, indexes)

    def to_array(
        self, dim: Hashable = "variable", name: Hashable | None = None
    ) -> DataArray:
        """Deprecated version of to_dataarray"""
        return self.to_dataarray(dim=dim, name=name)

    def _normalize_dim_order(
        self, dim_order: Sequence[Hashable] | None = None
    ) -> dict[Hashable, int]:
        """
        Check the validity of the provided dimensions if any and return the mapping
        between dimension name and their size.

        Parameters
        ----------
        dim_order: Sequence of Hashable or None, optional
            Dimension order to validate (default to the alphabetical order if None).

        Returns
        -------
        result : dict[Hashable, int]
            Validated dimensions mapping.

        """
        if dim_order is None:
            dim_order = list(self.dims)
        elif set(dim_order) != set(self.dims):
            raise ValueError(
                f"dim_order {dim_order} does not match the set of dimensions of this "
                f"Dataset: {list(self.dims)}"
            )

        ordered_dims = {k: self.sizes[k] for k in dim_order}

        return ordered_dims

    def to_pandas(self) -> pd.Series | pd.DataFrame:
        """Convert this dataset into a pandas object without changing the number of dimensions.

        The type of the returned object depends on the number of Dataset
        dimensions:

        * 0D -> `pandas.Series`
        * 1D -> `pandas.DataFrame`

        Only works for Datasets with 1 or fewer dimensions.
        """
        if len(self.dims) == 0:
            return pd.Series({k: v.item() for k, v in self.items()})
        if len(self.dims) == 1:
            return self.to_dataframe()
        raise ValueError(
            f"cannot convert Datasets with {len(self.dims)} dimensions into "
            "pandas objects without changing the number of dimensions. "
            "Please use Dataset.to_dataframe() instead."
        )

    def _to_dataframe(self, ordered_dims: Mapping[Any, int]):
        from xarray.core.extension_array import PandasExtensionArray

        columns_in_order = [k for k in self.variables if k not in self.dims]
        non_extension_array_columns = [
            k
            for k in columns_in_order
            if not pd.api.types.is_extension_array_dtype(self.variables[k].data)  # noqa: TID251
        ]
        extension_array_columns = [
            k
            for k in columns_in_order
            if pd.api.types.is_extension_array_dtype(self.variables[k].data)  # noqa: TID251
        ]
        extension_array_columns_different_index = [
            k
            for k in extension_array_columns
            if set(self.variables[k].dims) != set(ordered_dims.keys())
        ]
        extension_array_columns_same_index = [
            k
            for k in extension_array_columns
            if k not in extension_array_columns_different_index
        ]
        data = [
            self._variables[k].set_dims(ordered_dims).values.reshape(-1)
            for k in non_extension_array_columns
        ]
        index = self.coords.to_index([*ordered_dims])
        broadcasted_df = pd.DataFrame(
            {
                **dict(zip(non_extension_array_columns, data, strict=True)),
                **{
                    c: self.variables[c].data
                    for c in extension_array_columns_same_index
                },
            },
            index=index,
        )
        for extension_array_column in extension_array_columns_different_index:
            extension_array = self.variables[extension_array_column].data
            index = self[
                self.variables[extension_array_column].dims[0]
            ].coords.to_index()
            extension_array_df = pd.DataFrame(
                {extension_array_column: extension_array},
                index=pd.Index(index.array)
                if isinstance(index, PandasExtensionArray)  # type: ignore[redundant-expr]
                else index,
            )
            extension_array_df.index.name = self.variables[extension_array_column].dims[
                0
            ]
            broadcasted_df = broadcasted_df.join(extension_array_df)
        return broadcasted_df[columns_in_order]

    def to_dataframe(self, dim_order: Sequence[Hashable] | None = None) -> pd.DataFrame:
        """Convert this dataset into a pandas.DataFrame.

        Non-index variables in this dataset form the columns of the
        DataFrame. The DataFrame is indexed by the Cartesian product of
        this dataset's indices.

        Parameters
        ----------
        dim_order: Sequence of Hashable or None, optional
            Hierarchical dimension order for the resulting dataframe. All
            arrays are transposed to this order and then written out as flat
            vectors in contiguous order, so the last dimension in this list
            will be contiguous in the resulting DataFrame. This has a major
            influence on which operations are efficient on the resulting
            dataframe.

            If provided, must include all dimensions of this dataset. By
            default, dimensions are in the same order as in `Dataset.sizes`.

        Returns
        -------
        result : DataFrame
            Dataset as a pandas DataFrame.

        """

        ordered_dims = self._normalize_dim_order(dim_order=dim_order)

        return self._to_dataframe(ordered_dims=ordered_dims)

    def _set_sparse_data_from_dataframe(
        self, idx: pd.Index, arrays: list[tuple[Hashable, np.ndarray]], dims: tuple
    ) -> None:
        from sparse import COO

        if isinstance(idx, pd.MultiIndex):
            coords = np.stack([np.asarray(code) for code in idx.codes], axis=0)
            is_sorted = idx.is_monotonic_increasing
            shape = tuple(lev.size for lev in idx.levels)
        else:
            coords = np.arange(idx.size).reshape(1, -1)
            is_sorted = True
            shape = (idx.size,)

        for name, values in arrays:
            # In virtually all real use cases, the sparse array will now have
            # missing values and needs a fill_value. For consistency, don't
            # special case the rare exceptions (e.g., dtype=int without a
            # MultiIndex).
            dtype, fill_value = xrdtypes.maybe_promote(values.dtype)
            values = np.asarray(values, dtype=dtype)

            data = COO(
                coords,
                values,
                shape,
                has_duplicates=False,
                sorted=is_sorted,
                fill_value=fill_value,
            )
            self[name] = (dims, data)

    def _set_numpy_data_from_dataframe(
        self, idx: pd.Index, arrays: list[tuple[Hashable, np.ndarray]], dims: tuple
    ) -> None:
        if not isinstance(idx, pd.MultiIndex):
            for name, values in arrays:
                self[name] = (dims, values)
            return

        # NB: similar, more general logic, now exists in
        # variable.unstack_once; we could consider combining them at some
        # point.

        shape = tuple(lev.size for lev in idx.levels)
        indexer = tuple(idx.codes)

        # We already verified that the MultiIndex has all unique values, so
        # there are missing values if and only if the size of output arrays is
        # larger that the index.
        missing_values = math.prod(shape) > idx.shape[0]

        for name, values in arrays:
            # NumPy indexing is much faster than using DataFrame.reindex() to
            # fill in missing values:
            # https://stackoverflow.com/a/35049899/809705
            if missing_values:
                dtype, fill_value = xrdtypes.maybe_promote(values.dtype)
                data = np.full(shape, fill_value, dtype)
            else:
                # If there are no missing values, keep the existing dtype
                # instead of promoting to support NA, e.g., keep integer
                # columns as integers.
                # TODO: consider removing this special case, which doesn't
                # exist for sparse=True.
                data = np.zeros(shape, values.dtype)
            data[indexer] = values
            self[name] = (dims, data)

    @classmethod
    def from_dataframe(cls, dataframe: pd.DataFrame, sparse: bool = False) -> Self:
        """Convert a pandas.DataFrame into an xarray.Dataset

        Each column will be converted into an independent variable in the
        Dataset. If the dataframe's index is a MultiIndex, it will be expanded
        into a tensor product of one-dimensional indices (filling in missing
        values with NaN). If you rather preserve the MultiIndex use
        `xr.Dataset(df)`. This method will produce a Dataset very similar to
        that on which the 'to_dataframe' method was called, except with
        possibly redundant dimensions (since all dataset variables will have
        the same dimensionality).

        Parameters
        ----------
        dataframe : DataFrame
            DataFrame from which to copy data and indices.
        sparse : bool, default: False
            If true, create a sparse arrays instead of dense numpy arrays. This
            can potentially save a large amount of memory if the DataFrame has
            a MultiIndex. Requires the sparse package (sparse.pydata.org).

        Returns
        -------
        New Dataset.

        See Also
        --------
        xarray.DataArray.from_series
        pandas.DataFrame.to_xarray
        """
        # TODO: Add an option to remove dimensions along which the variables
        # are constant, to enable consistent serialization to/from a dataframe,
        # even if some variables have different dimensionality.

        if not dataframe.columns.is_unique:
            raise ValueError("cannot convert DataFrame with non-unique columns")

        idx = remove_unused_levels_categories(dataframe.index)

        if isinstance(idx, pd.MultiIndex) and not idx.is_unique:
            raise ValueError(
                "cannot convert a DataFrame with a non-unique MultiIndex into xarray"
            )

        arrays = []
        extension_arrays = []
        for k, v in dataframe.items():
            if not is_allowed_extension_array(v) or isinstance(
                v.array, UNSUPPORTED_EXTENSION_ARRAY_TYPES
            ):
                arrays.append((k, np.asarray(v)))
            else:
                extension_arrays.append((k, v))

        indexes: dict[Hashable, Index] = {}
        index_vars: dict[Hashable, Variable] = {}

        if isinstance(idx, pd.MultiIndex):
            dims = tuple(
                name if name is not None else f"level_{n}"  # type: ignore[redundant-expr]
                for n, name in enumerate(idx.names)
            )
            for dim, lev in zip(dims, idx.levels, strict=True):
                xr_idx = PandasIndex(lev, dim)
                indexes[dim] = xr_idx
                index_vars.update(xr_idx.create_variables())
            arrays += [(k, np.asarray(v)) for k, v in extension_arrays]
            extension_arrays = []
        else:
            index_name = idx.name if idx.name is not None else "index"
            dims = (index_name,)
            xr_idx = PandasIndex(idx, index_name)
            indexes[index_name] = xr_idx
            index_vars.update(xr_idx.create_variables())

        obj = cls._construct_direct(index_vars, set(index_vars), indexes=indexes)

        if sparse:
            obj._set_sparse_data_from_dataframe(idx, arrays, dims)
        else:
            obj._set_numpy_data_from_dataframe(idx, arrays, dims)
        for name, extension_array in extension_arrays:
            obj[name] = (dims, extension_array)
        return obj[dataframe.columns] if len(dataframe.columns) else obj

    def to_dask_dataframe(
        self, dim_order: Sequence[Hashable] | None = None, set_index: bool = False
    ) -> DaskDataFrame:
        """
        Convert this dataset into a dask.dataframe.DataFrame.

        The dimensions, coordinates and data variables in this dataset form
        the columns of the DataFrame.

        Parameters
        ----------
        dim_order : list, optional
            Hierarchical dimension order for the resulting dataframe. All
            arrays are transposed to this order and then written out as flat
            vectors in contiguous order, so the last dimension in this list
            will be contiguous in the resulting DataFrame. This has a major
            influence on which operations are efficient on the resulting dask
            dataframe.

            If provided, must include all dimensions of this dataset. By
            default, dimensions are sorted alphabetically.
        set_index : bool, default: False
            If set_index=True, the dask DataFrame is indexed by this dataset's
            coordinate. Since dask DataFrames do not support multi-indexes,
            set_index only works if the dataset only contains one dimension.

        Returns
        -------
        dask.dataframe.DataFrame
        """

        import dask.array as da
        import dask.dataframe as dd

        ordered_dims = self._normalize_dim_order(dim_order=dim_order)

        columns = list(ordered_dims)
        columns.extend(k for k in self.coords if k not in self.dims)
        columns.extend(self.data_vars)

        ds_chunks = self.chunks

        series_list = []
        df_meta = pd.DataFrame()
        for name in columns:
            try:
                var = self.variables[name]
            except KeyError:
                # dimension without a matching coordinate
                size = self.sizes[name]
                data = da.arange(size, chunks=size, dtype=np.int64)
                var = Variable((name,), data)

            # IndexVariable objects have a dummy .chunk() method
            if isinstance(var, IndexVariable):
                var = var.to_base_variable()

            # Make sure var is a dask array, otherwise the array can become too large
            # when it is broadcasted to several dimensions:
            if not is_duck_dask_array(var._data):
                var = var.chunk()

            # Broadcast then flatten the array:
            var_new_dims = var.set_dims(ordered_dims).chunk(ds_chunks)
            dask_array = var_new_dims._data.reshape(-1)

            series = dd.from_dask_array(dask_array, columns=name, meta=df_meta)
            series_list.append(series)

        df = dd.concat(series_list, axis=1)

        if set_index:
            dim_order = [*ordered_dims]

            if len(dim_order) == 1:
                (dim,) = dim_order
                df = df.set_index(dim)
            else:
                # triggers an error about multi-indexes, even if only one
                # dimension is passed
                df = df.set_index(dim_order)

        return df

    def to_dict(
        self, data: bool | Literal["list", "array"] = "list", encoding: bool = False
    ) -> dict[str, Any]:
        """
        Convert this dataset to a dictionary following xarray naming
        conventions.

        Converts all variables and attributes to native Python objects
        Useful for converting to json. To avoid datetime incompatibility
        use decode_times=False kwarg in xarrray.open_dataset.

        Parameters
        ----------
        data : bool or {"list", "array"}, default: "list"
            Whether to include the actual data in the dictionary. When set to
            False, returns just the schema. If set to "array", returns data as
            underlying array type. If set to "list" (or True for backwards
            compatibility), returns data in lists of Python data types. Note
            that for obtaining the "list" output efficiently, use
            `ds.compute().to_dict(data="list")`.

        encoding : bool, default: False
            Whether to include the Dataset's encoding in the dictionary.

        Returns
        -------
        d : dict
            Dict with keys: "coords", "attrs", "dims", "data_vars" and optionally
            "encoding".

        See Also
        --------
        Dataset.from_dict
        DataArray.to_dict
        """
        d: dict = {
            "coords": {},
            "attrs": decode_numpy_dict_values(self.attrs),
            "dims": dict(self.sizes),
            "data_vars": {},
        }
        for k in self.coords:
            d["coords"].update(
                {k: self[k].variable.to_dict(data=data, encoding=encoding)}
            )
        for k in self.data_vars:
            d["data_vars"].update(
                {k: self[k].variable.to_dict(data=data, encoding=encoding)}
            )
        if encoding:
            d["encoding"] = dict(self.encoding)
        return d

    @classmethod
    def from_dict(cls, d: Mapping[Any, Any]) -> Self:
        """Convert a dictionary into an xarray.Dataset.

        Parameters
        ----------
        d : dict-like
            Mapping with a minimum structure of
                ``{"var_0": {"dims": [..], "data": [..]}, \
                            ...}``

        Returns
        -------
        obj : Dataset

        See also
        --------
        Dataset.to_dict
        DataArray.from_dict

        Examples
        --------
        >>> d = {
        ...     "t": {"dims": ("t"), "data": [0, 1, 2]},
        ...     "a": {"dims": ("t"), "data": ["a", "b", "c"]},
        ...     "b": {"dims": ("t"), "data": [10, 20, 30]},
        ... }
        >>> ds = xr.Dataset.from_dict(d)
        >>> ds
        <xarray.Dataset> Size: 60B
        Dimensions:  (t: 3)
        Coordinates:
          * t        (t) int64 24B 0 1 2
        Data variables:
            a        (t) <U1 12B 'a' 'b' 'c'
            b        (t) int64 24B 10 20 30

        >>> d = {
        ...     "coords": {
        ...         "t": {"dims": "t", "data": [0, 1, 2], "attrs": {"units": "s"}}
        ...     },
        ...     "attrs": {"title": "air temperature"},
        ...     "dims": "t",
        ...     "data_vars": {
        ...         "a": {"dims": "t", "data": [10, 20, 30]},
        ...         "b": {"dims": "t", "data": ["a", "b", "c"]},
        ...     },
        ... }
        >>> ds = xr.Dataset.from_dict(d)
        >>> ds
        <xarray.Dataset> Size: 60B
        Dimensions:  (t: 3)
        Coordinates:
          * t        (t) int64 24B 0 1 2
        Data variables:
            a        (t) int64 24B 10 20 30
            b        (t) <U1 12B 'a' 'b' 'c'
        Attributes:
            title:    air temperature

        """

        variables: Iterable[tuple[Hashable, Any]]
        if not {"coords", "data_vars"}.issubset(set(d)):
            variables = d.items()
        else:
            import itertools

            variables = itertools.chain(
                d.get("coords", {}).items(), d.get("data_vars", {}).items()
            )
        try:
            variable_dict = {
                k: (v["dims"], v["data"], v.get("attrs"), v.get("encoding"))
                for k, v in variables
            }
        except KeyError as e:
            raise ValueError(
                f"cannot convert dict without the key '{e.args[0]}'"
            ) from e
        obj = cls(variable_dict)

        # what if coords aren't dims?
        coords = set(d.get("coords", {})) - set(d.get("dims", {}))
        obj = obj.set_coords(coords)

        obj.attrs.update(d.get("attrs", {}))
        obj.encoding.update(d.get("encoding", {}))

        return obj

    def _unary_op(self, f, *args, **kwargs) -> Self:
        variables = {}
        keep_attrs = kwargs.pop("keep_attrs", None)
        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=True)
        for k, v in self._variables.items():
            if k in self._coord_names:
                variables[k] = v
            else:
                variables[k] = f(v, *args, **kwargs)
                if keep_attrs:
                    variables[k]._attrs = v._attrs
        attrs = self._attrs if keep_attrs else None
        return self._replace_with_new_dims(variables, attrs=attrs)

    def _binary_op(self, other, f, reflexive=False, join=None) -> Dataset:
        from xarray.core.dataarray import DataArray
        from xarray.core.datatree import DataTree
        from xarray.core.groupby import GroupBy

        if isinstance(other, DataTree | GroupBy):
            return NotImplemented
        align_type = OPTIONS["arithmetic_join"] if join is None else join
        if isinstance(other, DataArray | Dataset):
            self, other = align(self, other, join=align_type, copy=False)
        g = f if not reflexive else lambda x, y: f(y, x)
        ds = self._calculate_binary_op(g, other, join=align_type)
        keep_attrs = _get_keep_attrs(default=False)
        if keep_attrs:
            ds.attrs = self.attrs
        return ds

    def _inplace_binary_op(self, other, f) -> Self:
        from xarray.core.dataarray import DataArray
        from xarray.core.groupby import GroupBy

        if isinstance(other, GroupBy):
            raise TypeError(
                "in-place operations between a Dataset and "
                "a grouped object are not permitted"
            )
        # we don't actually modify arrays in-place with in-place Dataset
        # arithmetic -- this lets us automatically align things
        if isinstance(other, DataArray | Dataset):
            other = other.reindex_like(self, copy=False)
        g = ops.inplace_to_noninplace_op(f)
        ds = self._calculate_binary_op(g, other, inplace=True)
        self._replace_with_new_dims(
            ds._variables,
            ds._coord_names,
            attrs=ds._attrs,
            indexes=ds._indexes,
            inplace=True,
        )
        return self

    def _calculate_binary_op(
        self, f, other, join="inner", inplace: bool = False
    ) -> Dataset:
        def apply_over_both(lhs_data_vars, rhs_data_vars, lhs_vars, rhs_vars):
            if inplace and set(lhs_data_vars) != set(rhs_data_vars):
                raise ValueError(
                    "datasets must have the same data variables "
                    f"for in-place arithmetic operations: {list(lhs_data_vars)}, {list(rhs_data_vars)}"
                )

            dest_vars = {}

            for k in lhs_data_vars:
                if k in rhs_data_vars:
                    dest_vars[k] = f(lhs_vars[k], rhs_vars[k])
                elif join in ["left", "outer"]:
                    dest_vars[k] = f(lhs_vars[k], np.nan)
            for k in rhs_data_vars:
                if k not in dest_vars and join in ["right", "outer"]:
                    dest_vars[k] = f(rhs_vars[k], np.nan)
            return dest_vars

        if utils.is_dict_like(other) and not isinstance(other, Dataset):
            # can't use our shortcut of doing the binary operation with
            # Variable objects, so apply over our data vars instead.
            new_data_vars = apply_over_both(
                self.data_vars, other, self.data_vars, other
            )
            return type(self)(new_data_vars)

        other_coords: Coordinates | None = getattr(other, "coords", None)
        ds = self.coords.merge(other_coords)

        if isinstance(other, Dataset):
            new_vars = apply_over_both(
                self.data_vars, other.data_vars, self.variables, other.variables
            )
        else:
            other_variable = getattr(other, "variable", other)
            new_vars = {k: f(self.variables[k], other_variable) for k in self.data_vars}
        ds._variables.update(new_vars)
        ds._dims = calculate_dimensions(ds._variables)
        return ds

    def _copy_attrs_from(self, other):
        self.attrs = other.attrs
        for v in other.variables:
            if v in self.variables:
                self.variables[v].attrs = other.variables[v].attrs

    def diff(
        self,
        dim: Hashable,
        n: int = 1,
        *,
        label: Literal["upper", "lower"] = "upper",
    ) -> Self:
        """Calculate the n-th order discrete difference along given axis.

        Parameters
        ----------
        dim : Hashable
            Dimension over which to calculate the finite difference.
        n : int, default: 1
            The number of times values are differenced.
        label : {"upper", "lower"}, default: "upper"
            The new coordinate in dimension ``dim`` will have the
            values of either the minuend's or subtrahend's coordinate
            for values 'upper' and 'lower', respectively.

        Returns
        -------
        difference : Dataset
            The n-th order finite difference of this object.

        Notes
        -----
        `n` matches numpy's behavior and is different from pandas' first argument named
        `periods`.

        Examples
        --------
        >>> ds = xr.Dataset({"foo": ("x", [5, 5, 6, 6])})
        >>> ds.diff("x")
        <xarray.Dataset> Size: 24B
        Dimensions:  (x: 3)
        Dimensions without coordinates: x
        Data variables:
            foo      (x) int64 24B 0 1 0
        >>> ds.diff("x", 2)
        <xarray.Dataset> Size: 16B
        Dimensions:  (x: 2)
        Dimensions without coordinates: x
        Data variables:
            foo      (x) int64 16B 1 -1

        See Also
        --------
        Dataset.differentiate
        """
        if n == 0:
            return self
        if n < 0:
            raise ValueError(f"order `n` must be non-negative but got {n}")

        # prepare slices
        slice_start = {dim: slice(None, -1)}
        slice_end = {dim: slice(1, None)}

        # prepare new coordinate
        if label == "upper":
            slice_new = slice_end
        elif label == "lower":
            slice_new = slice_start
        else:
            raise ValueError("The 'label' argument has to be either 'upper' or 'lower'")

        indexes, index_vars = isel_indexes(self.xindexes, slice_new)
        variables = {}

        for name, var in self.variables.items():
            if name in index_vars:
                variables[name] = index_vars[name]
            elif dim in var.dims:
                if name in self.data_vars:
                    variables[name] = var.isel(slice_end) - var.isel(slice_start)
                else:
                    variables[name] = var.isel(slice_new)
            else:
                variables[name] = var

        difference = self._replace_with_new_dims(variables, indexes=indexes)

        if n > 1:
            return difference.diff(dim, n - 1)
        else:
            return difference

    def shift(
        self,
        shifts: Mapping[Any, int] | None = None,
        fill_value: Any = xrdtypes.NA,
        **shifts_kwargs: int,
    ) -> Self:
        """Shift this dataset by an offset along one or more dimensions.

        Only data variables are moved; coordinates stay in place. This is
        consistent with the behavior of ``shift`` in pandas.

        Values shifted from beyond array bounds will appear at one end of
        each dimension, which are filled according to `fill_value`. For periodic
        offsets instead see `roll`.

        Parameters
        ----------
        shifts : mapping of hashable to int
            Integer offset to shift along each of the given dimensions.
            Positive offsets shift to the right; negative offsets shift to the
            left.
        fill_value : scalar or dict-like, optional
            Value to use for newly missing values. If a dict-like, maps
            variable names (including coordinates) to fill values.
        **shifts_kwargs
            The keyword arguments form of ``shifts``.
            One of shifts or shifts_kwargs must be provided.

        Returns
        -------
        shifted : Dataset
            Dataset with the same coordinates and attributes but shifted data
            variables.

        See Also
        --------
        roll

        Examples
        --------
        >>> ds = xr.Dataset({"foo": ("x", list("abcde"))})
        >>> ds.shift(x=2)
        <xarray.Dataset> Size: 40B
        Dimensions:  (x: 5)
        Dimensions without coordinates: x
        Data variables:
            foo      (x) object 40B nan nan 'a' 'b' 'c'
        """
        shifts = either_dict_or_kwargs(shifts, shifts_kwargs, "shift")
        invalid = tuple(k for k in shifts if k not in self.dims)
        if invalid:
            raise ValueError(
                f"Dimensions {invalid} not found in data dimensions {tuple(self.dims)}"
            )

        variables = {}
        for name, var in self.variables.items():
            if name in self.data_vars:
                fill_value_ = (
                    fill_value.get(name, xrdtypes.NA)
                    if isinstance(fill_value, dict)
                    else fill_value
                )

                var_shifts = {k: v for k, v in shifts.items() if k in var.dims}
                variables[name] = var.shift(fill_value=fill_value_, shifts=var_shifts)
            else:
                variables[name] = var

        return self._replace(variables)

    def roll(
        self,
        shifts: Mapping[Any, int] | None = None,
        roll_coords: bool = False,
        **shifts_kwargs: int,
    ) -> Self:
        """Roll this dataset by an offset along one or more dimensions.

        Unlike shift, roll treats the given dimensions as periodic, so will not
        create any missing values to be filled.

        Also unlike shift, roll may rotate all variables, including coordinates
        if specified. The direction of rotation is consistent with
        :py:func:`numpy.roll`.

        Parameters
        ----------
        shifts : mapping of hashable to int, optional
            A dict with keys matching dimensions and values given
            by integers to rotate each of the given dimensions. Positive
            offsets roll to the right; negative offsets roll to the left.
        roll_coords : bool, default: False
            Indicates whether to roll the coordinates by the offset too.
        **shifts_kwargs : {dim: offset, ...}, optional
            The keyword arguments form of ``shifts``.
            One of shifts or shifts_kwargs must be provided.

        Returns
        -------
        rolled : Dataset
            Dataset with the same attributes but rolled data and coordinates.

        See Also
        --------
        shift

        Examples
        --------
        >>> ds = xr.Dataset({"foo": ("x", list("abcde"))}, coords={"x": np.arange(5)})
        >>> ds.roll(x=2)
        <xarray.Dataset> Size: 60B
        Dimensions:  (x: 5)
        Coordinates:
          * x        (x) int64 40B 0 1 2 3 4
        Data variables:
            foo      (x) <U1 20B 'd' 'e' 'a' 'b' 'c'

        >>> ds.roll(x=2, roll_coords=True)
        <xarray.Dataset> Size: 60B
        Dimensions:  (x: 5)
        Coordinates:
          * x        (x) int64 40B 3 4 0 1 2
        Data variables:
            foo      (x) <U1 20B 'd' 'e' 'a' 'b' 'c'

        """
        shifts = either_dict_or_kwargs(shifts, shifts_kwargs, "roll")
        invalid = [k for k in shifts if k not in self.dims]
        if invalid:
            raise ValueError(
                f"Dimensions {invalid} not found in data dimensions {tuple(self.dims)}"
            )

        unrolled_vars: tuple[Hashable, ...]

        if roll_coords:
            indexes, index_vars = roll_indexes(self.xindexes, shifts)
            unrolled_vars = ()
        else:
            indexes = dict(self._indexes)
            index_vars = dict(self.xindexes.variables)
            unrolled_vars = tuple(self.coords)

        variables = {}
        for k, var in self.variables.items():
            if k in index_vars:
                variables[k] = index_vars[k]
            elif k not in unrolled_vars:
                variables[k] = var.roll(
                    shifts={k: s for k, s in shifts.items() if k in var.dims}
                )
            else:
                variables[k] = var

        return self._replace(variables, indexes=indexes)

    def sortby(
        self,
        variables: (
            Hashable
            | DataArray
            | Sequence[Hashable | DataArray]
            | Callable[[Self], Hashable | DataArray | list[Hashable | DataArray]]
        ),
        ascending: bool = True,
    ) -> Self:
        """
        Sort object by labels or values (along an axis).

        Sorts the dataset, either along specified dimensions,
        or according to values of 1-D dataarrays that share dimension
        with calling object.

        If the input variables are dataarrays, then the dataarrays are aligned
        (via left-join) to the calling object prior to sorting by cell values.
        NaNs are sorted to the end, following Numpy convention.

        If multiple sorts along the same dimension is
        given, numpy's lexsort is performed along that dimension:
        https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html
        and the FIRST key in the sequence is used as the primary sort key,
        followed by the 2nd key, etc.

        Parameters
        ----------
        variables : Hashable, DataArray, sequence of Hashable or DataArray, or Callable
            1D DataArray objects or name(s) of 1D variable(s) in coords whose values are
            used to sort this array. If a callable, the callable is passed this object,
            and the result is used as the value for cond.
        ascending : bool, default: True
            Whether to sort by ascending or descending order.

        Returns
        -------
        sorted : Dataset
            A new dataset where all the specified dims are sorted by dim
            labels.

        See Also
        --------
        DataArray.sortby
        numpy.sort
        pandas.sort_values
        pandas.sort_index

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {
        ...         "A": (("x", "y"), [[1, 2], [3, 4]]),
        ...         "B": (("x", "y"), [[5, 6], [7, 8]]),
        ...     },
        ...     coords={"x": ["b", "a"], "y": [1, 0]},
        ... )
        >>> ds.sortby("x")
        <xarray.Dataset> Size: 88B
        Dimensions:  (x: 2, y: 2)
        Coordinates:
          * x        (x) <U1 8B 'a' 'b'
          * y        (y) int64 16B 1 0
        Data variables:
            A        (x, y) int64 32B 3 4 1 2
            B        (x, y) int64 32B 7 8 5 6
        >>> ds.sortby(lambda x: -x["y"])
        <xarray.Dataset> Size: 88B
        Dimensions:  (x: 2, y: 2)
        Coordinates:
          * x        (x) <U1 8B 'b' 'a'
          * y        (y) int64 16B 1 0
        Data variables:
            A        (x, y) int64 32B 1 2 3 4
            B        (x, y) int64 32B 5 6 7 8
        """
        from xarray.core.dataarray import DataArray

        if callable(variables):
            variables = variables(self)
        if not isinstance(variables, list):
            variables = [variables]
        arrays = [v if isinstance(v, DataArray) else self[v] for v in variables]
        aligned_vars = align(self, *arrays, join="left")
        aligned_self = cast("Self", aligned_vars[0])
        aligned_other_vars = cast(tuple[DataArray, ...], aligned_vars[1:])
        vars_by_dim = defaultdict(list)
        for data_array in aligned_other_vars:
            if data_array.ndim != 1:
                raise ValueError("Input DataArray is not 1-D.")
            (key,) = data_array.dims
            vars_by_dim[key].append(data_array)

        indices = {}
        for key, arrays in vars_by_dim.items():
            order = np.lexsort(tuple(reversed(arrays)))
            indices[key] = order if ascending else order[::-1]
        return aligned_self.isel(indices)

    def quantile(
        self,
        q: ArrayLike,
        dim: Dims = None,
        *,
        method: QuantileMethods = "linear",
        numeric_only: bool = False,
        keep_attrs: bool | None = None,
        skipna: bool | None = None,
        interpolation: QuantileMethods | None = None,
    ) -> Self:
        """Compute the qth quantile of the data along the specified dimension.

        Returns the qth quantiles(s) of the array elements for each variable
        in the Dataset.

        Parameters
        ----------
        q : float or array-like of float
            Quantile to compute, which must be between 0 and 1 inclusive.
        dim : str or Iterable of Hashable, optional
            Dimension(s) over which to apply quantile.
        method : str, default: "linear"
            This optional parameter specifies the interpolation method to use when the
            desired quantile lies between two data points. The options sorted by their R
            type as summarized in the H&F paper [1]_ are:

                1. "inverted_cdf"
                2. "averaged_inverted_cdf"
                3. "closest_observation"
                4. "interpolated_inverted_cdf"
                5. "hazen"
                6. "weibull"
                7. "linear"  (default)
                8. "median_unbiased"
                9. "normal_unbiased"

            The first three methods are discontiuous.  The following discontinuous
            variations of the default "linear" (7.) option are also available:

                * "lower"
                * "higher"
                * "midpoint"
                * "nearest"

            See :py:func:`numpy.quantile` or [1]_ for details. The "method" argument
            was previously called "interpolation", renamed in accordance with numpy
            version 1.22.0.

        keep_attrs : bool, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.
        numeric_only : bool, optional
            If True, only apply ``func`` to variables with a numeric dtype.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).

        Returns
        -------
        quantiles : Dataset
            If `q` is a single quantile, then the result is a scalar for each
            variable in data_vars. If multiple percentiles are given, first
            axis of the result corresponds to the quantile and a quantile
            dimension is added to the return Dataset. The other dimensions are
            the dimensions that remain after the reduction of the array.

        See Also
        --------
        numpy.nanquantile, numpy.quantile, pandas.Series.quantile, DataArray.quantile

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {"a": (("x", "y"), [[0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]])},
        ...     coords={"x": [7, 9], "y": [1, 1.5, 2, 2.5]},
        ... )
        >>> ds.quantile(0)  # or ds.quantile(0, dim=...)
        <xarray.Dataset> Size: 16B
        Dimensions:   ()
        Coordinates:
            quantile  float64 8B 0.0
        Data variables:
            a         float64 8B 0.7
        >>> ds.quantile(0, dim="x")
        <xarray.Dataset> Size: 72B
        Dimensions:   (y: 4)
        Coordinates:
          * y         (y) float64 32B 1.0 1.5 2.0 2.5
            quantile  float64 8B 0.0
        Data variables:
            a         (y) float64 32B 0.7 4.2 2.6 1.5
        >>> ds.quantile([0, 0.5, 1])
        <xarray.Dataset> Size: 48B
        Dimensions:   (quantile: 3)
        Coordinates:
          * quantile  (quantile) float64 24B 0.0 0.5 1.0
        Data variables:
            a         (quantile) float64 24B 0.7 3.4 9.4
        >>> ds.quantile([0, 0.5, 1], dim="x")
        <xarray.Dataset> Size: 152B
        Dimensions:   (quantile: 3, y: 4)
        Coordinates:
          * y         (y) float64 32B 1.0 1.5 2.0 2.5
          * quantile  (quantile) float64 24B 0.0 0.5 1.0
        Data variables:
            a         (quantile, y) float64 96B 0.7 4.2 2.6 1.5 3.6 ... 6.5 7.3 9.4 1.9

        References
        ----------
        .. [1] R. J. Hyndman and Y. Fan,
           "Sample quantiles in statistical packages,"
           The American Statistician, 50(4), pp. 361-365, 1996
        """

        # interpolation renamed to method in version 0.21.0
        # check here and in variable to avoid repeated warnings
        if interpolation is not None:
            warnings.warn(
                "The `interpolation` argument to quantile was renamed to `method`.",
                FutureWarning,
                stacklevel=2,
            )

            if method != "linear":
                raise TypeError("Cannot pass interpolation and method keywords!")

            method = interpolation

        dims: set[Hashable]
        if isinstance(dim, str):
            dims = {dim}
        elif dim is None or dim is ...:
            dims = set(self.dims)
        else:
            dims = set(dim)

        invalid_dims = set(dims) - set(self.dims)
        if invalid_dims:
            raise ValueError(
                f"Dimensions {tuple(invalid_dims)} not found in data dimensions {tuple(self.dims)}"
            )

        q = np.asarray(q, dtype=np.float64)

        variables = {}
        for name, var in self.variables.items():
            reduce_dims = [d for d in var.dims if d in dims]
            if reduce_dims or not var.dims:
                if name not in self.coords and (
                    not numeric_only
                    or np.issubdtype(var.dtype, np.number)
                    or var.dtype == np.bool_
                ):
                    variables[name] = var.quantile(
                        q,
                        dim=reduce_dims,
                        method=method,
                        keep_attrs=keep_attrs,
                        skipna=skipna,
                    )

            else:
                variables[name] = var

        # construct the new dataset
        coord_names = {k for k in self.coords if k in variables}
        indexes = {k: v for k, v in self._indexes.items() if k in variables}
        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)
        attrs = self.attrs if keep_attrs else None
        new = self._replace_with_new_dims(
            variables, coord_names=coord_names, attrs=attrs, indexes=indexes
        )
        return new.assign_coords(quantile=q)

    def rank(
        self,
        dim: Hashable,
        *,
        pct: bool = False,
        keep_attrs: bool | None = None,
    ) -> Self:
        """Ranks the data.

        Equal values are assigned a rank that is the average of the ranks that
        would have been otherwise assigned to all of the values within
        that set.
        Ranks begin at 1, not 0. If pct is True, computes percentage ranks.

        NaNs in the input array are returned as NaNs.

        The `bottleneck` library is required.

        Parameters
        ----------
        dim : Hashable
            Dimension over which to compute rank.
        pct : bool, default: False
            If True, compute percentage ranks, otherwise compute integer ranks.
        keep_attrs : bool or None, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False, the new
            object will be returned without attributes.

        Returns
        -------
        ranked : Dataset
            Variables that do not depend on `dim` are dropped.
        """
        if not OPTIONS["use_bottleneck"]:
            raise RuntimeError(
                "rank requires bottleneck to be enabled."
                " Call `xr.set_options(use_bottleneck=True)` to enable it."
            )

        if dim not in self.dims:
            raise ValueError(
                f"Dimension {dim!r} not found in data dimensions {tuple(self.dims)}"
            )

        variables = {}
        for name, var in self.variables.items():
            if name in self.data_vars:
                if dim in var.dims:
                    variables[name] = var.rank(dim, pct=pct)
            else:
                variables[name] = var

        coord_names = set(self.coords)
        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)
        attrs = self.attrs if keep_attrs else None
        return self._replace(variables, coord_names, attrs=attrs)

    def differentiate(
        self,
        coord: Hashable,
        edge_order: Literal[1, 2] = 1,
        datetime_unit: DatetimeUnitOptions | None = None,
    ) -> Self:
        """Differentiate with the second order accurate central
        differences.

        .. note::
            This feature is limited to simple cartesian geometry, i.e. coord
            must be one dimensional.

        Parameters
        ----------
        coord : Hashable
            The coordinate to be used to compute the gradient.
        edge_order : {1, 2}, default: 1
            N-th order accurate differences at the boundaries.
        datetime_unit : None or {"W", "D", "h", "m", "s", "ms", \
            "us", "ns", "ps", "fs", "as", None}, default: None
            Unit to compute gradient. Only valid for datetime coordinate.

        Returns
        -------
        differentiated: Dataset

        See also
        --------
        numpy.gradient: corresponding numpy function
        """
        if coord not in self.variables and coord not in self.dims:
            variables_and_dims = tuple(set(self.variables.keys()).union(self.dims))
            raise ValueError(
                f"Coordinate {coord!r} not found in variables or dimensions {variables_and_dims}."
            )

        coord_var = self[coord].variable
        if coord_var.ndim != 1:
            raise ValueError(
                f"Coordinate {coord} must be 1 dimensional but is {coord_var.ndim}"
                " dimensional"
            )

        dim = coord_var.dims[0]
        if _contains_datetime_like_objects(coord_var):
            if coord_var.dtype.kind in "mM" and datetime_unit is None:
                datetime_unit = cast(
                    "DatetimeUnitOptions", np.datetime_data(coord_var.dtype)[0]
                )
            elif datetime_unit is None:
                datetime_unit = "s"  # Default to seconds for cftime objects
            coord_var = coord_var._to_numeric(datetime_unit=datetime_unit)

        variables = {}
        for k, v in self.variables.items():
            if k in self.data_vars and dim in v.dims and k not in self.coords:
                if _contains_datetime_like_objects(v):
                    v = v._to_numeric(datetime_unit=datetime_unit)
                grad = duck_array_ops.gradient(
                    v.data,
                    coord_var.data,
                    edge_order=edge_order,
                    axis=v.get_axis_num(dim),
                )
                variables[k] = Variable(v.dims, grad)
            else:
                variables[k] = v
        return self._replace(variables)

    def integrate(
        self,
        coord: Hashable | Sequence[Hashable],
        datetime_unit: DatetimeUnitOptions = None,
    ) -> Self:
        """Integrate along the given coordinate using the trapezoidal rule.

        .. note::
            This feature is limited to simple cartesian geometry, i.e. coord
            must be one dimensional.

        Parameters
        ----------
        coord : hashable, or sequence of hashable
            Coordinate(s) used for the integration.
        datetime_unit : {'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', \
                        'ps', 'fs', 'as', None}, optional
            Specify the unit if datetime coordinate is used.

        Returns
        -------
        integrated : Dataset

        See also
        --------
        DataArray.integrate
        numpy.trapz : corresponding numpy function

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     data_vars={"a": ("x", [5, 5, 6, 6]), "b": ("x", [1, 2, 1, 0])},
        ...     coords={"x": [0, 1, 2, 3], "y": ("x", [1, 7, 3, 5])},
        ... )
        >>> ds
        <xarray.Dataset> Size: 128B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
            y        (x) int64 32B 1 7 3 5
        Data variables:
            a        (x) int64 32B 5 5 6 6
            b        (x) int64 32B 1 2 1 0
        >>> ds.integrate("x")
        <xarray.Dataset> Size: 16B
        Dimensions:  ()
        Data variables:
            a        float64 8B 16.5
            b        float64 8B 3.5
        >>> ds.integrate("y")
        <xarray.Dataset> Size: 16B
        Dimensions:  ()
        Data variables:
            a        float64 8B 20.0
            b        float64 8B 4.0
        """
        if not isinstance(coord, list | tuple):
            coord = (coord,)
        result = self
        for c in coord:
            result = result._integrate_one(c, datetime_unit=datetime_unit)
        return result

    def _integrate_one(self, coord, datetime_unit=None, cumulative=False):
        from xarray.core.variable import Variable

        if coord not in self.variables and coord not in self.dims:
            variables_and_dims = tuple(set(self.variables.keys()).union(self.dims))
            raise ValueError(
                f"Coordinate {coord!r} not found in variables or dimensions {variables_and_dims}."
            )

        coord_var = self[coord].variable
        if coord_var.ndim != 1:
            raise ValueError(
                f"Coordinate {coord} must be 1 dimensional but is {coord_var.ndim}"
                " dimensional"
            )

        dim = coord_var.dims[0]
        if _contains_datetime_like_objects(coord_var):
            if coord_var.dtype.kind in "mM" and datetime_unit is None:
                datetime_unit, _ = np.datetime_data(coord_var.dtype)
            elif datetime_unit is None:
                datetime_unit = "s"  # Default to seconds for cftime objects
            coord_var = coord_var._replace(
                data=datetime_to_numeric(coord_var.data, datetime_unit=datetime_unit)
            )

        variables = {}
        coord_names = set()
        for k, v in self.variables.items():
            if k in self.coords:
                if dim not in v.dims or cumulative:
                    variables[k] = v
                    coord_names.add(k)
            elif k in self.data_vars and dim in v.dims:
                coord_data = to_like_array(coord_var.data, like=v.data)
                if _contains_datetime_like_objects(v):
                    v = datetime_to_numeric(v, datetime_unit=datetime_unit)
                if cumulative:
                    integ = duck_array_ops.cumulative_trapezoid(
                        v.data, coord_data, axis=v.get_axis_num(dim)
                    )
                    v_dims = v.dims
                else:
                    integ = duck_array_ops.trapz(
                        v.data, coord_data, axis=v.get_axis_num(dim)
                    )
                    v_dims = list(v.dims)
                    v_dims.remove(dim)
                variables[k] = Variable(v_dims, integ)
            else:
                variables[k] = v
        indexes = {k: v for k, v in self._indexes.items() if k in variables}
        return self._replace_with_new_dims(
            variables, coord_names=coord_names, indexes=indexes
        )

    def cumulative_integrate(
        self,
        coord: Hashable | Sequence[Hashable],
        datetime_unit: DatetimeUnitOptions = None,
    ) -> Self:
        """Integrate along the given coordinate using the trapezoidal rule.

        .. note::
            This feature is limited to simple cartesian geometry, i.e. coord
            must be one dimensional.

            The first entry of the cumulative integral of each variable is always 0, in
            order to keep the length of the dimension unchanged between input and
            output.

        Parameters
        ----------
        coord : hashable, or sequence of hashable
            Coordinate(s) used for the integration.
        datetime_unit : {'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', \
                        'ps', 'fs', 'as', None}, optional
            Specify the unit if datetime coordinate is used.

        Returns
        -------
        integrated : Dataset

        See also
        --------
        DataArray.cumulative_integrate
        scipy.integrate.cumulative_trapezoid : corresponding scipy function

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     data_vars={"a": ("x", [5, 5, 6, 6]), "b": ("x", [1, 2, 1, 0])},
        ...     coords={"x": [0, 1, 2, 3], "y": ("x", [1, 7, 3, 5])},
        ... )
        >>> ds
        <xarray.Dataset> Size: 128B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
            y        (x) int64 32B 1 7 3 5
        Data variables:
            a        (x) int64 32B 5 5 6 6
            b        (x) int64 32B 1 2 1 0
        >>> ds.cumulative_integrate("x")
        <xarray.Dataset> Size: 128B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
            y        (x) int64 32B 1 7 3 5
        Data variables:
            a        (x) float64 32B 0.0 5.0 10.5 16.5
            b        (x) float64 32B 0.0 1.5 3.0 3.5
        >>> ds.cumulative_integrate("y")
        <xarray.Dataset> Size: 128B
        Dimensions:  (x: 4)
        Coordinates:
          * x        (x) int64 32B 0 1 2 3
            y        (x) int64 32B 1 7 3 5
        Data variables:
            a        (x) float64 32B 0.0 30.0 8.0 20.0
            b        (x) float64 32B 0.0 9.0 3.0 4.0
        """
        if not isinstance(coord, list | tuple):
            coord = (coord,)
        result = self
        for c in coord:
            result = result._integrate_one(
                c, datetime_unit=datetime_unit, cumulative=True
            )
        return result

    @property
    def real(self) -> Self:
        """
        The real part of each data variable.

        See Also
        --------
        numpy.ndarray.real
        """
        return self.map(lambda x: x.real, keep_attrs=True)

    @property
    def imag(self) -> Self:
        """
        The imaginary part of each data variable.

        See Also
        --------
        numpy.ndarray.imag
        """
        return self.map(lambda x: x.imag, keep_attrs=True)

    plot = utils.UncachedAccessor(DatasetPlotAccessor)

    def filter_by_attrs(self, **kwargs) -> Self:
        """Returns a ``Dataset`` with variables that match specific conditions.

        Can pass in ``key=value`` or ``key=callable``.  A Dataset is returned
        containing only the variables for which all the filter tests pass.
        These tests are either ``key=value`` for which the attribute ``key``
        has the exact value ``value`` or the callable passed into
        ``key=callable`` returns True. The callable will be passed a single
        value, either the value of the attribute ``key`` or ``None`` if the
        DataArray does not have an attribute with the name ``key``.

        Parameters
        ----------
        **kwargs
            key : str
                Attribute name.
            value : callable or obj
                If value is a callable, it should return a boolean in the form
                of bool = func(attr) where attr is da.attrs[key].
                Otherwise, value will be compared to the each
                DataArray's attrs[key].

        Returns
        -------
        new : Dataset
            New dataset with variables filtered by attribute.

        Examples
        --------
        >>> temp = 15 + 8 * np.random.randn(2, 2, 3)
        >>> precip = 10 * np.random.rand(2, 2, 3)
        >>> lon = [[-99.83, -99.32], [-99.79, -99.23]]
        >>> lat = [[42.25, 42.21], [42.63, 42.59]]
        >>> dims = ["x", "y", "time"]
        >>> temp_attr = dict(standard_name="air_potential_temperature")
        >>> precip_attr = dict(standard_name="convective_precipitation_flux")

        >>> ds = xr.Dataset(
        ...     dict(
        ...         temperature=(dims, temp, temp_attr),
        ...         precipitation=(dims, precip, precip_attr),
        ...     ),
        ...     coords=dict(
        ...         lon=(["x", "y"], lon),
        ...         lat=(["x", "y"], lat),
        ...         time=pd.date_range("2014-09-06", periods=3),
        ...         reference_time=pd.Timestamp("2014-09-05"),
        ...     ),
        ... )

        Get variables matching a specific standard_name:

        >>> ds.filter_by_attrs(standard_name="convective_precipitation_flux")
        <xarray.Dataset> Size: 192B
        Dimensions:         (x: 2, y: 2, time: 3)
        Coordinates:
            lon             (x, y) float64 32B -99.83 -99.32 -99.79 -99.23
            lat             (x, y) float64 32B 42.25 42.21 42.63 42.59
          * time            (time) datetime64[ns] 24B 2014-09-06 2014-09-07 2014-09-08
            reference_time  datetime64[ns] 8B 2014-09-05
        Dimensions without coordinates: x, y
        Data variables:
            precipitation   (x, y, time) float64 96B 5.68 9.256 0.7104 ... 4.615 7.805

        Get all variables that have a standard_name attribute:

        >>> standard_name = lambda v: v is not None
        >>> ds.filter_by_attrs(standard_name=standard_name)
        <xarray.Dataset> Size: 288B
        Dimensions:         (x: 2, y: 2, time: 3)
        Coordinates:
            lon             (x, y) float64 32B -99.83 -99.32 -99.79 -99.23
            lat             (x, y) float64 32B 42.25 42.21 42.63 42.59
          * time            (time) datetime64[ns] 24B 2014-09-06 2014-09-07 2014-09-08
            reference_time  datetime64[ns] 8B 2014-09-05
        Dimensions without coordinates: x, y
        Data variables:
            temperature     (x, y, time) float64 96B 29.11 18.2 22.83 ... 16.15 26.63
            precipitation   (x, y, time) float64 96B 5.68 9.256 0.7104 ... 4.615 7.805

        """
        selection = []
        for var_name, variable in self.variables.items():
            has_value_flag = False
            for attr_name, pattern in kwargs.items():
                attr_value = variable.attrs.get(attr_name)
                if (callable(pattern) and pattern(attr_value)) or attr_value == pattern:
                    has_value_flag = True
                else:
                    has_value_flag = False
                    break
            if has_value_flag is True:
                selection.append(var_name)
        return self[selection]

    def unify_chunks(self) -> Self:
        """Unify chunk size along all chunked dimensions of this Dataset.

        Returns
        -------
        Dataset with consistent chunk sizes for all dask-array variables

        See Also
        --------
        dask.array.core.unify_chunks
        """

        return unify_chunks(self)[0]

    def map_blocks(
        self,
        func: Callable[..., T_Xarray],
        args: Sequence[Any] = (),
        kwargs: Mapping[str, Any] | None = None,
        template: DataArray | Dataset | None = None,
    ) -> T_Xarray:
        """
        Apply a function to each block of this Dataset.

        .. warning::
            This method is experimental and its signature may change.

        Parameters
        ----------
        func : callable
            User-provided function that accepts a Dataset as its first
            parameter. The function will receive a subset or 'block' of this Dataset (see below),
            corresponding to one chunk along each chunked dimension. ``func`` will be
            executed as ``func(subset_dataset, *subset_args, **kwargs)``.

            This function must return either a single DataArray or a single Dataset.

            This function cannot add a new chunked dimension.
        args : sequence
            Passed to func after unpacking and subsetting any xarray objects by blocks.
            xarray objects in args must be aligned with obj, otherwise an error is raised.
        kwargs : Mapping or None
            Passed verbatim to func after unpacking. xarray objects, if any, will not be
            subset to blocks. Passing dask collections in kwargs is not allowed.
        template : DataArray, Dataset or None, optional
            xarray object representing the final result after compute is called. If not provided,
            the function will be first run on mocked-up data, that looks like this object but
            has sizes 0, to determine properties of the returned object such as dtype,
            variable names, attributes, new dimensions and new indexes (if any).
            ``template`` must be provided if the function changes the size of existing dimensions.
            When provided, ``attrs`` on variables in `template` are copied over to the result. Any
            ``attrs`` set by ``func`` will be ignored.

        Returns
        -------
        A single DataArray or Dataset with dask backend, reassembled from the outputs of the
        function.

        Notes
        -----
        This function is designed for when ``func`` needs to manipulate a whole xarray object
        subset to each block. Each block is loaded into memory. In the more common case where
        ``func`` can work on numpy arrays, it is recommended to use ``apply_ufunc``.

        If none of the variables in this object is backed by dask arrays, calling this function is
        equivalent to calling ``func(obj, *args, **kwargs)``.

        See Also
        --------
        :func:`dask.array.map_blocks <dask.array.map_blocks>`
        :func:`xarray.apply_ufunc <apply_ufunc>`
        :func:`xarray.DataArray.map_blocks <xarray.DataArray.map_blocks>`

        :doc:`xarray-tutorial:advanced/map_blocks/map_blocks`
            Advanced Tutorial on map_blocks with dask


        Examples
        --------
        Calculate an anomaly from climatology using ``.groupby()``. Using
        ``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``,
        its indices, and its methods like ``.groupby()``.

        >>> def calculate_anomaly(da, groupby_type="time.month"):
        ...     gb = da.groupby(groupby_type)
        ...     clim = gb.mean(dim="time")
        ...     return gb - clim
        ...
        >>> time = xr.date_range("1990-01", "1992-01", freq="ME", use_cftime=True)
        >>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"])
        >>> np.random.seed(123)
        >>> array = xr.DataArray(
        ...     np.random.rand(len(time)),
        ...     dims=["time"],
        ...     coords={"time": time, "month": month},
        ... ).chunk()
        >>> ds = xr.Dataset({"a": array})
        >>> ds.map_blocks(calculate_anomaly, template=ds).compute()
        <xarray.Dataset> Size: 576B
        Dimensions:  (time: 24)
        Coordinates:
          * time     (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
            month    (time) int64 192B 1 2 3 4 5 6 7 8 9 10 ... 3 4 5 6 7 8 9 10 11 12
        Data variables:
            a        (time) float64 192B 0.1289 0.1132 -0.0856 ... 0.1906 -0.05901

        Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments
        to the function being applied in ``xr.map_blocks()``:

        >>> ds.map_blocks(
        ...     calculate_anomaly,
        ...     kwargs={"groupby_type": "time.year"},
        ...     template=ds,
        ... )
        <xarray.Dataset> Size: 576B
        Dimensions:  (time: 24)
        Coordinates:
          * time     (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
            month    (time) int64 192B dask.array<chunksize=(24,), meta=np.ndarray>
        Data variables:
            a        (time) float64 192B dask.array<chunksize=(24,), meta=np.ndarray>
        """
        from xarray.core.parallel import map_blocks

        return map_blocks(func, self, args, kwargs, template)

    def polyfit(
        self,
        dim: Hashable,
        deg: int,
        skipna: bool | None = None,
        rcond: float | None = None,
        w: Hashable | Any = None,
        full: bool = False,
        cov: bool | Literal["unscaled"] = False,
    ) -> Self:
        """
        Least squares polynomial fit.

        This replicates the behaviour of `numpy.polyfit` but differs by skipping
        invalid values when `skipna = True`.

        Parameters
        ----------
        dim : hashable
            Coordinate along which to fit the polynomials.
        deg : int
            Degree of the fitting polynomial.
        skipna : bool or None, optional
            If True, removes all invalid values before fitting each 1D slices of the array.
            Default is True if data is stored in a dask.array or if there is any
            invalid values, False otherwise.
        rcond : float or None, optional
            Relative condition number to the fit.
        w : hashable or Any, optional
            Weights to apply to the y-coordinate of the sample points.
            Can be an array-like object or the name of a coordinate in the dataset.
        full : bool, default: False
            Whether to return the residuals, matrix rank and singular values in addition
            to the coefficients.
        cov : bool or "unscaled", default: False
            Whether to return to the covariance matrix in addition to the coefficients.
            The matrix is not scaled if `cov='unscaled'`.

        Returns
        -------
        polyfit_results : Dataset
            A single dataset which contains (for each "var" in the input dataset):

            [var]_polyfit_coefficients
                The coefficients of the best fit for each variable in this dataset.
            [var]_polyfit_residuals
                The residuals of the least-square computation for each variable (only included if `full=True`)
                When the matrix rank is deficient, np.nan is returned.
            [dim]_matrix_rank
                The effective rank of the scaled Vandermonde coefficient matrix (only included if `full=True`)
                The rank is computed ignoring the NaN values that might be skipped.
            [dim]_singular_values
                The singular values of the scaled Vandermonde coefficient matrix (only included if `full=True`)
            [var]_polyfit_covariance
                The covariance matrix of the polynomial coefficient estimates (only included if `full=False` and `cov=True`)

        Warns
        -----
        RankWarning
            The rank of the coefficient matrix in the least-squares fit is deficient.
            The warning is not raised with in-memory (not dask) data and `full=True`.

        See Also
        --------
        numpy.polyfit
        numpy.polyval
        xarray.polyval
        """
        from xarray.computation.fit import polyfit as polyfit_impl

        return polyfit_impl(self, dim, deg, skipna, rcond, w, full, cov)

    def pad(
        self,
        pad_width: Mapping[Any, int | tuple[int, int]] | None = None,
        mode: PadModeOptions = "constant",
        stat_length: (
            int | tuple[int, int] | Mapping[Any, tuple[int, int]] | None
        ) = None,
        constant_values: T_DatasetPadConstantValues | None = None,
        end_values: int | tuple[int, int] | Mapping[Any, tuple[int, int]] | None = None,
        reflect_type: PadReflectOptions = None,
        keep_attrs: bool | None = None,
        **pad_width_kwargs: Any,
    ) -> Self:
        """Pad this dataset along one or more dimensions.

        .. warning::
            This function is experimental and its behaviour is likely to change
            especially regarding padding of dimension coordinates (or IndexVariables).

        When using one of the modes ("edge", "reflect", "symmetric", "wrap"),
        coordinates will be padded with the same mode, otherwise coordinates
        are padded using the "constant" mode with fill_value dtypes.NA.

        Parameters
        ----------
        pad_width : mapping of hashable to tuple of int
            Mapping with the form of {dim: (pad_before, pad_after)}
            describing the number of values padded along each dimension.
            {dim: pad} is a shortcut for pad_before = pad_after = pad
        mode : {"constant", "edge", "linear_ramp", "maximum", "mean", "median", \
            "minimum", "reflect", "symmetric", "wrap"}, default: "constant"
            How to pad the DataArray (taken from numpy docs):

            - "constant": Pads with a constant value.
            - "edge": Pads with the edge values of array.
            - "linear_ramp": Pads with the linear ramp between end_value and the
              array edge value.
            - "maximum": Pads with the maximum value of all or part of the
              vector along each axis.
            - "mean": Pads with the mean value of all or part of the
              vector along each axis.
            - "median": Pads with the median value of all or part of the
              vector along each axis.
            - "minimum": Pads with the minimum value of all or part of the
              vector along each axis.
            - "reflect": Pads with the reflection of the vector mirrored on
              the first and last values of the vector along each axis.
            - "symmetric": Pads with the reflection of the vector mirrored
              along the edge of the array.
            - "wrap": Pads with the wrap of the vector along the axis.
              The first values are used to pad the end and the
              end values are used to pad the beginning.

        stat_length : int, tuple or mapping of hashable to tuple, default: None
            Used in 'maximum', 'mean', 'median', and 'minimum'.  Number of
            values at edge of each axis used to calculate the statistic value.
            {dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)} unique
            statistic lengths along each dimension.
            ((before, after),) yields same before and after statistic lengths
            for each dimension.
            (stat_length,) or int is a shortcut for before = after = statistic
            length for all axes.
            Default is ``None``, to use the entire axis.
        constant_values : scalar, tuple, mapping of dim name to scalar or tuple, or \
            mapping of var name to scalar, tuple or to mapping of dim name to scalar or tuple, default: None
            Used in 'constant'. The values to set the padded values for each data variable / axis.
            ``{var_1: {dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}, ...
            var_M: (before, after)}`` unique pad constants per data variable.
            ``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique
            pad constants along each dimension.
            ``((before, after),)`` yields same before and after constants for each
            dimension.
            ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
            all dimensions.
            Default is ``None``, pads with ``np.nan``.
        end_values : scalar, tuple or mapping of hashable to tuple, default: None
            Used in 'linear_ramp'.  The values used for the ending value of the
            linear_ramp and that will form the edge of the padded array.
            ``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique
            end values along each dimension.
            ``((before, after),)`` yields same before and after end values for each
            axis.
            ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
            all axes.
            Default is None.
        reflect_type : {"even", "odd", None}, optional
            Used in "reflect", and "symmetric".  The "even" style is the
            default with an unaltered reflection around the edge value.  For
            the "odd" style, the extended part of the array is created by
            subtracting the reflected values from two times the edge value.
        keep_attrs : bool or None, optional
            If True, the attributes (``attrs``) will be copied from the
            original object to the new one. If False, the new object
            will be returned without attributes.
        **pad_width_kwargs
            The keyword arguments form of ``pad_width``.
            One of ``pad_width`` or ``pad_width_kwargs`` must be provided.

        Returns
        -------
        padded : Dataset
            Dataset with the padded coordinates and data.

        See Also
        --------
        Dataset.shift, Dataset.roll, Dataset.bfill, Dataset.ffill, numpy.pad, dask.array.pad

        Notes
        -----
        By default when ``mode="constant"`` and ``constant_values=None``, integer types will be
        promoted to ``float`` and padded with ``np.nan``. To avoid type promotion
        specify ``constant_values=np.nan``

        Padding coordinates will drop their corresponding index (if any) and will reset default
        indexes for dimension coordinates.

        Examples
        --------
        >>> ds = xr.Dataset({"foo": ("x", range(5))})
        >>> ds.pad(x=(1, 2))
        <xarray.Dataset> Size: 64B
        Dimensions:  (x: 8)
        Dimensions without coordinates: x
        Data variables:
            foo      (x) float64 64B nan 0.0 1.0 2.0 3.0 4.0 nan nan
        """
        pad_width = either_dict_or_kwargs(pad_width, pad_width_kwargs, "pad")

        if mode in ("edge", "reflect", "symmetric", "wrap"):
            coord_pad_mode = mode
            coord_pad_options = {
                "stat_length": stat_length,
                "constant_values": constant_values,
                "end_values": end_values,
                "reflect_type": reflect_type,
            }
        else:
            coord_pad_mode = "constant"
            coord_pad_options = {}

        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=True)

        variables = {}

        # keep indexes that won't be affected by pad and drop all other indexes
        xindexes = self.xindexes
        pad_dims = set(pad_width)
        indexes = {
            k: idx
            for k, idx in xindexes.items()
            if not pad_dims.intersection(xindexes.get_all_dims(k))
        }

        for name, var in self.variables.items():
            var_pad_width = {k: v for k, v in pad_width.items() if k in var.dims}
            if not var_pad_width:
                variables[name] = var
            elif name in self.data_vars:
                if utils.is_dict_like(constant_values):
                    if name in constant_values.keys():
                        filtered_constant_values = constant_values[name]
                    elif not set(var.dims).isdisjoint(constant_values.keys()):
                        filtered_constant_values = {
                            k: v for k, v in constant_values.items() if k in var.dims
                        }
                    else:
                        filtered_constant_values = 0  # TODO: https://github.com/pydata/xarray/pull/9353#discussion_r1724018352
                else:
                    filtered_constant_values = constant_values
                variables[name] = var.pad(
                    pad_width=var_pad_width,
                    mode=mode,
                    stat_length=stat_length,
                    constant_values=filtered_constant_values,
                    end_values=end_values,
                    reflect_type=reflect_type,
                    keep_attrs=keep_attrs,
                )
            else:
                variables[name] = var.pad(
                    pad_width=var_pad_width,
                    mode=coord_pad_mode,
                    keep_attrs=keep_attrs,
                    **coord_pad_options,  # type: ignore[arg-type]
                )
                # reset default index of dimension coordinates
                if (name,) == var.dims:
                    dim_var = {name: variables[name]}
                    index = PandasIndex.from_variables(dim_var, options={})
                    index_vars = index.create_variables(dim_var)
                    indexes[name] = index
                    variables[name] = index_vars[name]

        attrs = self._attrs if keep_attrs else None
        return self._replace_with_new_dims(variables, indexes=indexes, attrs=attrs)

    def idxmin(
        self,
        dim: Hashable | None = None,
        *,
        skipna: bool | None = None,
        fill_value: Any = xrdtypes.NA,
        keep_attrs: bool | None = None,
    ) -> Self:
        """Return the coordinate label of the minimum value along a dimension.

        Returns a new `Dataset` named after the dimension with the values of
        the coordinate labels along that dimension corresponding to minimum
        values along that dimension.

        In comparison to :py:meth:`~Dataset.argmin`, this returns the
        coordinate label while :py:meth:`~Dataset.argmin` returns the index.

        Parameters
        ----------
        dim : Hashable, optional
            Dimension over which to apply `idxmin`.  This is optional for 1D
            variables, but required for variables with 2 or more dimensions.
        skipna : bool or None, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for ``float``, ``complex``, and ``object``
            dtypes; other dtypes either do not have a sentinel missing value
            (``int``) or ``skipna=True`` has not been implemented
            (``datetime64`` or ``timedelta64``).
        fill_value : Any, default: NaN
            Value to be filled in case all of the values along a dimension are
            null.  By default this is NaN.  The fill value and result are
            automatically converted to a compatible dtype if possible.
            Ignored if ``skipna`` is False.
        keep_attrs : bool or None, optional
            If True, the attributes (``attrs``) will be copied from the
            original object to the new one. If False, the new object
            will be returned without attributes.

        Returns
        -------
        reduced : Dataset
            New `Dataset` object with `idxmin` applied to its data and the
            indicated dimension removed.

        See Also
        --------
        DataArray.idxmin, Dataset.idxmax, Dataset.min, Dataset.argmin

        Examples
        --------
        >>> array1 = xr.DataArray(
        ...     [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]}
        ... )
        >>> array2 = xr.DataArray(
        ...     [
        ...         [2.0, 1.0, 2.0, 0.0, -2.0],
        ...         [-4.0, np.nan, 2.0, np.nan, -2.0],
        ...         [np.nan, np.nan, 1.0, np.nan, np.nan],
        ...     ],
        ...     dims=["y", "x"],
        ...     coords={"y": [-1, 0, 1], "x": ["a", "b", "c", "d", "e"]},
        ... )
        >>> ds = xr.Dataset({"int": array1, "float": array2})
        >>> ds.min(dim="x")
        <xarray.Dataset> Size: 56B
        Dimensions:  (y: 3)
        Coordinates:
          * y        (y) int64 24B -1 0 1
        Data variables:
            int      int64 8B -2
            float    (y) float64 24B -2.0 -4.0 1.0
        >>> ds.argmin(dim="x")
        <xarray.Dataset> Size: 56B
        Dimensions:  (y: 3)
        Coordinates:
          * y        (y) int64 24B -1 0 1
        Data variables:
            int      int64 8B 4
            float    (y) int64 24B 4 0 2
        >>> ds.idxmin(dim="x")
        <xarray.Dataset> Size: 52B
        Dimensions:  (y: 3)
        Coordinates:
          * y        (y) int64 24B -1 0 1
        Data variables:
            int      <U1 4B 'e'
            float    (y) object 24B 'e' 'a' 'c'
        """
        return self.map(
            methodcaller(
                "idxmin",
                dim=dim,
                skipna=skipna,
                fill_value=fill_value,
                keep_attrs=keep_attrs,
            )
        )

    def idxmax(
        self,
        dim: Hashable | None = None,
        *,
        skipna: bool | None = None,
        fill_value: Any = xrdtypes.NA,
        keep_attrs: bool | None = None,
    ) -> Self:
        """Return the coordinate label of the maximum value along a dimension.

        Returns a new `Dataset` named after the dimension with the values of
        the coordinate labels along that dimension corresponding to maximum
        values along that dimension.

        In comparison to :py:meth:`~Dataset.argmax`, this returns the
        coordinate label while :py:meth:`~Dataset.argmax` returns the index.

        Parameters
        ----------
        dim : str, optional
            Dimension over which to apply `idxmax`.  This is optional for 1D
            variables, but required for variables with 2 or more dimensions.
        skipna : bool or None, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for ``float``, ``complex``, and ``object``
            dtypes; other dtypes either do not have a sentinel missing value
            (``int``) or ``skipna=True`` has not been implemented
            (``datetime64`` or ``timedelta64``).
        fill_value : Any, default: NaN
            Value to be filled in case all of the values along a dimension are
            null.  By default this is NaN.  The fill value and result are
            automatically converted to a compatible dtype if possible.
            Ignored if ``skipna`` is False.
        keep_attrs : bool or None, optional
            If True, the attributes (``attrs``) will be copied from the
            original object to the new one. If False, the new object
            will be returned without attributes.

        Returns
        -------
        reduced : Dataset
            New `Dataset` object with `idxmax` applied to its data and the
            indicated dimension removed.

        See Also
        --------
        DataArray.idxmax, Dataset.idxmin, Dataset.max, Dataset.argmax

        Examples
        --------
        >>> array1 = xr.DataArray(
        ...     [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]}
        ... )
        >>> array2 = xr.DataArray(
        ...     [
        ...         [2.0, 1.0, 2.0, 0.0, -2.0],
        ...         [-4.0, np.nan, 2.0, np.nan, -2.0],
        ...         [np.nan, np.nan, 1.0, np.nan, np.nan],
        ...     ],
        ...     dims=["y", "x"],
        ...     coords={"y": [-1, 0, 1], "x": ["a", "b", "c", "d", "e"]},
        ... )
        >>> ds = xr.Dataset({"int": array1, "float": array2})
        >>> ds.max(dim="x")
        <xarray.Dataset> Size: 56B
        Dimensions:  (y: 3)
        Coordinates:
          * y        (y) int64 24B -1 0 1
        Data variables:
            int      int64 8B 2
            float    (y) float64 24B 2.0 2.0 1.0
        >>> ds.argmax(dim="x")
        <xarray.Dataset> Size: 56B
        Dimensions:  (y: 3)
        Coordinates:
          * y        (y) int64 24B -1 0 1
        Data variables:
            int      int64 8B 1
            float    (y) int64 24B 0 2 2
        >>> ds.idxmax(dim="x")
        <xarray.Dataset> Size: 52B
        Dimensions:  (y: 3)
        Coordinates:
          * y        (y) int64 24B -1 0 1
        Data variables:
            int      <U1 4B 'b'
            float    (y) object 24B 'a' 'c' 'c'
        """
        return self.map(
            methodcaller(
                "idxmax",
                dim=dim,
                skipna=skipna,
                fill_value=fill_value,
                keep_attrs=keep_attrs,
            )
        )

    def argmin(self, dim: Hashable | None = None, **kwargs) -> Self:
        """Indices of the minima of the member variables.

        If there are multiple minima, the indices of the first one found will be
        returned.

        Parameters
        ----------
        dim : Hashable, optional
            The dimension over which to find the minimum. By default, finds minimum over
            all dimensions - for now returning an int for backward compatibility, but
            this is deprecated, in future will be an error, since DataArray.argmin will
            return a dict with indices for all dimensions, which does not make sense for
            a Dataset.
        keep_attrs : bool, optional
            If True, the attributes (`attrs`) will be copied from the original
            object to the new one.  If False (default), the new object will be
            returned without attributes.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).

        Returns
        -------
        result : Dataset

        Examples
        --------
        >>> dataset = xr.Dataset(
        ...     {
        ...         "math_scores": (
        ...             ["student", "test"],
        ...             [[90, 85, 79], [78, 80, 85], [95, 92, 98]],
        ...         ),
        ...         "english_scores": (
        ...             ["student", "test"],
        ...             [[88, 90, 92], [75, 82, 79], [39, 96, 78]],
        ...         ),
        ...     },
        ...     coords={
        ...         "student": ["Alice", "Bob", "Charlie"],
        ...         "test": ["Test 1", "Test 2", "Test 3"],
        ...     },
        ... )

        # Indices of the minimum values along the 'student' dimension are calculated

        >>> argmin_indices = dataset.argmin(dim="student")

        >>> min_score_in_math = dataset["student"].isel(
        ...     student=argmin_indices["math_scores"]
        ... )
        >>> min_score_in_math
        <xarray.DataArray 'student' (test: 3)> Size: 84B
        array(['Bob', 'Bob', 'Alice'], dtype='<U7')
        Coordinates:
            student  (test) <U7 84B 'Bob' 'Bob' 'Alice'
          * test     (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'

        >>> min_score_in_english = dataset["student"].isel(
        ...     student=argmin_indices["english_scores"]
        ... )
        >>> min_score_in_english
        <xarray.DataArray 'student' (test: 3)> Size: 84B
        array(['Charlie', 'Bob', 'Charlie'], dtype='<U7')
        Coordinates:
            student  (test) <U7 84B 'Charlie' 'Bob' 'Charlie'
          * test     (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'

        See Also
        --------
        Dataset.idxmin
        DataArray.argmin
        """
        if dim is None:
            warnings.warn(
                "Once the behaviour of DataArray.argmin() and Variable.argmin() without "
                "dim changes to return a dict of indices of each dimension, for "
                "consistency it will be an error to call Dataset.argmin() with no argument,"
                "since we don't return a dict of Datasets.",
                DeprecationWarning,
                stacklevel=2,
            )
        if (
            dim is None
            or (not isinstance(dim, Sequence) and dim is not ...)
            or isinstance(dim, str)
        ):
            # Return int index if single dimension is passed, and is not part of a
            # sequence
            argmin_func = duck_array_ops.argmin
            return self.reduce(
                argmin_func, dim=None if dim is None else [dim], **kwargs
            )
        else:
            raise ValueError(
                "When dim is a sequence or ..., DataArray.argmin() returns a dict. "
                "dicts cannot be contained in a Dataset, so cannot call "
                "Dataset.argmin() with a sequence or ... for dim"
            )

    def argmax(self, dim: Hashable | None = None, **kwargs) -> Self:
        """Indices of the maxima of the member variables.

        If there are multiple maxima, the indices of the first one found will be
        returned.

        Parameters
        ----------
        dim : str, optional
            The dimension over which to find the maximum. By default, finds maximum over
            all dimensions - for now returning an int for backward compatibility, but
            this is deprecated, in future will be an error, since DataArray.argmax will
            return a dict with indices for all dimensions, which does not make sense for
            a Dataset.
        keep_attrs : bool, optional
            If True, the attributes (`attrs`) will be copied from the original
            object to the new one.  If False (default), the new object will be
            returned without attributes.
        skipna : bool, optional
            If True, skip missing values (as marked by NaN). By default, only
            skips missing values for float dtypes; other dtypes either do not
            have a sentinel missing value (int) or skipna=True has not been
            implemented (object, datetime64 or timedelta64).

        Returns
        -------
        result : Dataset

        Examples
        --------

        >>> dataset = xr.Dataset(
        ...     {
        ...         "math_scores": (
        ...             ["student", "test"],
        ...             [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
        ...         ),
        ...         "english_scores": (
        ...             ["student", "test"],
        ...             [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
        ...         ),
        ...     },
        ...     coords={
        ...         "student": ["Alice", "Bob", "Charlie"],
        ...         "test": ["Test 1", "Test 2", "Test 3"],
        ...     },
        ... )

        # Indices of the maximum values along the 'student' dimension are calculated

        >>> argmax_indices = dataset.argmax(dim="test")

        >>> argmax_indices
        <xarray.Dataset> Size: 132B
        Dimensions:         (student: 3)
        Coordinates:
          * student         (student) <U7 84B 'Alice' 'Bob' 'Charlie'
        Data variables:
            math_scores     (student) int64 24B 2 2 2
            english_scores  (student) int64 24B 2 1 1

        See Also
        --------
        DataArray.argmax

        """
        if dim is None:
            warnings.warn(
                "Once the behaviour of DataArray.argmin() and Variable.argmin() without "
                "dim changes to return a dict of indices of each dimension, for "
                "consistency it will be an error to call Dataset.argmin() with no argument,"
                "since we don't return a dict of Datasets.",
                DeprecationWarning,
                stacklevel=2,
            )
        if (
            dim is None
            or (not isinstance(dim, Sequence) and dim is not ...)
            or isinstance(dim, str)
        ):
            # Return int index if single dimension is passed, and is not part of a
            # sequence
            argmax_func = duck_array_ops.argmax
            return self.reduce(
                argmax_func, dim=None if dim is None else [dim], **kwargs
            )
        else:
            raise ValueError(
                "When dim is a sequence or ..., DataArray.argmin() returns a dict. "
                "dicts cannot be contained in a Dataset, so cannot call "
                "Dataset.argmin() with a sequence or ... for dim"
            )

    def eval(
        self,
        statement: str,
        *,
        parser: QueryParserOptions = "pandas",
    ) -> Self | T_DataArray:
        """
        Calculate an expression supplied as a string in the context of the dataset.

        This is currently experimental; the API may change particularly around
        assignments, which currently return a ``Dataset`` with the additional variable.
        Currently only the ``python`` engine is supported, which has the same
        performance as executing in python.

        Parameters
        ----------
        statement : str
            String containing the Python-like expression to evaluate.

        Returns
        -------
        result : Dataset or DataArray, depending on whether ``statement`` contains an
        assignment.

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {"a": ("x", np.arange(0, 5, 1)), "b": ("x", np.linspace(0, 1, 5))}
        ... )
        >>> ds
        <xarray.Dataset> Size: 80B
        Dimensions:  (x: 5)
        Dimensions without coordinates: x
        Data variables:
            a        (x) int64 40B 0 1 2 3 4
            b        (x) float64 40B 0.0 0.25 0.5 0.75 1.0

        >>> ds.eval("a + b")
        <xarray.DataArray (x: 5)> Size: 40B
        array([0.  , 1.25, 2.5 , 3.75, 5.  ])
        Dimensions without coordinates: x

        >>> ds.eval("c = a + b")
        <xarray.Dataset> Size: 120B
        Dimensions:  (x: 5)
        Dimensions without coordinates: x
        Data variables:
            a        (x) int64 40B 0 1 2 3 4
            b        (x) float64 40B 0.0 0.25 0.5 0.75 1.0
            c        (x) float64 40B 0.0 1.25 2.5 3.75 5.0
        """

        return pd.eval(  # type: ignore[return-value]
            statement,
            resolvers=[self],
            target=self,
            parser=parser,
            # Because numexpr returns a numpy array, using that engine results in
            # different behavior. We'd be very open to a contribution handling this.
            engine="python",
        )

    def query(
        self,
        queries: Mapping[Any, Any] | None = None,
        parser: QueryParserOptions = "pandas",
        engine: QueryEngineOptions = None,
        missing_dims: ErrorOptionsWithWarn = "raise",
        **queries_kwargs: Any,
    ) -> Self:
        """Return a new dataset with each array indexed along the specified
        dimension(s), where the indexers are given as strings containing
        Python expressions to be evaluated against the data variables in the
        dataset.

        Parameters
        ----------
        queries : dict-like, optional
            A dict-like with keys matching dimensions and values given by strings
            containing Python expressions to be evaluated against the data variables
            in the dataset. The expressions will be evaluated using the pandas
            eval() function, and can contain any valid Python expressions but cannot
            contain any Python statements.
        parser : {"pandas", "python"}, default: "pandas"
            The parser to use to construct the syntax tree from the expression.
            The default of 'pandas' parses code slightly different than standard
            Python. Alternatively, you can parse an expression using the 'python'
            parser to retain strict Python semantics.
        engine : {"python", "numexpr", None}, default: None
            The engine used to evaluate the expression. Supported engines are:

            - None: tries to use numexpr, falls back to python
            - "numexpr": evaluates expressions using numexpr
            - "python": performs operations as if you had eval’d in top level python

        missing_dims : {"raise", "warn", "ignore"}, default: "raise"
            What to do if dimensions that should be selected from are not present in the
            Dataset:

            - "raise": raise an exception
            - "warn": raise a warning, and ignore the missing dimensions
            - "ignore": ignore the missing dimensions

        **queries_kwargs : {dim: query, ...}, optional
            The keyword arguments form of ``queries``.
            One of queries or queries_kwargs must be provided.

        Returns
        -------
        obj : Dataset
            A new Dataset with the same contents as this dataset, except each
            array and dimension is indexed by the results of the appropriate
            queries.

        See Also
        --------
        Dataset.isel
        pandas.eval

        Examples
        --------
        >>> a = np.arange(0, 5, 1)
        >>> b = np.linspace(0, 1, 5)
        >>> ds = xr.Dataset({"a": ("x", a), "b": ("x", b)})
        >>> ds
        <xarray.Dataset> Size: 80B
        Dimensions:  (x: 5)
        Dimensions without coordinates: x
        Data variables:
            a        (x) int64 40B 0 1 2 3 4
            b        (x) float64 40B 0.0 0.25 0.5 0.75 1.0
        >>> ds.query(x="a > 2")
        <xarray.Dataset> Size: 32B
        Dimensions:  (x: 2)
        Dimensions without coordinates: x
        Data variables:
            a        (x) int64 16B 3 4
            b        (x) float64 16B 0.75 1.0
        """

        # allow queries to be given either as a dict or as kwargs
        queries = either_dict_or_kwargs(queries, queries_kwargs, "query")

        # check queries
        for dim, expr in queries.items():
            if not isinstance(expr, str):
                msg = f"expr for dim {dim} must be a string to be evaluated, {type(expr)} given"
                raise ValueError(msg)

        # evaluate the queries to create the indexers
        indexers = {
            dim: pd.eval(expr, resolvers=[self], parser=parser, engine=engine)
            for dim, expr in queries.items()
        }

        # apply the selection
        return self.isel(indexers, missing_dims=missing_dims)

    def curvefit(
        self,
        coords: str | DataArray | Iterable[str | DataArray],
        func: Callable[..., Any],
        reduce_dims: Dims = None,
        skipna: bool = True,
        p0: Mapping[str, float | DataArray] | None = None,
        bounds: Mapping[str, tuple[float | DataArray, float | DataArray]] | None = None,
        param_names: Sequence[str] | None = None,
        errors: ErrorOptions = "raise",
        kwargs: dict[str, Any] | None = None,
    ) -> Self:
        """
        Curve fitting optimization for arbitrary functions.

        Wraps :py:func:`scipy.optimize.curve_fit` with :py:func:`~xarray.apply_ufunc`.

        Parameters
        ----------
        coords : hashable, DataArray, or sequence of hashable or DataArray
            Independent coordinate(s) over which to perform the curve fitting. Must share
            at least one dimension with the calling object. When fitting multi-dimensional
            functions, supply `coords` as a sequence in the same order as arguments in
            `func`. To fit along existing dimensions of the calling object, `coords` can
            also be specified as a str or sequence of strs.
        func : callable
            User specified function in the form `f(x, *params)` which returns a numpy
            array of length `len(x)`. `params` are the fittable parameters which are optimized
            by scipy curve_fit. `x` can also be specified as a sequence containing multiple
            coordinates, e.g. `f((x0, x1), *params)`.
        reduce_dims : str, Iterable of Hashable or None, optional
            Additional dimension(s) over which to aggregate while fitting. For example,
            calling `ds.curvefit(coords='time', reduce_dims=['lat', 'lon'], ...)` will
            aggregate all lat and lon points and fit the specified function along the
            time dimension.
        skipna : bool, default: True
            Whether to skip missing values when fitting. Default is True.
        p0 : dict-like, optional
            Optional dictionary of parameter names to initial guesses passed to the
            `curve_fit` `p0` arg. If the values are DataArrays, they will be appropriately
            broadcast to the coordinates of the array. If none or only some parameters are
            passed, the rest will be assigned initial values following the default scipy
            behavior.
        bounds : dict-like, optional
            Optional dictionary of parameter names to tuples of bounding values passed to the
            `curve_fit` `bounds` arg. If any of the bounds are DataArrays, they will be
            appropriately broadcast to the coordinates of the array. If none or only some
            parameters are passed, the rest will be unbounded following the default scipy
            behavior.
        param_names : sequence of hashable, optional
            Sequence of names for the fittable parameters of `func`. If not supplied,
            this will be automatically determined by arguments of `func`. `param_names`
            should be manually supplied when fitting a function that takes a variable
            number of parameters.
        errors : {"raise", "ignore"}, default: "raise"
            If 'raise', any errors from the `scipy.optimize_curve_fit` optimization will
            raise an exception. If 'ignore', the coefficients and covariances for the
            coordinates where the fitting failed will be NaN.
        **kwargs : optional
            Additional keyword arguments to passed to scipy curve_fit.

        Returns
        -------
        curvefit_results : Dataset
            A single dataset which contains:

            [var]_curvefit_coefficients
                The coefficients of the best fit.
            [var]_curvefit_covariance
                The covariance matrix of the coefficient estimates.

        See Also
        --------
        Dataset.polyfit
        scipy.optimize.curve_fit
        xarray.Dataset.xlm.modelfit
            External method from `xarray-lmfit <https://xarray-lmfit.readthedocs.io/>`_
            with more curve fitting functionality.
        """
        from xarray.computation.fit import curvefit as curvefit_impl

        return curvefit_impl(
            self,
            coords,
            func,
            reduce_dims,
            skipna,
            p0,
            bounds,
            param_names,
            errors,
            kwargs,
        )

    def drop_duplicates(
        self,
        dim: Hashable | Iterable[Hashable],
        *,
        keep: Literal["first", "last", False] = "first",
    ) -> Self:
        """Returns a new Dataset with duplicate dimension values removed.

        Parameters
        ----------
        dim : dimension label or labels
            Pass `...` to drop duplicates along all dimensions.
        keep : {"first", "last", False}, default: "first"
            Determines which duplicates (if any) to keep.
            - ``"first"`` : Drop duplicates except for the first occurrence.
            - ``"last"`` : Drop duplicates except for the last occurrence.
            - False : Drop all duplicates.

        Returns
        -------
        Dataset

        See Also
        --------
        DataArray.drop_duplicates
        """
        if isinstance(dim, str):
            dims: Iterable = (dim,)
        elif dim is ...:
            dims = self.dims
        elif not isinstance(dim, Iterable):
            dims = [dim]
        else:
            dims = dim

        missing_dims = set(dims) - set(self.dims)
        if missing_dims:
            raise ValueError(
                f"Dimensions {tuple(missing_dims)} not found in data dimensions {tuple(self.dims)}"
            )

        indexes = {dim: ~self.get_index(dim).duplicated(keep=keep) for dim in dims}
        return self.isel(indexes)

    def convert_calendar(
        self,
        calendar: CFCalendar,
        dim: Hashable = "time",
        align_on: Literal["date", "year"] | None = None,
        missing: Any | None = None,
        use_cftime: bool | None = None,
    ) -> Self:
        """Convert the Dataset to another calendar.

        Only converts the individual timestamps, does not modify any data except
        in dropping invalid/surplus dates or inserting missing dates.

        If the source and target calendars are either no_leap, all_leap or a
        standard type, only the type of the time array is modified.
        When converting to a leap year from a non-leap year, the 29th of February
        is removed from the array. In the other direction the 29th of February
        will be missing in the output, unless `missing` is specified,
        in which case that value is inserted.

        For conversions involving `360_day` calendars, see Notes.

        This method is safe to use with sub-daily data as it doesn't touch the
        time part of the timestamps.

        Parameters
        ---------
        calendar : str
            The target calendar name.
        dim : Hashable, default: "time"
            Name of the time coordinate.
        align_on : {None, 'date', 'year'}, optional
            Must be specified when either source or target is a `360_day` calendar,
            ignored otherwise. See Notes.
        missing : Any or None, optional
            By default, i.e. if the value is None, this method will simply attempt
            to convert the dates in the source calendar to the same dates in the
            target calendar, and drop any of those that are not possible to
            represent.  If a value is provided, a new time coordinate will be
            created in the target calendar with the same frequency as the original
            time coordinate; for any dates that are not present in the source, the
            data will be filled with this value.  Note that using this mode requires
            that the source data have an inferable frequency; for more information
            see :py:func:`xarray.infer_freq`.  For certain frequency, source, and
            target calendar combinations, this could result in many missing values, see notes.
        use_cftime : bool or None, optional
            Whether to use cftime objects in the output, only used if `calendar`
            is one of {"proleptic_gregorian", "gregorian" or "standard"}.
            If True, the new time axis uses cftime objects.
            If None (default), it uses :py:class:`numpy.datetime64` values if the
            date range permits it, and :py:class:`cftime.datetime` objects if not.
            If False, it uses :py:class:`numpy.datetime64`  or fails.

        Returns
        -------
        Dataset
            Copy of the dataarray with the time coordinate converted to the
            target calendar. If 'missing' was None (default), invalid dates in
            the new calendar are dropped, but missing dates are not inserted.
            If `missing` was given, the new data is reindexed to have a time axis
            with the same frequency as the source, but in the new calendar; any
            missing datapoints are filled with `missing`.

        Notes
        -----
        Passing a value to `missing` is only usable if the source's time coordinate as an
        inferable frequencies (see :py:func:`~xarray.infer_freq`) and is only appropriate
        if the target coordinate, generated from this frequency, has dates equivalent to the
        source. It is usually **not** appropriate to use this mode with:

        - Period-end frequencies : 'A', 'Y', 'Q' or 'M', in opposition to 'AS' 'YS', 'QS' and 'MS'
        - Sub-monthly frequencies that do not divide a day evenly : 'W', 'nD' where `N != 1`
            or 'mH' where 24 % m != 0).

        If one of the source or target calendars is `"360_day"`, `align_on` must
        be specified and two options are offered.

        - "year"
            The dates are translated according to their relative position in the year,
            ignoring their original month and day information, meaning that the
            missing/surplus days are added/removed at regular intervals.

            From a `360_day` to a standard calendar, the output will be missing the
            following dates (day of year in parentheses):

            To a leap year:
                January 31st (31), March 31st (91), June 1st (153), July 31st (213),
                September 31st (275) and November 30th (335).
            To a non-leap year:
                February 6th (36), April 19th (109), July 2nd (183),
                September 12th (255), November 25th (329).

            From a standard calendar to a `"360_day"`, the following dates in the
            source array will be dropped:

            From a leap year:
                January 31st (31), April 1st (92), June 1st (153), August 1st (214),
                September 31st (275), December 1st (336)
            From a non-leap year:
                February 6th (37), April 20th (110), July 2nd (183),
                September 13th (256), November 25th (329)

            This option is best used on daily and subdaily data.

        - "date"
            The month/day information is conserved and invalid dates are dropped
            from the output. This means that when converting from a `"360_day"` to a
            standard calendar, all 31st (Jan, March, May, July, August, October and
            December) will be missing as there is no equivalent dates in the
            `"360_day"` calendar and the 29th (on non-leap years) and 30th of February
            will be dropped as there are no equivalent dates in a standard calendar.

            This option is best used with data on a frequency coarser than daily.
        """
        return convert_calendar(
            self,
            calendar,
            dim=dim,
            align_on=align_on,
            missing=missing,
            use_cftime=use_cftime,
        )

    def interp_calendar(
        self,
        target: pd.DatetimeIndex | CFTimeIndex | DataArray,
        dim: Hashable = "time",
    ) -> Self:
        """Interpolates the Dataset to another calendar based on decimal year measure.

        Each timestamp in `source` and `target` are first converted to their decimal
        year equivalent then `source` is interpolated on the target coordinate.
        The decimal year of a timestamp is its year plus its sub-year component
        converted to the fraction of its year. For example "2000-03-01 12:00" is
        2000.1653 in a standard calendar or 2000.16301 in a `"noleap"` calendar.

        This method should only be used when the time (HH:MM:SS) information of
        time coordinate is not important.

        Parameters
        ----------
        target: DataArray or DatetimeIndex or CFTimeIndex
            The target time coordinate of a valid dtype
            (np.datetime64 or cftime objects)
        dim : Hashable, default: "time"
            The time coordinate name.

        Return
        ------
        DataArray
            The source interpolated on the decimal years of target,
        """
        return interp_calendar(self, target, dim=dim)

    @_deprecate_positional_args("v2024.07.0")
    def groupby(
        self,
        group: GroupInput = None,
        *,
        squeeze: Literal[False] = False,
        restore_coord_dims: bool = False,
        eagerly_compute_group: Literal[False] | None = None,
        **groupers: Grouper,
    ) -> DatasetGroupBy:
        """Returns a DatasetGroupBy object for performing grouped operations.

        Parameters
        ----------
        group : str or DataArray or IndexVariable or sequence of hashable or mapping of hashable to Grouper
            Array whose unique values should be used to group this array. If a
            Hashable, must be the name of a coordinate contained in this dataarray. If a dictionary,
            must map an existing variable name to a :py:class:`Grouper` instance.
        squeeze : False
            This argument is deprecated.
        restore_coord_dims : bool, default: False
            If True, also restore the dimension order of multi-dimensional
            coordinates.
        eagerly_compute_group: False, optional
            This argument is deprecated.
        **groupers : Mapping of str to Grouper or Resampler
            Mapping of variable name to group by to :py:class:`Grouper` or :py:class:`Resampler` object.
            One of ``group`` or ``groupers`` must be provided.
            Only a single ``grouper`` is allowed at present.

        Returns
        -------
        grouped : DatasetGroupBy
            A `DatasetGroupBy` object patterned after `pandas.GroupBy` that can be
            iterated over in the form of `(unique_value, grouped_array)` pairs.

        Examples
        --------
        >>> ds = xr.Dataset(
        ...     {"foo": (("x", "y"), np.arange(12).reshape((4, 3)))},
        ...     coords={"x": [10, 20, 30, 40], "letters": ("x", list("abba"))},
        ... )

        Grouping by a single variable is easy

        >>> ds.groupby("letters")
        <DatasetGroupBy, grouped over 1 grouper(s), 2 groups in total:
            'letters': UniqueGrouper('letters'), 2/2 groups with labels 'a', 'b'>

        Execute a reduction

        >>> ds.groupby("letters").sum()
        <xarray.Dataset> Size: 64B
        Dimensions:  (letters: 2, y: 3)
        Coordinates:
          * letters  (letters) object 16B 'a' 'b'
        Dimensions without coordinates: y
        Data variables:
            foo      (letters, y) int64 48B 9 11 13 9 11 13

        Grouping by multiple variables

        >>> ds.groupby(["letters", "x"])
        <DatasetGroupBy, grouped over 2 grouper(s), 8 groups in total:
            'letters': UniqueGrouper('letters'), 2/2 groups with labels 'a', 'b'
            'x': UniqueGrouper('x'), 4/4 groups with labels 10, 20, 30, 40>

        Use Grouper objects to express more complicated GroupBy operations

        >>> from xarray.groupers import BinGrouper, UniqueGrouper
        >>>
        >>> ds.groupby(x=BinGrouper(bins=[5, 15, 25]), letters=UniqueGrouper()).sum()
        <xarray.Dataset> Size: 144B
        Dimensions:  (y: 3, x_bins: 2, letters: 2)
        Coordinates:
          * x_bins   (x_bins) interval[int64, right] 32B (5, 15] (15, 25]
          * letters  (letters) object 16B 'a' 'b'
        Dimensions without coordinates: y
        Data variables:
            foo      (y, x_bins, letters) float64 96B 0.0 nan nan 3.0 ... nan nan 5.0

        See Also
        --------
        :ref:`groupby`
            Users guide explanation of how to group and bin data.

        :doc:`xarray-tutorial:intermediate/computation/01-high-level-computation-patterns`
            Tutorial on :py:func:`~xarray.Dataset.Groupby` for windowed computation.

        :doc:`xarray-tutorial:fundamentals/03.2_groupby_with_xarray`
            Tutorial on :py:func:`~xarray.Dataset.Groupby` demonstrating reductions, transformation and comparison with :py:func:`~xarray.Dataset.resample`.

        :external:py:meth:`pandas.DataFrame.groupby <pandas.DataFrame.groupby>`
        :func:`Dataset.groupby_bins <Dataset.groupby_bins>`
        :func:`DataArray.groupby <DataArray.groupby>`
        :class:`core.groupby.DatasetGroupBy`
        :func:`Dataset.coarsen <Dataset.coarsen>`
        :func:`Dataset.resample <Dataset.resample>`
        :func:`DataArray.resample <DataArray.resample>`
        """
        from xarray.core.groupby import (
            DatasetGroupBy,
            _parse_group_and_groupers,
            _validate_groupby_squeeze,
        )

        _validate_groupby_squeeze(squeeze)
        rgroupers = _parse_group_and_groupers(
            self, group, groupers, eagerly_compute_group=eagerly_compute_group
        )

        return DatasetGroupBy(self, rgroupers, restore_coord_dims=restore_coord_dims)

    @_deprecate_positional_args("v2024.07.0")
    def groupby_bins(
        self,
        group: Hashable | DataArray | IndexVariable,
        bins: Bins,
        right: bool = True,
        labels: ArrayLike | None = None,
        precision: int = 3,
        include_lowest: bool = False,
        squeeze: Literal[False] = False,
        restore_coord_dims: bool = False,
        duplicates: Literal["raise", "drop"] = "raise",
        eagerly_compute_group: Literal[False] | None = None,
    ) -> DatasetGroupBy:
        """Returns a DatasetGroupBy object for performing grouped operations.

        Rather than using all unique values of `group`, the values are discretized
        first by applying `pandas.cut` [1]_ to `group`.

        Parameters
        ----------
        group : Hashable, DataArray or IndexVariable
            Array whose binned values should be used to group this array. If a
            string, must be the name of a variable contained in this dataset.
        bins : int or array-like
            If bins is an int, it defines the number of equal-width bins in the
            range of x. However, in this case, the range of x is extended by .1%
            on each side to include the min or max values of x. If bins is a
            sequence it defines the bin edges allowing for non-uniform bin
            width. No extension of the range of x is done in this case.
        right : bool, default: True
            Indicates whether the bins include the rightmost edge or not. If
            right == True (the default), then the bins [1,2,3,4] indicate
            (1,2], (2,3], (3,4].
        labels : array-like or bool, default: None
            Used as labels for the resulting bins. Must be of the same length as
            the resulting bins. If False, string bin labels are assigned by
            `pandas.cut`.
        precision : int, default: 3
            The precision at which to store and display the bins labels.
        include_lowest : bool, default: False
            Whether the first interval should be left-inclusive or not.
        squeeze : False
            This argument is deprecated.
        restore_coord_dims : bool, default: False
            If True, also restore the dimension order of multi-dimensional
            coordinates.
        duplicates : {"raise", "drop"}, default: "raise"
            If bin edges are not unique, raise ValueError or drop non-uniques.
        eagerly_compute_group: False, optional
            This argument is deprecated.

        Returns
        -------
        grouped : DatasetGroupBy
            A `DatasetGroupBy` object patterned after `pandas.GroupBy` that can be
            iterated over in the form of `(unique_value, grouped_array)` pairs.
            The name of the group has the added suffix `_bins` in order to
            distinguish it from the original variable.

        See Also
        --------
        :ref:`groupby`
            Users guide explanation of how to group and bin data.
        Dataset.groupby
        DataArray.groupby_bins
        core.groupby.DatasetGroupBy
        pandas.DataFrame.groupby

        References
        ----------
        .. [1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
        """
        from xarray.core.groupby import (
            DatasetGroupBy,
            ResolvedGrouper,
            _validate_groupby_squeeze,
        )
        from xarray.groupers import BinGrouper

        _validate_groupby_squeeze(squeeze)
        grouper = BinGrouper(
            bins=bins,
            right=right,
            labels=labels,
            precision=precision,
            include_lowest=include_lowest,
        )
        rgrouper = ResolvedGrouper(
            grouper, group, self, eagerly_compute_group=eagerly_compute_group
        )

        return DatasetGroupBy(
            self,
            (rgrouper,),
            restore_coord_dims=restore_coord_dims,
        )

    def weighted(self, weights: DataArray) -> DatasetWeighted:
        """
        Weighted Dataset operations.

        Parameters
        ----------
        weights : DataArray
            An array of weights associated with the values in this Dataset.
            Each value in the data contributes to the reduction operation
            according to its associated weight.

        Notes
        -----
        ``weights`` must be a DataArray and cannot contain missing values.
        Missing values can be replaced by ``weights.fillna(0)``.

        Returns
        -------
        computation.weighted.DatasetWeighted

        See Also
        --------
        :func:`DataArray.weighted <DataArray.weighted>`

        :ref:`compute.weighted`
            User guide on weighted array reduction using :py:func:`~xarray.Dataset.weighted`

        :doc:`xarray-tutorial:fundamentals/03.4_weighted`
            Tutorial on Weighted Reduction using :py:func:`~xarray.Dataset.weighted`

        """
        from xarray.computation.weighted import DatasetWeighted

        return DatasetWeighted(self, weights)

    def rolling(
        self,
        dim: Mapping[Any, int] | None = None,
        min_periods: int | None = None,
        center: bool | Mapping[Any, bool] = False,
        **window_kwargs: int,
    ) -> DatasetRolling:
        """
        Rolling window object for Datasets.

        Parameters
        ----------
        dim : dict, optional
            Mapping from the dimension name to create the rolling iterator
            along (e.g. `time`) to its moving window size.
        min_periods : int or None, default: None
            Minimum number of observations in window required to have a value
            (otherwise result is NA). The default, None, is equivalent to
            setting min_periods equal to the size of the window.
        center : bool or Mapping to int, default: False
            Set the labels at the center of the window. The default, False,
            sets the labels at the right edge of the window.
        **window_kwargs : optional
            The keyword arguments form of ``dim``.
            One of dim or window_kwargs must be provided.

        Returns
        -------
        computation.rolling.DatasetRolling

        See Also
        --------
        Dataset.cumulative
        DataArray.rolling
        DataArray.rolling_exp
        """
        from xarray.computation.rolling import DatasetRolling

        dim = either_dict_or_kwargs(dim, window_kwargs, "rolling")
        return DatasetRolling(self, dim, min_periods=min_periods, center=center)

    def cumulative(
        self,
        dim: str | Iterable[Hashable],
        min_periods: int = 1,
    ) -> DatasetRolling:
        """
        Accumulating object for Datasets

        Parameters
        ----------
        dims : iterable of hashable
            The name(s) of the dimensions to create the cumulative window along
        min_periods : int, default: 1
            Minimum number of observations in window required to have a value
            (otherwise result is NA). The default is 1 (note this is different
            from ``Rolling``, whose default is the size of the window).

        Returns
        -------
        computation.rolling.DatasetRolling

        See Also
        --------
        DataArray.cumulative
        Dataset.rolling
        Dataset.rolling_exp
        """
        from xarray.computation.rolling import DatasetRolling

        if isinstance(dim, str):
            if dim not in self.dims:
                raise ValueError(
                    f"Dimension {dim} not found in data dimensions: {self.dims}"
                )
            dim = {dim: self.sizes[dim]}
        else:
            missing_dims = set(dim) - set(self.dims)
            if missing_dims:
                raise ValueError(
                    f"Dimensions {missing_dims} not found in data dimensions: {self.dims}"
                )
            dim = {d: self.sizes[d] for d in dim}

        return DatasetRolling(self, dim, min_periods=min_periods, center=False)

    def coarsen(
        self,
        dim: Mapping[Any, int] | None = None,
        boundary: CoarsenBoundaryOptions = "exact",
        side: SideOptions | Mapping[Any, SideOptions] = "left",
        coord_func: str | Callable | Mapping[Any, str | Callable] = "mean",
        **window_kwargs: int,
    ) -> DatasetCoarsen:
        """
        Coarsen object for Datasets.

        Parameters
        ----------
        dim : mapping of hashable to int, optional
            Mapping from the dimension name to the window size.
        boundary : {"exact", "trim", "pad"}, default: "exact"
            If 'exact', a ValueError will be raised if dimension size is not a
            multiple of the window size. If 'trim', the excess entries are
            dropped. If 'pad', NA will be padded.
        side : {"left", "right"} or mapping of str to {"left", "right"}, default: "left"
        coord_func : str or mapping of hashable to str, default: "mean"
            function (name) that is applied to the coordinates,
            or a mapping from coordinate name to function (name).

        Returns
        -------
        computation.rolling.DatasetCoarsen

        See Also
        --------
        :class:`computation.rolling.DatasetCoarsen`
        :func:`DataArray.coarsen <DataArray.coarsen>`

        :ref:`reshape.coarsen`
            User guide describing :py:func:`~xarray.Dataset.coarsen`

        :ref:`compute.coarsen`
            User guide on block arrgragation :py:func:`~xarray.Dataset.coarsen`

        :doc:`xarray-tutorial:fundamentals/03.3_windowed`
            Tutorial on windowed computation using :py:func:`~xarray.Dataset.coarsen`

        """
        from xarray.computation.rolling import DatasetCoarsen

        dim = either_dict_or_kwargs(dim, window_kwargs, "coarsen")
        return DatasetCoarsen(
            self,
            dim,
            boundary=boundary,
            side=side,
            coord_func=coord_func,
        )

    @_deprecate_positional_args("v2024.07.0")
    def resample(
        self,
        indexer: Mapping[Any, ResampleCompatible | Resampler] | None = None,
        *,
        skipna: bool | None = None,
        closed: SideOptions | None = None,
        label: SideOptions | None = None,
        offset: pd.Timedelta | datetime.timedelta | str | None = None,
        origin: str | DatetimeLike = "start_day",
        restore_coord_dims: bool | None = None,
        **indexer_kwargs: ResampleCompatible | Resampler,
    ) -> DatasetResample:
        """Returns a Resample object for performing resampling operations.

        Handles both downsampling and upsampling. The resampled
        dimension must be a datetime-like coordinate. If any intervals
        contain no values from the original object, they will be given
        the value ``NaN``.

        Parameters
        ----------
        indexer : Mapping of Hashable to str, datetime.timedelta, pd.Timedelta, pd.DateOffset, or Resampler, optional
            Mapping from the dimension name to resample frequency [1]_. The
            dimension must be datetime-like.
        skipna : bool, optional
            Whether to skip missing values when aggregating in downsampling.
        closed : {"left", "right"}, optional
            Side of each interval to treat as closed.
        label : {"left", "right"}, optional
            Side of each interval to use for labeling.
        origin : {'epoch', 'start', 'start_day', 'end', 'end_day'}, pd.Timestamp, datetime.datetime, np.datetime64, or cftime.datetime, default 'start_day'
            The datetime on which to adjust the grouping. The timezone of origin
            must match the timezone of the index.

            If a datetime is not used, these values are also supported:
            - 'epoch': `origin` is 1970-01-01
            - 'start': `origin` is the first value of the timeseries
            - 'start_day': `origin` is the first day at midnight of the timeseries
            - 'end': `origin` is the last value of the timeseries
            - 'end_day': `origin` is the ceiling midnight of the last day
        offset : pd.Timedelta, datetime.timedelta, or str, default is None
            An offset timedelta added to the origin.
        restore_coord_dims : bool, optional
            If True, also restore the dimension order of multi-dimensional
            coordinates.
        **indexer_kwargs : str, datetime.timedelta, pd.Timedelta, pd.DateOffset, or Resampler
            The keyword arguments form of ``indexer``.
            One of indexer or indexer_kwargs must be provided.

        Returns
        -------
        resampled : core.resample.DataArrayResample
            This object resampled.

        See Also
        --------
        DataArray.resample
        pandas.Series.resample
        pandas.DataFrame.resample
        Dataset.groupby
        DataArray.groupby

        References
        ----------
        .. [1] https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
        """
        from xarray.core.resample import DatasetResample

        return self._resample(
            resample_cls=DatasetResample,
            indexer=indexer,
            skipna=skipna,
            closed=closed,
            label=label,
            offset=offset,
            origin=origin,
            restore_coord_dims=restore_coord_dims,
            **indexer_kwargs,
        )

    def drop_attrs(self, *, deep: bool = True) -> Self:
        """
        Removes all attributes from the Dataset and its variables.

        Parameters
        ----------
        deep : bool, default True
            Removes attributes from all variables.

        Returns
        -------
        Dataset
        """
        # Remove attributes from the dataset
        self = self._replace(attrs={})

        if not deep:
            return self

        # Remove attributes from each variable in the dataset
        for var in self.variables:
            # variables don't have a `._replace` method, so we copy and then remove
            # attrs. If we added a `._replace` method, we could use that instead.
            if var not in self.indexes:
                self[var] = self[var].copy()
                self[var].attrs = {}

        new_idx_variables = {}
        # Not sure this is the most elegant way of doing this, but it works.
        # (Should we have a more general "map over all variables, including
        # indexes" approach?)
        for idx, idx_vars in self.xindexes.group_by_index():
            # copy each coordinate variable of an index and drop their attrs
            temp_idx_variables = {k: v.copy() for k, v in idx_vars.items()}
            for v in temp_idx_variables.values():
                v.attrs = {}
            # re-wrap the index object in new coordinate variables
            new_idx_variables.update(idx.create_variables(temp_idx_variables))
        self = self.assign(new_idx_variables)

        return self