1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474
|
from __future__ import annotations
import asyncio
import copy
import datetime
import io
import math
import sys
import warnings
from collections import defaultdict
from collections.abc import (
Callable,
Collection,
Hashable,
Iterable,
Iterator,
Mapping,
MutableMapping,
Sequence,
)
from functools import partial
from html import escape
from numbers import Number
from operator import methodcaller
from os import PathLike
from types import EllipsisType
from typing import IO, TYPE_CHECKING, Any, Literal, cast, overload
import numpy as np
import pandas as pd
from xarray.coding.calendar_ops import convert_calendar, interp_calendar
from xarray.coding.cftimeindex import CFTimeIndex, _parse_array_of_cftime_strings
from xarray.compat.array_api_compat import to_like_array
from xarray.computation import ops
from xarray.computation.arithmetic import DatasetArithmetic
from xarray.core import dtypes as xrdtypes
from xarray.core import (
duck_array_ops,
formatting,
formatting_html,
utils,
)
from xarray.core._aggregations import DatasetAggregations
from xarray.core.common import (
DataWithCoords,
_contains_datetime_like_objects,
get_chunksizes,
)
from xarray.core.coordinates import (
Coordinates,
DatasetCoordinates,
assert_coordinate_consistent,
)
from xarray.core.dataset_utils import _get_virtual_variable, _LocIndexer
from xarray.core.dataset_variables import DataVariables
from xarray.core.duck_array_ops import datetime_to_numeric
from xarray.core.indexes import (
Index,
Indexes,
PandasIndex,
PandasMultiIndex,
assert_no_index_corrupted,
create_default_index_implicit,
filter_indexes_from_coords,
isel_indexes,
remove_unused_levels_categories,
roll_indexes,
)
from xarray.core.indexing import is_fancy_indexer, map_index_queries
from xarray.core.options import OPTIONS, _get_keep_attrs
from xarray.core.types import (
Bins,
NetcdfWriteModes,
QuantileMethods,
Self,
T_ChunkDim,
T_ChunksFreq,
T_DataArray,
T_DataArrayOrSet,
ZarrWriteModes,
)
from xarray.core.utils import (
Default,
FilteredMapping,
Frozen,
FrozenMappingWarningOnValuesAccess,
OrderedSet,
_default,
decode_numpy_dict_values,
drop_dims_from_indexers,
either_dict_or_kwargs,
emit_user_level_warning,
infix_dims,
is_allowed_extension_array,
is_dict_like,
is_duck_array,
is_duck_dask_array,
is_scalar,
maybe_wrap_array,
parse_dims_as_set,
)
from xarray.core.variable import (
UNSUPPORTED_EXTENSION_ARRAY_TYPES,
IndexVariable,
Variable,
as_variable,
broadcast_variables,
calculate_dimensions,
)
from xarray.namedarray.parallelcompat import get_chunked_array_type, guess_chunkmanager
from xarray.namedarray.pycompat import array_type, is_chunked_array, to_numpy
from xarray.plot.accessor import DatasetPlotAccessor
from xarray.structure import alignment
from xarray.structure.alignment import (
_broadcast_helper,
_get_broadcast_dims_map_common_coords,
align,
)
from xarray.structure.chunks import _maybe_chunk, unify_chunks
from xarray.structure.merge import (
dataset_merge_method,
dataset_update_method,
merge_coordinates_without_align,
merge_data_and_coords,
)
from xarray.util.deprecation_helpers import (
_COMPAT_DEFAULT,
_JOIN_DEFAULT,
CombineKwargDefault,
_deprecate_positional_args,
deprecate_dims,
)
if TYPE_CHECKING:
from dask.dataframe import DataFrame as DaskDataFrame
from dask.delayed import Delayed
from numpy.typing import ArrayLike
from xarray.backends import AbstractDataStore, ZarrStore
from xarray.backends.api import T_NetcdfEngine, T_NetcdfTypes
from xarray.computation.rolling import DatasetCoarsen, DatasetRolling
from xarray.computation.weighted import DatasetWeighted
from xarray.core.dataarray import DataArray
from xarray.core.groupby import DatasetGroupBy
from xarray.core.resample import DatasetResample
from xarray.core.types import (
CFCalendar,
CoarsenBoundaryOptions,
CombineAttrsOptions,
CompatOptions,
DataVars,
DatetimeLike,
DatetimeUnitOptions,
Dims,
DsCompatible,
ErrorOptions,
ErrorOptionsWithWarn,
GroupIndices,
GroupInput,
InterpOptions,
JoinOptions,
PadModeOptions,
PadReflectOptions,
QueryEngineOptions,
QueryParserOptions,
ReindexMethodOptions,
ResampleCompatible,
SideOptions,
T_ChunkDimFreq,
T_Chunks,
T_DatasetPadConstantValues,
T_Xarray,
)
from xarray.groupers import Grouper, Resampler
from xarray.namedarray.parallelcompat import ChunkManagerEntrypoint
from xarray.structure.merge import CoercibleMapping, CoercibleValue
# list of attributes of pd.DatetimeIndex that are ndarrays of time info
_DATETIMEINDEX_COMPONENTS = [
"year",
"month",
"day",
"hour",
"minute",
"second",
"microsecond",
"nanosecond",
"date",
"time",
"dayofyear",
"weekofyear",
"dayofweek",
"quarter",
]
class Dataset(
DataWithCoords,
DatasetAggregations,
DatasetArithmetic,
Mapping[Hashable, "DataArray"],
):
"""A multi-dimensional, in memory, array database.
A dataset resembles an in-memory representation of a NetCDF file,
and consists of variables, coordinates and attributes which
together form a self describing dataset.
Dataset implements the mapping interface with keys given by variable
names and values given by DataArray objects for each variable name.
By default, pandas indexes are created for one dimensional variables with
name equal to their dimension (i.e., :term:`Dimension coordinate`) so those
variables can be readily used as coordinates for label based indexing. When a
:py:class:`~xarray.Coordinates` object is passed to ``coords``, any existing
index(es) built from those coordinates will be added to the Dataset.
To load data from a file or file-like object, use the `open_dataset`
function.
Parameters
----------
data_vars : dict-like, optional
A mapping from variable names to :py:class:`~xarray.DataArray`
objects, :py:class:`~xarray.Variable` objects or to tuples of
the form ``(dims, data[, attrs])`` which can be used as
arguments to create a new ``Variable``. Each dimension must
have the same length in all variables in which it appears.
The following notations are accepted:
- mapping {var name: DataArray}
- mapping {var name: Variable}
- mapping {var name: (dimension name, array-like)}
- mapping {var name: (tuple of dimension names, array-like)}
- mapping {dimension name: array-like}
(if array-like is not a scalar it will be automatically moved to coords,
see below)
Each dimension must have the same length in all variables in
which it appears.
coords : :py:class:`~xarray.Coordinates` or dict-like, optional
A :py:class:`~xarray.Coordinates` object or another mapping in
similar form as the `data_vars` argument, except that each item
is saved on the dataset as a "coordinate".
These variables have an associated meaning: they describe
constant/fixed/independent quantities, unlike the
varying/measured/dependent quantities that belong in
`variables`.
The following notations are accepted for arbitrary mappings:
- mapping {coord name: DataArray}
- mapping {coord name: Variable}
- mapping {coord name: (dimension name, array-like)}
- mapping {coord name: (tuple of dimension names, array-like)}
- mapping {dimension name: array-like}
(the dimension name is implicitly set to be the same as the
coord name)
The last notation implies either that the coordinate value is a scalar
or that it is a 1-dimensional array and the coord name is the same as
the dimension name (i.e., a :term:`Dimension coordinate`). In the latter
case, the 1-dimensional array will be assumed to give index values
along the dimension with the same name.
Alternatively, a :py:class:`~xarray.Coordinates` object may be used in
order to explicitly pass indexes (e.g., a multi-index or any custom
Xarray index) or to bypass the creation of a default index for any
:term:`Dimension coordinate` included in that object.
attrs : dict-like, optional
Global attributes to save on this dataset.
(see FAQ, :ref:`approach to metadata`)
Examples
--------
In this example dataset, we will represent measurements of the temperature
and pressure that were made under various conditions:
* the measurements were made on four different days;
* they were made at two separate locations, which we will represent using
their latitude and longitude; and
* they were made using three instrument developed by three different
manufacturers, which we will refer to using the strings `'manufac1'`,
`'manufac2'`, and `'manufac3'`.
>>> np.random.seed(0)
>>> temperature = 15 + 8 * np.random.randn(2, 3, 4)
>>> precipitation = 10 * np.random.rand(2, 3, 4)
>>> lon = [-99.83, -99.32]
>>> lat = [42.25, 42.21]
>>> instruments = ["manufac1", "manufac2", "manufac3"]
>>> time = pd.date_range("2014-09-06", periods=4)
>>> reference_time = pd.Timestamp("2014-09-05")
Here, we initialize the dataset with multiple dimensions. We use the string
`"loc"` to represent the location dimension of the data, the string
`"instrument"` to represent the instrument manufacturer dimension, and the
string `"time"` for the time dimension.
>>> ds = xr.Dataset(
... data_vars=dict(
... temperature=(["loc", "instrument", "time"], temperature),
... precipitation=(["loc", "instrument", "time"], precipitation),
... ),
... coords=dict(
... lon=("loc", lon),
... lat=("loc", lat),
... instrument=instruments,
... time=time,
... reference_time=reference_time,
... ),
... attrs=dict(description="Weather related data."),
... )
>>> ds
<xarray.Dataset> Size: 552B
Dimensions: (loc: 2, instrument: 3, time: 4)
Coordinates:
lon (loc) float64 16B -99.83 -99.32
lat (loc) float64 16B 42.25 42.21
* instrument (instrument) <U8 96B 'manufac1' 'manufac2' 'manufac3'
* time (time) datetime64[ns] 32B 2014-09-06 ... 2014-09-09
reference_time datetime64[ns] 8B 2014-09-05
Dimensions without coordinates: loc
Data variables:
temperature (loc, instrument, time) float64 192B 29.11 18.2 ... 9.063
precipitation (loc, instrument, time) float64 192B 4.562 5.684 ... 1.613
Attributes:
description: Weather related data.
Find out where the coldest temperature was and what values the
other variables had:
>>> ds.isel(ds.temperature.argmin(...))
<xarray.Dataset> Size: 80B
Dimensions: ()
Coordinates:
lon float64 8B -99.32
lat float64 8B 42.21
instrument <U8 32B 'manufac3'
time datetime64[ns] 8B 2014-09-06
reference_time datetime64[ns] 8B 2014-09-05
Data variables:
temperature float64 8B -5.424
precipitation float64 8B 9.884
Attributes:
description: Weather related data.
"""
_attrs: dict[Hashable, Any] | None
_cache: dict[str, Any]
_coord_names: set[Hashable]
_dims: dict[Hashable, int]
_encoding: dict[Hashable, Any] | None
_close: Callable[[], None] | None
_indexes: dict[Hashable, Index]
_variables: dict[Hashable, Variable]
__slots__ = (
"__weakref__",
"_attrs",
"_cache",
"_close",
"_coord_names",
"_dims",
"_encoding",
"_indexes",
"_variables",
)
def __init__(
self,
# could make a VariableArgs to use more generally, and refine these
# categories
data_vars: DataVars | None = None,
coords: Mapping[Any, Any] | None = None,
attrs: Mapping[Any, Any] | None = None,
) -> None:
if data_vars is None:
data_vars = {}
if coords is None:
coords = {}
both_data_and_coords = set(data_vars) & set(coords)
if both_data_and_coords:
raise ValueError(
f"variables {both_data_and_coords!r} are found in both data_vars and coords"
)
if isinstance(coords, Dataset):
coords = coords._variables
variables, coord_names, dims, indexes, _ = merge_data_and_coords(
data_vars, coords
)
self._attrs = dict(attrs) if attrs else None
self._close = None
self._encoding = None
self._variables = variables
self._coord_names = coord_names
self._dims = dims
self._indexes = indexes
# TODO: dirty workaround for mypy 1.5 error with inherited DatasetOpsMixin vs. Mapping
# related to https://github.com/python/mypy/issues/9319?
def __eq__(self, other: DsCompatible) -> Self: # type: ignore[override]
return super().__eq__(other)
@classmethod
def load_store(cls, store, decoder=None) -> Self:
"""Create a new dataset from the contents of a backends.*DataStore
object
"""
variables, attributes = store.load()
if decoder:
variables, attributes = decoder(variables, attributes)
obj = cls(variables, attrs=attributes)
obj.set_close(store.close)
return obj
@property
def variables(self) -> Frozen[Hashable, Variable]:
"""Low level interface to Dataset contents as dict of Variable objects.
This ordered dictionary is frozen to prevent mutation that could
violate Dataset invariants. It contains all variable objects
constituting the Dataset, including both data variables and
coordinates.
"""
return Frozen(self._variables)
@property
def attrs(self) -> dict[Any, Any]:
"""Dictionary of global attributes on this dataset"""
if self._attrs is None:
self._attrs = {}
return self._attrs
@attrs.setter
def attrs(self, value: Mapping[Any, Any]) -> None:
self._attrs = dict(value) if value else None
@property
def encoding(self) -> dict[Any, Any]:
"""Dictionary of global encoding attributes on this dataset"""
if self._encoding is None:
self._encoding = {}
return self._encoding
@encoding.setter
def encoding(self, value: Mapping[Any, Any]) -> None:
self._encoding = dict(value)
def reset_encoding(self) -> Self:
warnings.warn(
"reset_encoding is deprecated since 2023.11, use `drop_encoding` instead",
stacklevel=2,
)
return self.drop_encoding()
def drop_encoding(self) -> Self:
"""Return a new Dataset without encoding on the dataset or any of its
variables/coords."""
variables = {k: v.drop_encoding() for k, v in self.variables.items()}
return self._replace(variables=variables, encoding={})
@property
def dims(self) -> Frozen[Hashable, int]:
"""Mapping from dimension names to lengths.
Cannot be modified directly, but is updated when adding new variables.
Note that type of this object differs from `DataArray.dims`.
See `Dataset.sizes` and `DataArray.sizes` for consistently named
properties. This property will be changed to return a type more consistent with
`DataArray.dims` in the future, i.e. a set of dimension names.
See Also
--------
Dataset.sizes
DataArray.dims
"""
return FrozenMappingWarningOnValuesAccess(self._dims)
@property
def sizes(self) -> Frozen[Hashable, int]:
"""Mapping from dimension names to lengths.
Cannot be modified directly, but is updated when adding new variables.
This is an alias for `Dataset.dims` provided for the benefit of
consistency with `DataArray.sizes`.
See Also
--------
DataArray.sizes
"""
return Frozen(self._dims)
@property
def dtypes(self) -> Frozen[Hashable, np.dtype]:
"""Mapping from data variable names to dtypes.
Cannot be modified directly, but is updated when adding new variables.
See Also
--------
DataArray.dtype
"""
return Frozen(
{
n: v.dtype
for n, v in self._variables.items()
if n not in self._coord_names
}
)
def load(self, **kwargs) -> Self:
"""Trigger loading data into memory and return this dataset.
Data will be computed and/or loaded from disk or a remote source.
Unlike ``.compute``, the original dataset is modified and returned.
Normally, it should not be necessary to call this method in user code,
because all xarray functions should either work on deferred data or
load data automatically. However, this method can be necessary when
working with many file objects on disk.
Parameters
----------
**kwargs : dict
Additional keyword arguments passed on to ``dask.compute``.
Returns
-------
object : Dataset
Same object but with lazy data variables and coordinates as in-memory arrays.
See Also
--------
dask.compute
Dataset.compute
Dataset.load_async
DataArray.load
Variable.load
"""
# access .data to coerce everything to numpy or dask arrays
chunked_data = {
k: v._data for k, v in self.variables.items() if is_chunked_array(v._data)
}
if chunked_data:
chunkmanager = get_chunked_array_type(*chunked_data.values())
# evaluate all the chunked arrays simultaneously
evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute(
*chunked_data.values(), **kwargs
)
for k, data in zip(chunked_data, evaluated_data, strict=False):
self.variables[k].data = data
# load everything else sequentially
[v.load() for k, v in self.variables.items() if k not in chunked_data]
return self
async def load_async(self, **kwargs) -> Self:
"""Trigger and await asynchronous loading of data into memory and return this dataset.
Data will be computed and/or loaded from disk or a remote source.
Unlike ``.compute``, the original dataset is modified and returned.
Only works when opening data lazily from IO storage backends which support lazy asynchronous loading.
Otherwise will raise a NotImplementedError.
Note users are expected to limit concurrency themselves - xarray does not internally limit concurrency in any way.
Parameters
----------
**kwargs : dict
Additional keyword arguments passed on to ``dask.compute``.
Returns
-------
object : Dataset
Same object but with lazy data variables and coordinates as in-memory arrays.
See Also
--------
dask.compute
Dataset.compute
Dataset.load
DataArray.load_async
Variable.load_async
"""
# TODO refactor this to pull out the common chunked_data codepath
# this blocks on chunked arrays but not on lazily indexed arrays
# access .data to coerce everything to numpy or dask arrays
chunked_data = {
k: v._data for k, v in self.variables.items() if is_chunked_array(v._data)
}
if chunked_data:
chunkmanager = get_chunked_array_type(*chunked_data.values())
# evaluate all the chunked arrays simultaneously
evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute(
*chunked_data.values(), **kwargs
)
for k, data in zip(chunked_data, evaluated_data, strict=False):
self.variables[k].data = data
# load everything else concurrently
coros = [
v.load_async() for k, v in self.variables.items() if k not in chunked_data
]
await asyncio.gather(*coros)
return self
def __dask_tokenize__(self) -> object:
from dask.base import normalize_token
return normalize_token(
(type(self), self._variables, self._coord_names, self._attrs or None)
)
def __dask_graph__(self):
graphs = {k: v.__dask_graph__() for k, v in self.variables.items()}
graphs = {k: v for k, v in graphs.items() if v is not None}
if not graphs:
return None
else:
try:
from dask.highlevelgraph import HighLevelGraph
return HighLevelGraph.merge(*graphs.values())
except ImportError:
from dask import sharedict
return sharedict.merge(*graphs.values())
def __dask_keys__(self):
import dask
return [
v.__dask_keys__()
for v in self.variables.values()
if dask.is_dask_collection(v)
]
def __dask_layers__(self):
import dask
return sum(
(
v.__dask_layers__()
for v in self.variables.values()
if dask.is_dask_collection(v)
),
(),
)
@property
def __dask_optimize__(self):
import dask.array as da
return da.Array.__dask_optimize__
@property
def __dask_scheduler__(self):
import dask.array as da
return da.Array.__dask_scheduler__
def __dask_postcompute__(self):
return self._dask_postcompute, ()
def __dask_postpersist__(self):
return self._dask_postpersist, ()
def _dask_postcompute(self, results: Iterable[Variable]) -> Self:
import dask
variables = {}
results_iter = iter(results)
for k, v in self._variables.items():
if dask.is_dask_collection(v):
rebuild, args = v.__dask_postcompute__()
v = rebuild(next(results_iter), *args)
variables[k] = v
return type(self)._construct_direct(
variables,
self._coord_names,
self._dims,
self._attrs,
self._indexes,
self._encoding,
self._close,
)
def _dask_postpersist(
self, dsk: Mapping, *, rename: Mapping[str, str] | None = None
) -> Self:
from dask import is_dask_collection
from dask.highlevelgraph import HighLevelGraph
from dask.optimization import cull
variables = {}
for k, v in self._variables.items():
if not is_dask_collection(v):
variables[k] = v
continue
if isinstance(dsk, HighLevelGraph):
# dask >= 2021.3
# __dask_postpersist__() was called by dask.highlevelgraph.
# Don't use dsk.cull(), as we need to prevent partial layers:
# https://github.com/dask/dask/issues/7137
layers = v.__dask_layers__()
if rename:
layers = [rename.get(k, k) for k in layers]
dsk2 = dsk.cull_layers(layers)
elif rename: # pragma: nocover
# At the moment of writing, this is only for forward compatibility.
# replace_name_in_key requires dask >= 2021.3.
from dask.base import flatten, replace_name_in_key
keys = [
replace_name_in_key(k, rename) for k in flatten(v.__dask_keys__())
]
dsk2, _ = cull(dsk, keys)
else:
# __dask_postpersist__() was called by dask.optimize or dask.persist
dsk2, _ = cull(dsk, v.__dask_keys__())
rebuild, args = v.__dask_postpersist__()
# rename was added in dask 2021.3
kwargs = {"rename": rename} if rename else {}
variables[k] = rebuild(dsk2, *args, **kwargs)
return type(self)._construct_direct(
variables,
self._coord_names,
self._dims,
self._attrs,
self._indexes,
self._encoding,
self._close,
)
def compute(self, **kwargs) -> Self:
"""Trigger loading data into memory and return a new dataset.
Data will be computed and/or loaded from disk or a remote source.
Unlike ``.load``, the original dataset is left unaltered.
Normally, it should not be necessary to call this method in user code,
because all xarray functions should either work on deferred data or
load data automatically. However, this method can be necessary when
working with many file objects on disk.
Parameters
----------
**kwargs : dict
Additional keyword arguments passed on to ``dask.compute``.
Returns
-------
object : Dataset
New object with lazy data variables and coordinates as in-memory arrays.
See Also
--------
dask.compute
Dataset.load
Dataset.load_async
DataArray.compute
Variable.compute
"""
new = self.copy(deep=False)
return new.load(**kwargs)
def _persist_inplace(self, **kwargs) -> Self:
"""Persist all chunked arrays in memory."""
# access .data to coerce everything to numpy or dask arrays
lazy_data = {
k: v._data for k, v in self.variables.items() if is_chunked_array(v._data)
}
if lazy_data:
chunkmanager = get_chunked_array_type(*lazy_data.values())
# evaluate all the dask arrays simultaneously
evaluated_data = chunkmanager.persist(*lazy_data.values(), **kwargs)
for k, data in zip(lazy_data, evaluated_data, strict=False):
self.variables[k].data = data
return self
def persist(self, **kwargs) -> Self:
"""Trigger computation, keeping data as chunked arrays.
This operation can be used to trigger computation on underlying dask
arrays, similar to ``.compute()`` or ``.load()``. However this
operation keeps the data as dask arrays. This is particularly useful
when using the dask.distributed scheduler and you want to load a large
amount of data into distributed memory.
Like compute (but unlike load), the original dataset is left unaltered.
Parameters
----------
**kwargs : dict
Additional keyword arguments passed on to ``dask.persist``.
Returns
-------
object : Dataset
New object with all dask-backed coordinates and data variables as persisted dask arrays.
See Also
--------
dask.persist
"""
new = self.copy(deep=False)
return new._persist_inplace(**kwargs)
@classmethod
def _construct_direct(
cls,
variables: dict[Any, Variable],
coord_names: set[Hashable],
dims: dict[Any, int] | None = None,
attrs: dict | None = None,
indexes: dict[Any, Index] | None = None,
encoding: dict | None = None,
close: Callable[[], None] | None = None,
) -> Self:
"""Shortcut around __init__ for internal use when we want to skip
costly validation
"""
if dims is None:
dims = calculate_dimensions(variables)
if indexes is None:
indexes = {}
obj = object.__new__(cls)
obj._variables = variables
obj._coord_names = coord_names
obj._dims = dims
obj._indexes = indexes
obj._attrs = attrs
obj._close = close
obj._encoding = encoding
return obj
def _replace(
self,
variables: dict[Hashable, Variable] | None = None,
coord_names: set[Hashable] | None = None,
dims: dict[Any, int] | None = None,
attrs: dict[Hashable, Any] | Default | None = _default,
indexes: dict[Hashable, Index] | None = None,
encoding: dict | Default | None = _default,
inplace: bool = False,
) -> Self:
"""Fastpath constructor for internal use.
Returns an object with optionally with replaced attributes.
Explicitly passed arguments are *not* copied when placed on the new
dataset. It is up to the caller to ensure that they have the right type
and are not used elsewhere.
"""
if inplace:
if variables is not None:
self._variables = variables
if coord_names is not None:
self._coord_names = coord_names
if dims is not None:
self._dims = dims
if attrs is not _default:
self._attrs = attrs
if indexes is not None:
self._indexes = indexes
if encoding is not _default:
self._encoding = encoding
obj = self
else:
if variables is None:
variables = self._variables.copy()
if coord_names is None:
coord_names = self._coord_names.copy()
if dims is None:
dims = self._dims.copy()
if attrs is _default:
attrs = copy.copy(self._attrs)
if indexes is None:
indexes = self._indexes.copy()
if encoding is _default:
encoding = copy.copy(self._encoding)
obj = self._construct_direct(
variables, coord_names, dims, attrs, indexes, encoding
)
return obj
def _replace_with_new_dims(
self,
variables: dict[Hashable, Variable],
coord_names: set | None = None,
attrs: dict[Hashable, Any] | Default | None = _default,
indexes: dict[Hashable, Index] | None = None,
inplace: bool = False,
) -> Self:
"""Replace variables with recalculated dimensions."""
dims = calculate_dimensions(variables)
return self._replace(
variables, coord_names, dims, attrs, indexes, inplace=inplace
)
def _replace_vars_and_dims(
self,
variables: dict[Hashable, Variable],
coord_names: set | None = None,
dims: dict[Hashable, int] | None = None,
attrs: dict[Hashable, Any] | Default | None = _default,
inplace: bool = False,
) -> Self:
"""Deprecated version of _replace_with_new_dims().
Unlike _replace_with_new_dims(), this method always recalculates
indexes from variables.
"""
if dims is None:
dims = calculate_dimensions(variables)
return self._replace(
variables, coord_names, dims, attrs, indexes=None, inplace=inplace
)
def _overwrite_indexes(
self,
indexes: Mapping[Hashable, Index],
variables: Mapping[Hashable, Variable] | None = None,
drop_variables: list[Hashable] | None = None,
drop_indexes: list[Hashable] | None = None,
rename_dims: Mapping[Hashable, Hashable] | None = None,
) -> Self:
"""Maybe replace indexes.
This function may do a lot more depending on index query
results.
"""
if not indexes:
return self
if variables is None:
variables = {}
if drop_variables is None:
drop_variables = []
if drop_indexes is None:
drop_indexes = []
new_variables = self._variables.copy()
new_coord_names = self._coord_names.copy()
new_indexes = dict(self._indexes)
index_variables = {}
no_index_variables = {}
for name, var in variables.items():
old_var = self._variables.get(name)
if old_var is not None:
var.attrs.update(old_var.attrs)
var.encoding.update(old_var.encoding)
if name in indexes:
index_variables[name] = var
else:
no_index_variables[name] = var
for name in indexes:
new_indexes[name] = indexes[name]
for name, var in index_variables.items():
new_coord_names.add(name)
new_variables[name] = var
# append no-index variables at the end
for k in no_index_variables:
new_variables.pop(k)
new_variables.update(no_index_variables)
for name in drop_indexes:
new_indexes.pop(name)
for name in drop_variables:
new_variables.pop(name)
new_indexes.pop(name, None)
new_coord_names.remove(name)
replaced = self._replace(
variables=new_variables, coord_names=new_coord_names, indexes=new_indexes
)
if rename_dims:
# skip rename indexes: they should already have the right name(s)
dims = replaced._rename_dims(rename_dims)
new_variables, new_coord_names = replaced._rename_vars({}, rename_dims)
return replaced._replace(
variables=new_variables, coord_names=new_coord_names, dims=dims
)
else:
return replaced
def copy(self, deep: bool = False, data: DataVars | None = None) -> Self:
"""Returns a copy of this dataset.
If `deep=True`, a deep copy is made of each of the component variables.
Otherwise, a shallow copy of each of the component variable is made, so
that the underlying memory region of the new dataset is the same as in
the original dataset.
Use `data` to create a new object with the same structure as
original but entirely new data.
Parameters
----------
deep : bool, default: False
Whether each component variable is loaded into memory and copied onto
the new object. Default is False.
data : dict-like or None, optional
Data to use in the new object. Each item in `data` must have same
shape as corresponding data variable in original. When `data` is
used, `deep` is ignored for the data variables and only used for
coords.
Returns
-------
object : Dataset
New object with dimensions, attributes, coordinates, name, encoding,
and optionally data copied from original.
Examples
--------
Shallow copy versus deep copy
>>> da = xr.DataArray(np.random.randn(2, 3))
>>> ds = xr.Dataset(
... {"foo": da, "bar": ("x", [-1, 2])},
... coords={"x": ["one", "two"]},
... )
>>> ds.copy()
<xarray.Dataset> Size: 88B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Coordinates:
* x (x) <U3 24B 'one' 'two'
Dimensions without coordinates: dim_0, dim_1
Data variables:
foo (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 -0.9773
bar (x) int64 16B -1 2
>>> ds_0 = ds.copy(deep=False)
>>> ds_0["foo"][0, 0] = 7
>>> ds_0
<xarray.Dataset> Size: 88B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Coordinates:
* x (x) <U3 24B 'one' 'two'
Dimensions without coordinates: dim_0, dim_1
Data variables:
foo (dim_0, dim_1) float64 48B 7.0 0.4002 0.9787 2.241 1.868 -0.9773
bar (x) int64 16B -1 2
>>> ds
<xarray.Dataset> Size: 88B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Coordinates:
* x (x) <U3 24B 'one' 'two'
Dimensions without coordinates: dim_0, dim_1
Data variables:
foo (dim_0, dim_1) float64 48B 7.0 0.4002 0.9787 2.241 1.868 -0.9773
bar (x) int64 16B -1 2
Changing the data using the ``data`` argument maintains the
structure of the original object, but with the new data. Original
object is unaffected.
>>> ds.copy(data={"foo": np.arange(6).reshape(2, 3), "bar": ["a", "b"]})
<xarray.Dataset> Size: 80B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Coordinates:
* x (x) <U3 24B 'one' 'two'
Dimensions without coordinates: dim_0, dim_1
Data variables:
foo (dim_0, dim_1) int64 48B 0 1 2 3 4 5
bar (x) <U1 8B 'a' 'b'
>>> ds
<xarray.Dataset> Size: 88B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Coordinates:
* x (x) <U3 24B 'one' 'two'
Dimensions without coordinates: dim_0, dim_1
Data variables:
foo (dim_0, dim_1) float64 48B 7.0 0.4002 0.9787 2.241 1.868 -0.9773
bar (x) int64 16B -1 2
See Also
--------
pandas.DataFrame.copy
"""
return self._copy(deep=deep, data=data)
def _copy(
self,
deep: bool = False,
data: DataVars | None = None,
memo: dict[int, Any] | None = None,
) -> Self:
if data is None:
data = {}
elif not utils.is_dict_like(data):
raise ValueError("Data must be dict-like")
if data:
var_keys = set(self.data_vars.keys())
data_keys = set(data.keys())
keys_not_in_vars = data_keys - var_keys
if keys_not_in_vars:
raise ValueError(
"Data must only contain variables in original "
f"dataset. Extra variables: {keys_not_in_vars}"
)
keys_missing_from_data = var_keys - data_keys
if keys_missing_from_data:
raise ValueError(
"Data must contain all variables in original "
f"dataset. Data is missing {keys_missing_from_data}"
)
indexes, index_vars = self.xindexes.copy_indexes(deep=deep)
variables = {}
for k, v in self._variables.items():
if k in index_vars:
variables[k] = index_vars[k]
else:
variables[k] = v._copy(deep=deep, data=data.get(k), memo=memo)
attrs = copy.deepcopy(self._attrs, memo) if deep else copy.copy(self._attrs)
encoding = (
copy.deepcopy(self._encoding, memo) if deep else copy.copy(self._encoding)
)
return self._replace(variables, indexes=indexes, attrs=attrs, encoding=encoding)
def __copy__(self) -> Self:
return self._copy(deep=False)
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
return self._copy(deep=True, memo=memo)
def as_numpy(self) -> Self:
"""
Coerces wrapped data and coordinates into numpy arrays, returning a Dataset.
See also
--------
DataArray.as_numpy
DataArray.to_numpy : Returns only the data as a numpy.ndarray object.
"""
numpy_variables = {k: v.as_numpy() for k, v in self.variables.items()}
return self._replace(variables=numpy_variables)
def _copy_listed(self, names: Iterable[Hashable]) -> Self:
"""Create a new Dataset with the listed variables from this dataset and
the all relevant coordinates. Skips all validation.
"""
variables: dict[Hashable, Variable] = {}
coord_names = set()
indexes: dict[Hashable, Index] = {}
for name in names:
try:
variables[name] = self._variables[name]
except KeyError:
ref_name, var_name, var = _get_virtual_variable(
self._variables, name, self.sizes
)
variables[var_name] = var
if ref_name in self._coord_names or ref_name in self.dims:
coord_names.add(var_name)
if (var_name,) == var.dims:
index, index_vars = create_default_index_implicit(var, names)
indexes.update(dict.fromkeys(index_vars, index))
variables.update(index_vars)
coord_names.update(index_vars)
needed_dims: OrderedSet[Hashable] = OrderedSet()
for v in variables.values():
needed_dims.update(v.dims)
dims = {k: self.sizes[k] for k in needed_dims}
# preserves ordering of coordinates
for k in self._variables:
if k not in self._coord_names:
continue
if set(self.variables[k].dims) <= needed_dims:
variables[k] = self._variables[k]
coord_names.add(k)
indexes.update(filter_indexes_from_coords(self._indexes, coord_names))
return self._replace(variables, coord_names, dims, indexes=indexes)
def _construct_dataarray(self, name: Hashable) -> DataArray:
"""Construct a DataArray by indexing this dataset"""
from xarray.core.dataarray import DataArray
try:
variable = self._variables[name]
except KeyError:
_, name, variable = _get_virtual_variable(self._variables, name, self.sizes)
needed_dims = set(variable.dims)
coords: dict[Hashable, Variable] = {}
# preserve ordering
for k in self._variables:
if k in self._indexes:
add_coord = self._indexes[k].should_add_coord_to_array(
k, self._variables[k], needed_dims
)
else:
var_dims = set(self._variables[k].dims)
add_coord = k in self._coord_names and var_dims <= needed_dims
if add_coord:
coords[k] = self._variables[k]
indexes = filter_indexes_from_coords(self._indexes, set(coords))
return DataArray(variable, coords, name=name, indexes=indexes, fastpath=True)
@property
def _attr_sources(self) -> Iterable[Mapping[Hashable, Any]]:
"""Places to look-up items for attribute-style access"""
yield from self._item_sources
yield self.attrs
@property
def _item_sources(self) -> Iterable[Mapping[Hashable, Any]]:
"""Places to look-up items for key-completion"""
yield self.data_vars
yield FilteredMapping(keys=self._coord_names, mapping=self.coords)
# virtual coordinates
yield FilteredMapping(keys=self.sizes, mapping=self)
def __contains__(self, key: object) -> bool:
"""The 'in' operator will return true or false depending on whether
'key' is an array in the dataset or not.
"""
return key in self._variables
def __len__(self) -> int:
return len(self.data_vars)
def __bool__(self) -> bool:
return bool(self.data_vars)
def __iter__(self) -> Iterator[Hashable]:
return iter(self.data_vars)
if TYPE_CHECKING:
# needed because __getattr__ is returning Any and otherwise
# this class counts as part of the SupportsArray Protocol
__array__ = None # type: ignore[var-annotated,unused-ignore]
else:
def __array__(self, dtype=None, copy=None):
raise TypeError(
"cannot directly convert an xarray.Dataset into a "
"numpy array. Instead, create an xarray.DataArray "
"first, either with indexing on the Dataset or by "
"invoking the `to_dataarray()` method."
)
@property
def nbytes(self) -> int:
"""
Total bytes consumed by the data arrays of all variables in this dataset.
If the backend array for any variable does not include ``nbytes``, estimates
the total bytes for that array based on the ``size`` and ``dtype``.
"""
return sum(v.nbytes for v in self.variables.values())
@property
def loc(self) -> _LocIndexer[Self]:
"""Attribute for location based indexing. Only supports __getitem__,
and only when the key is a dict of the form {dim: labels}.
"""
return _LocIndexer(self)
@overload
def __getitem__(self, key: Hashable) -> DataArray: ...
# Mapping is Iterable
@overload
def __getitem__(self, key: Iterable[Hashable]) -> Self: ...
def __getitem__(
self, key: Mapping[Any, Any] | Hashable | Iterable[Hashable]
) -> Self | DataArray:
"""Access variables or coordinates of this dataset as a
:py:class:`~xarray.DataArray` or a subset of variables or a indexed dataset.
Indexing with a list of names will return a new ``Dataset`` object.
"""
from xarray.core.formatting import shorten_list_repr
if utils.is_dict_like(key):
return self.isel(**key)
if utils.hashable(key):
try:
return self._construct_dataarray(key)
except KeyError as e:
message = f"No variable named {key!r}."
best_guess = utils.did_you_mean(key, self.variables.keys())
if best_guess:
message += f" {best_guess}"
else:
message += f" Variables on the dataset include {shorten_list_repr(list(self.variables.keys()), max_items=10)}"
# If someone attempts `ds['foo' , 'bar']` instead of `ds[['foo', 'bar']]`
if isinstance(key, tuple):
message += f"\nHint: use a list to select multiple variables, for example `ds[{list(key)}]`"
raise KeyError(message) from e
if utils.iterable_of_hashable(key):
return self._copy_listed(key)
raise ValueError(f"Unsupported key-type {type(key)}")
def __setitem__(
self, key: Hashable | Iterable[Hashable] | Mapping, value: Any
) -> None:
"""Add an array to this dataset.
Multiple arrays can be added at the same time, in which case each of
the following operations is applied to the respective value.
If key is dict-like, update all variables in the dataset
one by one with the given value at the given location.
If the given value is also a dataset, select corresponding variables
in the given value and in the dataset to be changed.
If value is a `
from .dataarray import DataArray`, call its `select_vars()` method, rename it
to `key` and merge the contents of the resulting dataset into this
dataset.
If value is a `Variable` object (or tuple of form
``(dims, data[, attrs])``), add it to this dataset as a new
variable.
"""
from xarray.core.dataarray import DataArray
if utils.is_dict_like(key):
# check for consistency and convert value to dataset
value = self._setitem_check(key, value)
# loop over dataset variables and set new values
processed = []
for name, var in self.items():
try:
var[key] = value[name]
processed.append(name)
except Exception as e:
if processed:
raise RuntimeError(
"An error occurred while setting values of the"
f" variable '{name}'. The following variables have"
f" been successfully updated:\n{processed}"
) from e
else:
raise e
elif utils.hashable(key):
if isinstance(value, Dataset):
raise TypeError(
"Cannot assign a Dataset to a single key - only a DataArray or Variable "
"object can be stored under a single key."
)
self.update({key: value})
elif utils.iterable_of_hashable(key):
keylist = list(key)
if len(keylist) == 0:
raise ValueError("Empty list of variables to be set")
if len(keylist) == 1:
self.update({keylist[0]: value})
else:
if len(keylist) != len(value):
raise ValueError(
f"Different lengths of variables to be set "
f"({len(keylist)}) and data used as input for "
f"setting ({len(value)})"
)
if isinstance(value, Dataset):
self.update(
dict(zip(keylist, value.data_vars.values(), strict=True))
)
elif isinstance(value, DataArray):
raise ValueError("Cannot assign single DataArray to multiple keys")
else:
self.update(dict(zip(keylist, value, strict=True)))
else:
raise ValueError(f"Unsupported key-type {type(key)}")
def _setitem_check(self, key, value):
"""Consistency check for __setitem__
When assigning values to a subset of a Dataset, do consistency check beforehand
to avoid leaving the dataset in a partially updated state when an error occurs.
"""
from xarray.core.dataarray import DataArray
if isinstance(value, Dataset):
missing_vars = [
name for name in value.data_vars if name not in self.data_vars
]
if missing_vars:
raise ValueError(
f"Variables {missing_vars} in new values"
f" not available in original dataset:\n{self}"
)
elif not any(isinstance(value, t) for t in [DataArray, Number, str]):
raise TypeError(
"Dataset assignment only accepts DataArrays, Datasets, and scalars."
)
new_value = Dataset()
for name, var in self.items():
# test indexing
try:
var_k = var[key]
except Exception as e:
raise ValueError(
f"Variable '{name}': indexer {key} not available"
) from e
if isinstance(value, Dataset):
val = value[name]
else:
val = value
if isinstance(val, DataArray):
# check consistency of dimensions
for dim in val.dims:
if dim not in var_k.dims:
raise KeyError(
f"Variable '{name}': dimension '{dim}' appears in new values "
f"but not in the indexed original data"
)
dims = tuple(dim for dim in var_k.dims if dim in val.dims)
if dims != val.dims:
raise ValueError(
f"Variable '{name}': dimension order differs between"
f" original and new data:\n{dims}\nvs.\n{val.dims}"
)
else:
val = np.array(val)
# type conversion
new_value[name] = duck_array_ops.astype(val, dtype=var_k.dtype, copy=False)
# check consistency of dimension sizes and dimension coordinates
if isinstance(value, DataArray | Dataset):
align(self[key], value, join="exact", copy=False)
return new_value
def __delitem__(self, key: Hashable) -> None:
"""Remove a variable from this dataset."""
assert_no_index_corrupted(self.xindexes, {key})
if key in self._indexes:
del self._indexes[key]
del self._variables[key]
self._coord_names.discard(key)
self._dims = calculate_dimensions(self._variables)
# mutable objects should not be hashable
# https://github.com/python/mypy/issues/4266
__hash__ = None # type: ignore[assignment]
def _all_compat(self, other: Self, compat_str: str) -> bool:
"""Helper function for equals and identical"""
# some stores (e.g., scipy) do not seem to preserve order, so don't
# require matching order for equality
def compat(x: Variable, y: Variable) -> bool:
return getattr(x, compat_str)(y)
return self._coord_names == other._coord_names and utils.dict_equiv(
self._variables, other._variables, compat=compat
)
def broadcast_equals(self, other: Self) -> bool:
"""Two Datasets are broadcast equal if they are equal after
broadcasting all variables against each other.
For example, variables that are scalar in one dataset but non-scalar in
the other dataset can still be broadcast equal if the the non-scalar
variable is a constant.
Examples
--------
# 2D array with shape (1, 3)
>>> data = np.array([[1, 2, 3]])
>>> a = xr.Dataset(
... {"variable_name": (("space", "time"), data)},
... coords={"space": [0], "time": [0, 1, 2]},
... )
>>> a
<xarray.Dataset> Size: 56B
Dimensions: (space: 1, time: 3)
Coordinates:
* space (space) int64 8B 0
* time (time) int64 24B 0 1 2
Data variables:
variable_name (space, time) int64 24B 1 2 3
# 2D array with shape (3, 1)
>>> data = np.array([[1], [2], [3]])
>>> b = xr.Dataset(
... {"variable_name": (("time", "space"), data)},
... coords={"time": [0, 1, 2], "space": [0]},
... )
>>> b
<xarray.Dataset> Size: 56B
Dimensions: (time: 3, space: 1)
Coordinates:
* time (time) int64 24B 0 1 2
* space (space) int64 8B 0
Data variables:
variable_name (time, space) int64 24B 1 2 3
.equals returns True if two Datasets have the same values, dimensions, and coordinates. .broadcast_equals returns True if the
results of broadcasting two Datasets against each other have the same values, dimensions, and coordinates.
>>> a.equals(b)
False
>>> a.broadcast_equals(b)
True
>>> a2, b2 = xr.broadcast(a, b)
>>> a2.equals(b2)
True
See Also
--------
Dataset.equals
Dataset.identical
Dataset.broadcast
"""
try:
return self._all_compat(other, "broadcast_equals")
except (TypeError, AttributeError):
return False
def equals(self, other: Self) -> bool:
"""Two Datasets are equal if they have matching variables and
coordinates, all of which are equal.
Datasets can still be equal (like pandas objects) if they have NaN
values in the same locations.
This method is necessary because `v1 == v2` for ``Dataset``
does element-wise comparisons (like numpy.ndarrays).
Examples
--------
# 2D array with shape (1, 3)
>>> data = np.array([[1, 2, 3]])
>>> dataset1 = xr.Dataset(
... {"variable_name": (("space", "time"), data)},
... coords={"space": [0], "time": [0, 1, 2]},
... )
>>> dataset1
<xarray.Dataset> Size: 56B
Dimensions: (space: 1, time: 3)
Coordinates:
* space (space) int64 8B 0
* time (time) int64 24B 0 1 2
Data variables:
variable_name (space, time) int64 24B 1 2 3
# 2D array with shape (3, 1)
>>> data = np.array([[1], [2], [3]])
>>> dataset2 = xr.Dataset(
... {"variable_name": (("time", "space"), data)},
... coords={"time": [0, 1, 2], "space": [0]},
... )
>>> dataset2
<xarray.Dataset> Size: 56B
Dimensions: (time: 3, space: 1)
Coordinates:
* time (time) int64 24B 0 1 2
* space (space) int64 8B 0
Data variables:
variable_name (time, space) int64 24B 1 2 3
>>> dataset1.equals(dataset2)
False
>>> dataset1.broadcast_equals(dataset2)
True
.equals returns True if two Datasets have the same values, dimensions, and coordinates. .broadcast_equals returns True if the
results of broadcasting two Datasets against each other have the same values, dimensions, and coordinates.
Similar for missing values too:
>>> ds1 = xr.Dataset(
... {
... "temperature": (["x", "y"], [[1, np.nan], [3, 4]]),
... },
... coords={"x": [0, 1], "y": [0, 1]},
... )
>>> ds2 = xr.Dataset(
... {
... "temperature": (["x", "y"], [[1, np.nan], [3, 4]]),
... },
... coords={"x": [0, 1], "y": [0, 1]},
... )
>>> ds1.equals(ds2)
True
See Also
--------
Dataset.broadcast_equals
Dataset.identical
"""
try:
return self._all_compat(other, "equals")
except (TypeError, AttributeError):
return False
def identical(self, other: Self) -> bool:
"""Like equals, but also checks all dataset attributes and the
attributes on all variables and coordinates.
Example
-------
>>> a = xr.Dataset(
... {"Width": ("X", [1, 2, 3])},
... coords={"X": [1, 2, 3]},
... attrs={"units": "m"},
... )
>>> b = xr.Dataset(
... {"Width": ("X", [1, 2, 3])},
... coords={"X": [1, 2, 3]},
... attrs={"units": "m"},
... )
>>> c = xr.Dataset(
... {"Width": ("X", [1, 2, 3])},
... coords={"X": [1, 2, 3]},
... attrs={"units": "ft"},
... )
>>> a
<xarray.Dataset> Size: 48B
Dimensions: (X: 3)
Coordinates:
* X (X) int64 24B 1 2 3
Data variables:
Width (X) int64 24B 1 2 3
Attributes:
units: m
>>> b
<xarray.Dataset> Size: 48B
Dimensions: (X: 3)
Coordinates:
* X (X) int64 24B 1 2 3
Data variables:
Width (X) int64 24B 1 2 3
Attributes:
units: m
>>> c
<xarray.Dataset> Size: 48B
Dimensions: (X: 3)
Coordinates:
* X (X) int64 24B 1 2 3
Data variables:
Width (X) int64 24B 1 2 3
Attributes:
units: ft
>>> a.equals(b)
True
>>> a.identical(b)
True
>>> a.equals(c)
True
>>> a.identical(c)
False
See Also
--------
Dataset.broadcast_equals
Dataset.equals
"""
try:
return utils.dict_equiv(self.attrs, other.attrs) and self._all_compat(
other, "identical"
)
except (TypeError, AttributeError):
return False
@property
def indexes(self) -> Indexes[pd.Index]:
"""Mapping of pandas.Index objects used for label based indexing.
Raises an error if this Dataset has indexes that cannot be coerced
to pandas.Index objects.
See Also
--------
Dataset.xindexes
"""
return self.xindexes.to_pandas_indexes()
@property
def xindexes(self) -> Indexes[Index]:
"""Mapping of :py:class:`~xarray.indexes.Index` objects
used for label based indexing.
"""
return Indexes(self._indexes, {k: self._variables[k] for k in self._indexes})
@property
def coords(self) -> DatasetCoordinates:
"""Mapping of :py:class:`~xarray.DataArray` objects corresponding to
coordinate variables.
See Also
--------
Coordinates
"""
return DatasetCoordinates(self)
@property
def data_vars(self) -> DataVariables:
"""Dictionary of DataArray objects corresponding to data variables"""
return DataVariables(self)
def set_coords(self, names: Hashable | Iterable[Hashable]) -> Self:
"""Given names of one or more variables, set them as coordinates
Parameters
----------
names : hashable or iterable of hashable
Name(s) of variables in this dataset to convert into coordinates.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "pressure": ("time", [1.013, 1.2, 3.5]),
... "time": pd.date_range("2023-01-01", periods=3),
... }
... )
>>> dataset
<xarray.Dataset> Size: 48B
Dimensions: (time: 3)
Coordinates:
* time (time) datetime64[ns] 24B 2023-01-01 2023-01-02 2023-01-03
Data variables:
pressure (time) float64 24B 1.013 1.2 3.5
>>> dataset.set_coords("pressure")
<xarray.Dataset> Size: 48B
Dimensions: (time: 3)
Coordinates:
pressure (time) float64 24B 1.013 1.2 3.5
* time (time) datetime64[ns] 24B 2023-01-01 2023-01-02 2023-01-03
Data variables:
*empty*
On calling ``set_coords`` , these data variables are converted to coordinates, as shown in the final dataset.
Returns
-------
Dataset
See Also
--------
Dataset.swap_dims
Dataset.assign_coords
"""
# TODO: allow inserting new coordinates with this method, like
# DataFrame.set_index?
# nb. check in self._variables, not self.data_vars to insure that the
# operation is idempotent
if isinstance(names, str) or not isinstance(names, Iterable):
names = [names]
else:
names = list(names)
self._assert_all_in_dataset(names)
obj = self.copy()
obj._coord_names.update(names)
return obj
def reset_coords(
self,
names: Dims = None,
drop: bool = False,
) -> Self:
"""Given names of coordinates, reset them to become variables
Parameters
----------
names : str, Iterable of Hashable or None, optional
Name(s) of non-index coordinates in this dataset to reset into
variables. By default, all non-index coordinates are reset.
drop : bool, default: False
If True, remove coordinates instead of converting them into
variables.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "temperature": (
... ["time", "lat", "lon"],
... [[[25, 26], [27, 28]], [[29, 30], [31, 32]]],
... ),
... "precipitation": (
... ["time", "lat", "lon"],
... [[[0.5, 0.8], [0.2, 0.4]], [[0.3, 0.6], [0.7, 0.9]]],
... ),
... },
... coords={
... "time": pd.date_range(start="2023-01-01", periods=2),
... "lat": [40, 41],
... "lon": [-80, -79],
... "altitude": 1000,
... },
... )
# Dataset before resetting coordinates
>>> dataset
<xarray.Dataset> Size: 184B
Dimensions: (time: 2, lat: 2, lon: 2)
Coordinates:
* time (time) datetime64[ns] 16B 2023-01-01 2023-01-02
* lat (lat) int64 16B 40 41
* lon (lon) int64 16B -80 -79
altitude int64 8B 1000
Data variables:
temperature (time, lat, lon) int64 64B 25 26 27 28 29 30 31 32
precipitation (time, lat, lon) float64 64B 0.5 0.8 0.2 0.4 0.3 0.6 0.7 0.9
# Reset the 'altitude' coordinate
>>> dataset_reset = dataset.reset_coords("altitude")
# Dataset after resetting coordinates
>>> dataset_reset
<xarray.Dataset> Size: 184B
Dimensions: (time: 2, lat: 2, lon: 2)
Coordinates:
* time (time) datetime64[ns] 16B 2023-01-01 2023-01-02
* lat (lat) int64 16B 40 41
* lon (lon) int64 16B -80 -79
Data variables:
temperature (time, lat, lon) int64 64B 25 26 27 28 29 30 31 32
precipitation (time, lat, lon) float64 64B 0.5 0.8 0.2 0.4 0.3 0.6 0.7 0.9
altitude int64 8B 1000
Returns
-------
Dataset
See Also
--------
Dataset.set_coords
"""
if names is None:
names = self._coord_names - set(self._indexes)
else:
if isinstance(names, str) or not isinstance(names, Iterable):
names = [names]
else:
names = list(names)
self._assert_all_in_dataset(names)
bad_coords = set(names) & set(self._indexes)
if bad_coords:
raise ValueError(
f"cannot remove index coordinates with reset_coords: {bad_coords}"
)
obj = self.copy()
obj._coord_names.difference_update(names)
if drop:
for name in names:
del obj._variables[name]
return obj
def dump_to_store(self, store: AbstractDataStore, **kwargs) -> None:
"""Store dataset contents to a backends.*DataStore object."""
from xarray.backends.api import dump_to_store
# TODO: rename and/or cleanup this method to make it more consistent
# with to_netcdf()
dump_to_store(self, store, **kwargs)
# path=None writes to bytes
@overload
def to_netcdf(
self,
path: None = None,
mode: NetcdfWriteModes = "w",
format: T_NetcdfTypes | None = None,
group: str | None = None,
engine: T_NetcdfEngine | None = None,
encoding: Mapping[Any, Mapping[str, Any]] | None = None,
unlimited_dims: Iterable[Hashable] | None = None,
compute: bool = True,
invalid_netcdf: bool = False,
auto_complex: bool | None = None,
) -> bytes | memoryview: ...
# compute=False returns dask.Delayed
@overload
def to_netcdf(
self,
path: str | PathLike,
mode: NetcdfWriteModes = "w",
format: T_NetcdfTypes | None = None,
group: str | None = None,
engine: T_NetcdfEngine | None = None,
encoding: Mapping[Any, Mapping[str, Any]] | None = None,
unlimited_dims: Iterable[Hashable] | None = None,
*,
compute: Literal[False],
invalid_netcdf: bool = False,
auto_complex: bool | None = None,
) -> Delayed: ...
# default return None
@overload
def to_netcdf(
self,
path: str | PathLike | io.IOBase,
mode: NetcdfWriteModes = "w",
format: T_NetcdfTypes | None = None,
group: str | None = None,
engine: T_NetcdfEngine | None = None,
encoding: Mapping[Any, Mapping[str, Any]] | None = None,
unlimited_dims: Iterable[Hashable] | None = None,
compute: Literal[True] = True,
invalid_netcdf: bool = False,
auto_complex: bool | None = None,
) -> None: ...
# if compute cannot be evaluated at type check time
# we may get back either Delayed or None
@overload
def to_netcdf(
self,
path: str | PathLike,
mode: NetcdfWriteModes = "w",
format: T_NetcdfTypes | None = None,
group: str | None = None,
engine: T_NetcdfEngine | None = None,
encoding: Mapping[Any, Mapping[str, Any]] | None = None,
unlimited_dims: Iterable[Hashable] | None = None,
compute: bool = True,
invalid_netcdf: bool = False,
auto_complex: bool | None = None,
) -> Delayed | None: ...
def to_netcdf(
self,
path: str | PathLike | io.IOBase | None = None,
mode: NetcdfWriteModes = "w",
format: T_NetcdfTypes | None = None,
group: str | None = None,
engine: T_NetcdfEngine | None = None,
encoding: Mapping[Any, Mapping[str, Any]] | None = None,
unlimited_dims: Iterable[Hashable] | None = None,
compute: bool = True,
invalid_netcdf: bool = False,
auto_complex: bool | None = None,
) -> bytes | memoryview | Delayed | None:
"""Write dataset contents to a netCDF file.
Parameters
----------
path : str, path-like or file-like, optional
Path to which to save this dataset. File-like objects are only
supported by the scipy engine. If no path is provided, this
function returns the resulting netCDF file as bytes; in this case,
we need to use scipy, which does not support netCDF version 4 (the
default format becomes NETCDF3_64BIT).
mode : {"w", "a"}, default: "w"
Write ('w') or append ('a') mode. If mode='w', any existing file at
this location will be overwritten. If mode='a', existing variables
will be overwritten.
format : {"NETCDF4", "NETCDF4_CLASSIC", "NETCDF3_64BIT", \
"NETCDF3_CLASSIC"}, optional
File format for the resulting netCDF file:
* NETCDF4: Data is stored in an HDF5 file, using netCDF4 API
features.
* NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only
netCDF 3 compatible API features.
* NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format,
which fully supports 2+ GB files, but is only compatible with
clients linked against netCDF version 3.6.0 or later.
* NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not
handle 2+ GB files very well.
All formats are supported by the netCDF4-python library.
scipy.io.netcdf only supports the last two formats.
The default format is NETCDF4 if you are saving a file to disk and
have the netCDF4-python library available. Otherwise, xarray falls
back to using scipy to write netCDF files and defaults to the
NETCDF3_64BIT format (scipy does not support netCDF4).
group : str, optional
Path to the netCDF4 group in the given file to open (only works for
format='NETCDF4'). The group(s) will be created if necessary.
engine : {"netcdf4", "scipy", "h5netcdf"}, optional
Engine to use when writing netCDF files. If not provided, the
default engine is chosen based on available dependencies, with a
preference for 'netcdf4' if writing to a file on disk.
encoding : dict, optional
Nested dictionary with variable names as keys and dictionaries of
variable specific encodings as values, e.g.,
``{"my_variable": {"dtype": "int16", "scale_factor": 0.1,
"zlib": True}, ...}``.
If ``encoding`` is specified the original encoding of the variables of
the dataset is ignored.
The `h5netcdf` engine supports both the NetCDF4-style compression
encoding parameters ``{"zlib": True, "complevel": 9}`` and the h5py
ones ``{"compression": "gzip", "compression_opts": 9}``.
This allows using any compression plugin installed in the HDF5
library, e.g. LZF.
unlimited_dims : iterable of hashable, optional
Dimension(s) that should be serialized as unlimited dimensions.
By default, no dimensions are treated as unlimited dimensions.
Note that unlimited_dims may also be set via
``dataset.encoding["unlimited_dims"]``.
compute: bool, default: True
If true compute immediately, otherwise return a
``dask.delayed.Delayed`` object that can be computed later.
invalid_netcdf: bool, default: False
Only valid along with ``engine="h5netcdf"``. If True, allow writing
hdf5 files which are invalid netcdf as described in
https://github.com/h5netcdf/h5netcdf.
Returns
-------
* ``bytes`` or ``memoryview`` if path is None
* ``dask.delayed.Delayed`` if compute is False
* ``None`` otherwise
See Also
--------
DataArray.to_netcdf
"""
if encoding is None:
encoding = {}
from xarray.backends.api import to_netcdf
return to_netcdf( # type: ignore[return-value] # mypy cannot resolve the overloads:(
self,
path,
mode=mode,
format=format,
group=group,
engine=engine,
encoding=encoding,
unlimited_dims=unlimited_dims,
compute=compute,
multifile=False,
invalid_netcdf=invalid_netcdf,
auto_complex=auto_complex,
)
# compute=True (default) returns ZarrStore
@overload
def to_zarr(
self,
store: MutableMapping | str | PathLike[str] | None = None,
chunk_store: MutableMapping | str | PathLike | None = None,
mode: ZarrWriteModes | None = None,
synchronizer=None,
group: str | None = None,
encoding: Mapping | None = None,
*,
compute: Literal[True] = True,
consolidated: bool | None = None,
append_dim: Hashable | None = None,
region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
safe_chunks: bool = True,
align_chunks: bool = False,
storage_options: dict[str, str] | None = None,
zarr_version: int | None = None,
zarr_format: int | None = None,
write_empty_chunks: bool | None = None,
chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> ZarrStore: ...
# compute=False returns dask.Delayed
@overload
def to_zarr(
self,
store: MutableMapping | str | PathLike[str] | None = None,
chunk_store: MutableMapping | str | PathLike | None = None,
mode: ZarrWriteModes | None = None,
synchronizer=None,
group: str | None = None,
encoding: Mapping | None = None,
*,
compute: Literal[False],
consolidated: bool | None = None,
append_dim: Hashable | None = None,
region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
safe_chunks: bool = True,
align_chunks: bool = False,
storage_options: dict[str, str] | None = None,
zarr_version: int | None = None,
zarr_format: int | None = None,
write_empty_chunks: bool | None = None,
chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> Delayed: ...
def to_zarr(
self,
store: MutableMapping | str | PathLike[str] | None = None,
chunk_store: MutableMapping | str | PathLike | None = None,
mode: ZarrWriteModes | None = None,
synchronizer=None,
group: str | None = None,
encoding: Mapping | None = None,
*,
compute: bool = True,
consolidated: bool | None = None,
append_dim: Hashable | None = None,
region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
safe_chunks: bool = True,
align_chunks: bool = False,
storage_options: dict[str, str] | None = None,
zarr_version: int | None = None,
zarr_format: int | None = None,
write_empty_chunks: bool | None = None,
chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> ZarrStore | Delayed:
"""Write dataset contents to a zarr group.
Zarr chunks are determined in the following way:
- From the ``chunks`` attribute in each variable's ``encoding``
(can be set via `Dataset.chunk`).
- If the variable is a Dask array, from the dask chunks
- If neither Dask chunks nor encoding chunks are present, chunks will
be determined automatically by Zarr
- If both Dask chunks and encoding chunks are present, encoding chunks
will be used, provided that there is a many-to-one relationship between
encoding chunks and dask chunks (i.e. Dask chunks are bigger than and
evenly divide encoding chunks); otherwise raise a ``ValueError``.
This restriction ensures that no synchronization / locks are required
when writing. To disable this restriction, use ``safe_chunks=False``.
Parameters
----------
store : MutableMapping, str or path-like, optional
Store or path to directory in local or remote file system.
chunk_store : MutableMapping, str or path-like, optional
Store or path to directory in local or remote file system only for Zarr
array chunks. Requires zarr-python v2.4.0 or later.
mode : {"w", "w-", "a", "a-", r+", None}, optional
Persistence mode: "w" means create (overwrite if exists);
"w-" means create (fail if exists);
"a" means override all existing variables including dimension coordinates (create if does not exist);
"a-" means only append those variables that have ``append_dim``.
"r+" means modify existing array *values* only (raise an error if
any metadata or shapes would change).
The default mode is "a" if ``append_dim`` is set. Otherwise, it is
"r+" if ``region`` is set and ``w-`` otherwise.
synchronizer : object, optional
Zarr array synchronizer.
group : str, optional
Group path. (a.k.a. `path` in zarr terminology.)
encoding : dict, optional
Nested dictionary with variable names as keys and dictionaries of
variable specific encodings as values, e.g.,
``{"my_variable": {"dtype": "int16", "scale_factor": 0.1,}, ...}``
compute : bool, default: True
If True write array data immediately, otherwise return a
``dask.delayed.Delayed`` object that can be computed to write
array data later. Metadata is always updated eagerly.
consolidated : bool, optional
If True, apply :func:`zarr.convenience.consolidate_metadata`
after writing metadata and read existing stores with consolidated
metadata; if False, do not. The default (`consolidated=None`) means
write consolidated metadata and attempt to read consolidated
metadata for existing stores (falling back to non-consolidated).
When the experimental ``zarr_version=3``, ``consolidated`` must be
either be ``None`` or ``False``.
append_dim : hashable, optional
If set, the dimension along which the data will be appended. All
other dimensions on overridden variables must remain the same size.
region : dict or "auto", optional
Optional mapping from dimension names to either a) ``"auto"``, or b) integer
slices, indicating the region of existing zarr array(s) in which to write
this dataset's data.
If ``"auto"`` is provided the existing store will be opened and the region
inferred by matching indexes. ``"auto"`` can be used as a single string,
which will automatically infer the region for all dimensions, or as
dictionary values for specific dimensions mixed together with explicit
slices for other dimensions.
Alternatively integer slices can be provided; for example, ``{'x': slice(0,
1000), 'y': slice(10000, 11000)}`` would indicate that values should be
written to the region ``0:1000`` along ``x`` and ``10000:11000`` along
``y``.
Two restrictions apply to the use of ``region``:
- If ``region`` is set, _all_ variables in a dataset must have at
least one dimension in common with the region. Other variables
should be written in a separate single call to ``to_zarr()``.
- Dimensions cannot be included in both ``region`` and
``append_dim`` at the same time. To create empty arrays to fill
in with ``region``, use a separate call to ``to_zarr()`` with
``compute=False``. See "Modifying existing Zarr stores" in
the reference documentation for full details.
Users are expected to ensure that the specified region aligns with
Zarr chunk boundaries, and that dask chunks are also aligned.
Xarray makes limited checks that these multiple chunk boundaries line up.
It is possible to write incomplete chunks and corrupt the data with this
option if you are not careful.
safe_chunks : bool, default: True
If True, only allow writes to when there is a many-to-one relationship
between Zarr chunks (specified in encoding) and Dask chunks.
Set False to override this restriction; however, data may become corrupted
if Zarr arrays are written in parallel. This option may be useful in combination
with ``compute=False`` to initialize a Zarr from an existing
Dataset with arbitrary chunk structure.
In addition to the many-to-one relationship validation, it also detects partial
chunks writes when using the region parameter,
these partial chunks are considered unsafe in the mode "r+" but safe in
the mode "a".
Note: Even with these validations it can still be unsafe to write
two or more chunked arrays in the same location in parallel if they are
not writing in independent regions, for those cases it is better to use
a synchronizer.
align_chunks: bool, default False
If True, rechunks the Dask array to align with Zarr chunks before writing.
This ensures each Dask chunk maps to one or more contiguous Zarr chunks,
which avoids race conditions.
Internally, the process sets safe_chunks=False and tries to preserve
the original Dask chunking as much as possible.
Note: While this alignment avoids write conflicts stemming from chunk
boundary misalignment, it does not protect against race conditions
if multiple uncoordinated processes write to the same
Zarr array concurrently.
storage_options : dict, optional
Any additional parameters for the storage backend (ignored for local
paths).
zarr_version : int or None, optional
.. deprecated:: 2024.9.1
Use ``zarr_format`` instead.
zarr_format : int or None, optional
The desired zarr format to target (currently 2 or 3). The default
of None will attempt to determine the zarr version from ``store`` when
possible, otherwise defaulting to the default version used by
the zarr-python library installed.
write_empty_chunks : bool or None, optional
If True, all chunks will be stored regardless of their
contents. If False, each chunk is compared to the array's fill value
prior to storing. If a chunk is uniformly equal to the fill value, then
that chunk is not be stored, and the store entry for that chunk's key
is deleted. This setting enables sparser storage, as only chunks with
non-fill-value data are stored, at the expense of overhead associated
with checking the data of each chunk. If None (default) fall back to
specification(s) in ``encoding`` or Zarr defaults. A ``ValueError``
will be raised if the value of this (if not None) differs with
``encoding``.
chunkmanager_store_kwargs : dict, optional
Additional keyword arguments passed on to the `ChunkManager.store` method used to store
chunked arrays. For example for a dask array additional kwargs will be passed eventually to
:py:func:`dask.array.store()`. Experimental API that should not be relied upon.
Returns
-------
* ``dask.delayed.Delayed`` if compute is False
* ZarrStore otherwise
References
----------
https://zarr.readthedocs.io/
Notes
-----
Zarr chunking behavior:
If chunks are found in the encoding argument or attribute
corresponding to any DataArray, those chunks are used.
If a DataArray is a dask array, it is written with those chunks.
If not other chunks are found, Zarr uses its own heuristics to
choose automatic chunk sizes.
encoding:
The encoding attribute (if exists) of the DataArray(s) will be
used. Override any existing encodings by providing the ``encoding`` kwarg.
``fill_value`` handling:
There exists a subtlety in interpreting zarr's ``fill_value`` property. For zarr v2 format
arrays, ``fill_value`` is *always* interpreted as an invalid value similar to the ``_FillValue`` attribute
in CF/netCDF. For Zarr v3 format arrays, only an explicit ``_FillValue`` attribute will be used
to mask the data if requested using ``mask_and_scale=True``. See this `Github issue <https://github.com/pydata/xarray/issues/5475>`_
for more.
See Also
--------
:ref:`io.zarr`
The I/O user guide, with more details and examples.
"""
from xarray.backends.api import to_zarr
return to_zarr( # type: ignore[call-overload,misc]
self,
store=store,
chunk_store=chunk_store,
storage_options=storage_options,
mode=mode,
synchronizer=synchronizer,
group=group,
encoding=encoding,
compute=compute,
consolidated=consolidated,
append_dim=append_dim,
region=region,
safe_chunks=safe_chunks,
zarr_version=zarr_version,
zarr_format=zarr_format,
write_empty_chunks=write_empty_chunks,
chunkmanager_store_kwargs=chunkmanager_store_kwargs,
)
def __repr__(self) -> str:
return formatting.dataset_repr(self)
def _repr_html_(self) -> str:
if OPTIONS["display_style"] == "text":
return f"<pre>{escape(repr(self))}</pre>"
return formatting_html.dataset_repr(self)
def info(self, buf: IO | None = None) -> None:
"""
Concise summary of a Dataset variables and attributes.
Parameters
----------
buf : file-like, default: sys.stdout
writable buffer
See Also
--------
pandas.DataFrame.assign
ncdump : netCDF's ncdump
"""
if buf is None: # pragma: no cover
buf = sys.stdout
lines = [
"xarray.Dataset {",
"dimensions:",
]
for name, size in self.sizes.items():
lines.append(f"\t{name} = {size} ;")
lines.append("\nvariables:")
for name, da in self.variables.items():
dims = ", ".join(map(str, da.dims))
lines.append(f"\t{da.dtype} {name}({dims}) ;")
for k, v in da.attrs.items():
lines.append(f"\t\t{name}:{k} = {v} ;")
lines.append("\n// global attributes:")
for k, v in self.attrs.items():
lines.append(f"\t:{k} = {v} ;")
lines.append("}")
buf.write("\n".join(lines))
@property
def chunks(self) -> Mapping[Hashable, tuple[int, ...]]:
"""
Mapping from dimension names to block lengths for this dataset's data.
If this dataset does not contain chunked arrays, the mapping will be empty.
Cannot be modified directly, but can be modified by calling .chunk().
Same as Dataset.chunksizes, but maintained for backwards compatibility.
See Also
--------
Dataset.chunk
Dataset.chunksizes
xarray.unify_chunks
"""
return get_chunksizes(self.variables.values())
@property
def chunksizes(self) -> Mapping[Hashable, tuple[int, ...]]:
"""
Mapping from dimension names to block lengths for this dataset's data.
If this dataset does not contain chunked arrays, the mapping will be empty.
Cannot be modified directly, but can be modified by calling .chunk().
Same as Dataset.chunks.
See Also
--------
Dataset.chunk
Dataset.chunks
xarray.unify_chunks
"""
return get_chunksizes(self.variables.values())
def chunk(
self,
chunks: T_ChunksFreq = {}, # noqa: B006 # {} even though it's technically unsafe, is being used intentionally here (#4667)
name_prefix: str = "xarray-",
token: str | None = None,
lock: bool = False,
inline_array: bool = False,
chunked_array_type: str | ChunkManagerEntrypoint | None = None,
from_array_kwargs=None,
**chunks_kwargs: T_ChunkDimFreq,
) -> Self:
"""Coerce all arrays in this dataset into dask arrays with the given
chunks.
Non-dask arrays in this dataset will be converted to dask arrays. Dask
arrays will be rechunked to the given chunk sizes.
If neither chunks is not provided for one or more dimensions, chunk
sizes along that dimension will not be updated; non-dask arrays will be
converted into dask arrays with a single block.
Along datetime-like dimensions, a :py:class:`groupers.TimeResampler` object is also accepted.
Parameters
----------
chunks : int, tuple of int, "auto" or mapping of hashable to int or a TimeResampler, optional
Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, or
``{"x": 5, "y": 5}`` or ``{"x": 5, "time": TimeResampler(freq="YE")}``.
name_prefix : str, default: "xarray-"
Prefix for the name of any new dask arrays.
token : str, optional
Token uniquely identifying this dataset.
lock : bool, default: False
Passed on to :py:func:`dask.array.from_array`, if the array is not
already as dask array.
inline_array: bool, default: False
Passed on to :py:func:`dask.array.from_array`, if the array is not
already as dask array.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example, with dask as the default chunked array type, this method would pass additional kwargs
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
**chunks_kwargs : {dim: chunks, ...}, optional
The keyword arguments form of ``chunks``.
One of chunks or chunks_kwargs must be provided
Returns
-------
chunked : xarray.Dataset
See Also
--------
Dataset.chunks
Dataset.chunksizes
xarray.unify_chunks
dask.array.from_array
"""
from xarray.core.dataarray import DataArray
from xarray.groupers import TimeResampler
if chunks is None and not chunks_kwargs:
warnings.warn(
"None value for 'chunks' is deprecated. "
"It will raise an error in the future. Use instead '{}'",
category=DeprecationWarning,
stacklevel=2,
)
chunks = {}
chunks_mapping: Mapping[Any, Any]
if not isinstance(chunks, Mapping) and chunks is not None:
if isinstance(chunks, tuple | list):
utils.emit_user_level_warning(
"Supplying chunks as dimension-order tuples is deprecated. "
"It will raise an error in the future. Instead use a dict with dimensions as keys.",
category=DeprecationWarning,
)
chunks_mapping = dict.fromkeys(self.dims, chunks)
else:
chunks_mapping = either_dict_or_kwargs(chunks, chunks_kwargs, "chunk")
bad_dims = chunks_mapping.keys() - self.sizes.keys()
if bad_dims:
raise ValueError(
f"chunks keys {tuple(bad_dims)} not found in data dimensions {tuple(self.sizes.keys())}"
)
def _resolve_frequency(
name: Hashable, resampler: TimeResampler
) -> tuple[int, ...]:
variable = self._variables.get(name, None)
if variable is None:
raise ValueError(
f"Cannot chunk by resampler {resampler!r} for virtual variables."
)
elif not _contains_datetime_like_objects(variable):
raise ValueError(
f"chunks={resampler!r} only supported for datetime variables. "
f"Received variable {name!r} with dtype {variable.dtype!r} instead."
)
assert variable.ndim == 1
chunks = (
DataArray(
np.ones(variable.shape, dtype=int),
dims=(name,),
coords={name: variable},
)
.resample({name: resampler})
.sum()
)
# When bins (binning) or time periods are missing (resampling)
# we can end up with NaNs. Drop them.
if chunks.dtype.kind == "f":
chunks = chunks.dropna(name).astype(int)
chunks_tuple: tuple[int, ...] = tuple(chunks.data.tolist())
return chunks_tuple
chunks_mapping_ints: Mapping[Any, T_ChunkDim] = {
name: (
_resolve_frequency(name, chunks)
if isinstance(chunks, TimeResampler)
else chunks
)
for name, chunks in chunks_mapping.items()
}
chunkmanager = guess_chunkmanager(chunked_array_type)
if from_array_kwargs is None:
from_array_kwargs = {}
variables = {
k: _maybe_chunk(
k,
v,
chunks_mapping_ints,
token,
lock,
name_prefix,
inline_array=inline_array,
chunked_array_type=chunkmanager,
from_array_kwargs=from_array_kwargs.copy(),
)
for k, v in self.variables.items()
}
return self._replace(variables)
def _validate_indexers(
self, indexers: Mapping[Any, Any], missing_dims: ErrorOptionsWithWarn = "raise"
) -> Iterator[tuple[Hashable, int | slice | np.ndarray | Variable]]:
"""Here we make sure
+ indexer has a valid keys
+ indexer is in a valid data type
+ string indexers are cast to the appropriate date type if the
associated index is a DatetimeIndex or CFTimeIndex
"""
from xarray.core.dataarray import DataArray
indexers = drop_dims_from_indexers(indexers, self.dims, missing_dims)
# all indexers should be int, slice, np.ndarrays, or Variable
for k, v in indexers.items():
if isinstance(v, int | slice | Variable):
yield k, v
elif isinstance(v, DataArray):
yield k, v.variable
elif isinstance(v, tuple):
yield k, as_variable(v)
elif isinstance(v, Dataset):
raise TypeError("cannot use a Dataset as an indexer")
elif isinstance(v, Sequence) and len(v) == 0:
yield k, np.empty((0,), dtype="int64")
else:
if not is_duck_array(v):
v = np.asarray(v)
if v.dtype.kind in "US":
index = self._indexes[k].to_pandas_index()
if isinstance(index, pd.DatetimeIndex):
v = duck_array_ops.astype(v, dtype="datetime64[ns]")
elif isinstance(index, CFTimeIndex):
v = _parse_array_of_cftime_strings(v, index.date_type)
if v.ndim > 1:
raise IndexError(
"Unlabeled multi-dimensional array cannot be "
f"used for indexing: {k}"
)
yield k, v
def _validate_interp_indexers(
self, indexers: Mapping[Any, Any]
) -> Iterator[tuple[Hashable, Variable]]:
"""Variant of _validate_indexers to be used for interpolation"""
for k, v in self._validate_indexers(indexers):
if isinstance(v, Variable):
yield k, v
elif is_scalar(v):
yield k, Variable((), v, attrs=self.coords[k].attrs)
elif isinstance(v, np.ndarray):
yield k, Variable(dims=(k,), data=v, attrs=self.coords[k].attrs)
else:
raise TypeError(type(v))
def _get_indexers_coords_and_indexes(self, indexers):
"""Extract coordinates and indexes from indexers.
Only coordinate with a name different from any of self.variables will
be attached.
"""
from xarray.core.dataarray import DataArray
coords_list = []
for k, v in indexers.items():
if isinstance(v, DataArray):
if v.dtype.kind == "b":
if v.ndim != 1: # we only support 1-d boolean array
raise ValueError(
f"{v.ndim:d}d-boolean array is used for indexing along "
f"dimension {k!r}, but only 1d boolean arrays are "
"supported."
)
# Make sure in case of boolean DataArray, its
# coordinate also should be indexed.
v_coords = v[v.values.nonzero()[0]].coords
else:
v_coords = v.coords
coords_list.append(v_coords)
# we don't need to call align() explicitly or check indexes for
# alignment, because merge_variables already checks for exact alignment
# between dimension coordinates
coords, indexes = merge_coordinates_without_align(coords_list)
assert_coordinate_consistent(self, coords)
# silently drop the conflicted variables.
attached_coords = {k: v for k, v in coords.items() if k not in self._variables}
attached_indexes = {
k: v for k, v in indexes.items() if k not in self._variables
}
return attached_coords, attached_indexes
def isel(
self,
indexers: Mapping[Any, Any] | None = None,
drop: bool = False,
missing_dims: ErrorOptionsWithWarn = "raise",
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with each array indexed along the specified
dimension(s).
This method selects values from each array using its `__getitem__`
method, except this method does not require knowing the order of
each array's dimensions.
Parameters
----------
indexers : dict, optional
A dict with keys matching dimensions and values given
by integers, slice objects or arrays.
indexer can be a integer, slice, array-like or DataArray.
If DataArrays are passed as indexers, xarray-style indexing will be
carried out. See :ref:`indexing` for the details.
One of indexers or indexers_kwargs must be provided.
drop : bool, default: False
If ``drop=True``, drop coordinates variables indexed by integers
instead of making them scalar.
missing_dims : {"raise", "warn", "ignore"}, default: "raise"
What to do if dimensions that should be selected from are not present in the
Dataset:
- "raise": raise an exception
- "warn": raise a warning, and ignore the missing dimensions
- "ignore": ignore the missing dimensions
**indexers_kwargs : {dim: indexer, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Returns
-------
obj : Dataset
A new Dataset with the same contents as this dataset, except each
array and dimension is indexed by the appropriate indexers.
If indexer DataArrays have coordinates that do not conflict with
this object, then these coordinates will be attached.
In general, each array's data will be a view of the array's data
in this dataset, unless vectorized indexing was triggered by using
an array indexer, in which case the data will be a copy.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "math_scores": (
... ["student", "test"],
... [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
... ),
... "english_scores": (
... ["student", "test"],
... [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
... ),
... },
... coords={
... "student": ["Alice", "Bob", "Charlie"],
... "test": ["Test 1", "Test 2", "Test 3"],
... },
... )
# A specific element from the dataset is selected
>>> dataset.isel(student=1, test=0)
<xarray.Dataset> Size: 68B
Dimensions: ()
Coordinates:
student <U7 28B 'Bob'
test <U6 24B 'Test 1'
Data variables:
math_scores int64 8B 78
english_scores int64 8B 75
# Indexing with a slice using isel
>>> slice_of_data = dataset.isel(student=slice(0, 2), test=slice(0, 2))
>>> slice_of_data
<xarray.Dataset> Size: 168B
Dimensions: (student: 2, test: 2)
Coordinates:
* student (student) <U7 56B 'Alice' 'Bob'
* test (test) <U6 48B 'Test 1' 'Test 2'
Data variables:
math_scores (student, test) int64 32B 90 85 78 80
english_scores (student, test) int64 32B 88 90 75 82
>>> index_array = xr.DataArray([0, 2], dims="student")
>>> indexed_data = dataset.isel(student=index_array)
>>> indexed_data
<xarray.Dataset> Size: 224B
Dimensions: (student: 2, test: 3)
Coordinates:
* student (student) <U7 56B 'Alice' 'Charlie'
* test (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'
Data variables:
math_scores (student, test) int64 48B 90 85 92 95 92 98
english_scores (student, test) int64 48B 88 90 92 93 96 91
See Also
--------
:func:`Dataset.sel <Dataset.sel>`
:func:`DataArray.isel <DataArray.isel>`
:doc:`xarray-tutorial:intermediate/indexing/indexing`
Tutorial material on indexing with Xarray objects
:doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic`
Tutorial material on basics of indexing
"""
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel")
if any(is_fancy_indexer(idx) for idx in indexers.values()):
return self._isel_fancy(indexers, drop=drop, missing_dims=missing_dims)
# Much faster algorithm for when all indexers are ints, slices, one-dimensional
# lists, or zero or one-dimensional np.ndarray's
indexers = drop_dims_from_indexers(indexers, self.dims, missing_dims)
variables = {}
dims: dict[Hashable, int] = {}
coord_names = self._coord_names.copy()
indexes, index_variables = isel_indexes(self.xindexes, indexers)
for name, var in self._variables.items():
# preserve variable order
if name in index_variables:
var = index_variables[name]
else:
var_indexers = {k: v for k, v in indexers.items() if k in var.dims}
if var_indexers:
var = var.isel(var_indexers)
if drop and var.ndim == 0 and name in coord_names:
coord_names.remove(name)
continue
variables[name] = var
dims.update(zip(var.dims, var.shape, strict=True))
return self._construct_direct(
variables=variables,
coord_names=coord_names,
dims=dims,
attrs=self._attrs,
indexes=indexes,
encoding=self._encoding,
close=self._close,
)
def _isel_fancy(
self,
indexers: Mapping[Any, Any],
*,
drop: bool,
missing_dims: ErrorOptionsWithWarn = "raise",
) -> Self:
valid_indexers = dict(self._validate_indexers(indexers, missing_dims))
variables: dict[Hashable, Variable] = {}
indexes, index_variables = isel_indexes(self.xindexes, valid_indexers)
for name, var in self.variables.items():
if name in index_variables:
new_var = index_variables[name]
else:
var_indexers = {
k: v for k, v in valid_indexers.items() if k in var.dims
}
if var_indexers:
new_var = var.isel(indexers=var_indexers)
# drop scalar coordinates
# https://github.com/pydata/xarray/issues/6554
if name in self.coords and drop and new_var.ndim == 0:
continue
else:
new_var = var.copy(deep=False)
if name not in indexes:
new_var = new_var.to_base_variable()
variables[name] = new_var
coord_names = self._coord_names & variables.keys()
selected = self._replace_with_new_dims(variables, coord_names, indexes)
# Extract coordinates from indexers
coord_vars, new_indexes = selected._get_indexers_coords_and_indexes(indexers)
variables.update(coord_vars)
indexes.update(new_indexes)
coord_names = self._coord_names & variables.keys() | coord_vars.keys()
return self._replace_with_new_dims(variables, coord_names, indexes=indexes)
def sel(
self,
indexers: Mapping[Any, Any] | None = None,
method: str | None = None,
tolerance: int | float | Iterable[int | float] | None = None,
drop: bool = False,
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with each array indexed by tick labels
along the specified dimension(s).
In contrast to `Dataset.isel`, indexers for this method should use
labels instead of integers.
Under the hood, this method is powered by using pandas's powerful Index
objects. This makes label based indexing essentially just as fast as
using integer indexing.
It also means this method uses pandas's (well documented) logic for
indexing. This means you can use string shortcuts for datetime indexes
(e.g., '2000-01' to select all values in January 2000). It also means
that slices are treated as inclusive of both the start and stop values,
unlike normal Python indexing.
Parameters
----------
indexers : dict, optional
A dict with keys matching dimensions and values given
by scalars, slices or arrays of tick labels. For dimensions with
multi-index, the indexer may also be a dict-like object with keys
matching index level names.
If DataArrays are passed as indexers, xarray-style indexing will be
carried out. See :ref:`indexing` for the details.
One of indexers or indexers_kwargs must be provided.
method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional
Method to use for inexact matches:
* None (default): only exact matches
* pad / ffill: propagate last valid index value forward
* backfill / bfill: propagate next valid index value backward
* nearest: use nearest valid index value
tolerance : optional
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations must
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
drop : bool, optional
If ``drop=True``, drop coordinates variables in `indexers` instead
of making them scalar.
**indexers_kwargs : {dim: indexer, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Returns
-------
obj : Dataset
A new Dataset with the same contents as this dataset, except each
variable and dimension is indexed by the appropriate indexers.
If indexer DataArrays have coordinates that do not conflict with
this object, then these coordinates will be attached.
In general, each array's data will be a view of the array's data
in this dataset, unless vectorized indexing was triggered by using
an array indexer, in which case the data will be a copy.
See Also
--------
:func:`Dataset.isel <Dataset.isel>`
:func:`DataArray.sel <DataArray.sel>`
:doc:`xarray-tutorial:intermediate/indexing/indexing`
Tutorial material on indexing with Xarray objects
:doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic`
Tutorial material on basics of indexing
"""
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel")
query_results = map_index_queries(
self, indexers=indexers, method=method, tolerance=tolerance
)
if drop:
no_scalar_variables = {}
for k, v in query_results.variables.items():
if v.dims:
no_scalar_variables[k] = v
elif k in self._coord_names:
query_results.drop_coords.append(k)
query_results.variables = no_scalar_variables
result = self.isel(indexers=query_results.dim_indexers, drop=drop)
return result._overwrite_indexes(*query_results.as_tuple()[1:])
def _shuffle(self, dim, *, indices: GroupIndices, chunks: T_Chunks) -> Self:
# Shuffling is only different from `isel` for chunked arrays.
# Extract them out, and treat them specially. The rest, we route through isel.
# This makes it easy to ensure correct handling of indexes.
is_chunked = {
name: var
for name, var in self._variables.items()
if is_chunked_array(var._data)
}
subset = self[[name for name in self._variables if name not in is_chunked]]
no_slices: list[list[int]] = [
(
list(range(*idx.indices(self.sizes[dim])))
if isinstance(idx, slice)
else idx
)
for idx in indices
]
no_slices = [idx for idx in no_slices if idx]
shuffled = (
subset
if dim not in subset.dims
else subset.isel({dim: np.concatenate(no_slices)})
)
for name, var in is_chunked.items():
shuffled[name] = var._shuffle(
indices=no_slices,
dim=dim,
chunks=chunks,
)
return shuffled
def head(
self,
indexers: Mapping[Any, int] | int | None = None,
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with the first `n` values of each array
for the specified dimension(s).
Parameters
----------
indexers : dict or int, default: 5
A dict with keys matching dimensions and integer values `n`
or a single integer `n` applied over all dimensions.
One of indexers or indexers_kwargs must be provided.
**indexers_kwargs : {dim: n, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Examples
--------
>>> dates = pd.date_range(start="2023-01-01", periods=5)
>>> pageviews = [1200, 1500, 900, 1800, 2000]
>>> visitors = [800, 1000, 600, 1200, 1500]
>>> dataset = xr.Dataset(
... {
... "pageviews": (("date"), pageviews),
... "visitors": (("date"), visitors),
... },
... coords={"date": dates},
... )
>>> busiest_days = dataset.sortby("pageviews", ascending=False)
>>> busiest_days.head()
<xarray.Dataset> Size: 120B
Dimensions: (date: 5)
Coordinates:
* date (date) datetime64[ns] 40B 2023-01-05 2023-01-04 ... 2023-01-03
Data variables:
pageviews (date) int64 40B 2000 1800 1500 1200 900
visitors (date) int64 40B 1500 1200 1000 800 600
# Retrieve the 3 most busiest days in terms of pageviews
>>> busiest_days.head(3)
<xarray.Dataset> Size: 72B
Dimensions: (date: 3)
Coordinates:
* date (date) datetime64[ns] 24B 2023-01-05 2023-01-04 2023-01-02
Data variables:
pageviews (date) int64 24B 2000 1800 1500
visitors (date) int64 24B 1500 1200 1000
# Using a dictionary to specify the number of elements for specific dimensions
>>> busiest_days.head({"date": 3})
<xarray.Dataset> Size: 72B
Dimensions: (date: 3)
Coordinates:
* date (date) datetime64[ns] 24B 2023-01-05 2023-01-04 2023-01-02
Data variables:
pageviews (date) int64 24B 2000 1800 1500
visitors (date) int64 24B 1500 1200 1000
See Also
--------
Dataset.tail
Dataset.thin
DataArray.head
"""
if not indexers_kwargs:
if indexers is None:
indexers = 5
if not isinstance(indexers, int) and not is_dict_like(indexers):
raise TypeError("indexers must be either dict-like or a single integer")
if isinstance(indexers, int):
indexers = dict.fromkeys(self.dims, indexers)
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "head")
for k, v in indexers.items():
if not isinstance(v, int):
raise TypeError(
"expected integer type indexer for "
f"dimension {k!r}, found {type(v)!r}"
)
elif v < 0:
raise ValueError(
"expected positive integer as indexer "
f"for dimension {k!r}, found {v}"
)
indexers_slices = {k: slice(val) for k, val in indexers.items()}
return self.isel(indexers_slices)
def tail(
self,
indexers: Mapping[Any, int] | int | None = None,
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with the last `n` values of each array
for the specified dimension(s).
Parameters
----------
indexers : dict or int, default: 5
A dict with keys matching dimensions and integer values `n`
or a single integer `n` applied over all dimensions.
One of indexers or indexers_kwargs must be provided.
**indexers_kwargs : {dim: n, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Examples
--------
>>> activity_names = ["Walking", "Running", "Cycling", "Swimming", "Yoga"]
>>> durations = [30, 45, 60, 45, 60] # in minutes
>>> energies = [150, 300, 250, 400, 100] # in calories
>>> dataset = xr.Dataset(
... {
... "duration": (["activity"], durations),
... "energy_expenditure": (["activity"], energies),
... },
... coords={"activity": activity_names},
... )
>>> sorted_dataset = dataset.sortby("energy_expenditure", ascending=False)
>>> sorted_dataset
<xarray.Dataset> Size: 240B
Dimensions: (activity: 5)
Coordinates:
* activity (activity) <U8 160B 'Swimming' 'Running' ... 'Yoga'
Data variables:
duration (activity) int64 40B 45 45 60 30 60
energy_expenditure (activity) int64 40B 400 300 250 150 100
# Activities with the least energy expenditures using tail()
>>> sorted_dataset.tail(3)
<xarray.Dataset> Size: 144B
Dimensions: (activity: 3)
Coordinates:
* activity (activity) <U8 96B 'Cycling' 'Walking' 'Yoga'
Data variables:
duration (activity) int64 24B 60 30 60
energy_expenditure (activity) int64 24B 250 150 100
>>> sorted_dataset.tail({"activity": 3})
<xarray.Dataset> Size: 144B
Dimensions: (activity: 3)
Coordinates:
* activity (activity) <U8 96B 'Cycling' 'Walking' 'Yoga'
Data variables:
duration (activity) int64 24B 60 30 60
energy_expenditure (activity) int64 24B 250 150 100
See Also
--------
Dataset.head
Dataset.thin
DataArray.tail
"""
if not indexers_kwargs:
if indexers is None:
indexers = 5
if not isinstance(indexers, int) and not is_dict_like(indexers):
raise TypeError("indexers must be either dict-like or a single integer")
if isinstance(indexers, int):
indexers = dict.fromkeys(self.dims, indexers)
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "tail")
for k, v in indexers.items():
if not isinstance(v, int):
raise TypeError(
"expected integer type indexer for "
f"dimension {k!r}, found {type(v)!r}"
)
elif v < 0:
raise ValueError(
"expected positive integer as indexer "
f"for dimension {k!r}, found {v}"
)
indexers_slices = {
k: slice(-val, None) if val != 0 else slice(val)
for k, val in indexers.items()
}
return self.isel(indexers_slices)
def thin(
self,
indexers: Mapping[Any, int] | int | None = None,
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with each array indexed along every `n`-th
value for the specified dimension(s)
Parameters
----------
indexers : dict or int
A dict with keys matching dimensions and integer values `n`
or a single integer `n` applied over all dimensions.
One of indexers or indexers_kwargs must be provided.
**indexers_kwargs : {dim: n, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Examples
--------
>>> x_arr = np.arange(0, 26)
>>> x_arr
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25])
>>> x = xr.DataArray(
... np.reshape(x_arr, (2, 13)),
... dims=("x", "y"),
... coords={"x": [0, 1], "y": np.arange(0, 13)},
... )
>>> x_ds = xr.Dataset({"foo": x})
>>> x_ds
<xarray.Dataset> Size: 328B
Dimensions: (x: 2, y: 13)
Coordinates:
* x (x) int64 16B 0 1
* y (y) int64 104B 0 1 2 3 4 5 6 7 8 9 10 11 12
Data variables:
foo (x, y) int64 208B 0 1 2 3 4 5 6 7 8 ... 17 18 19 20 21 22 23 24 25
>>> x_ds.thin(3)
<xarray.Dataset> Size: 88B
Dimensions: (x: 1, y: 5)
Coordinates:
* x (x) int64 8B 0
* y (y) int64 40B 0 3 6 9 12
Data variables:
foo (x, y) int64 40B 0 3 6 9 12
>>> x.thin({"x": 2, "y": 5})
<xarray.DataArray (x: 1, y: 3)> Size: 24B
array([[ 0, 5, 10]])
Coordinates:
* x (x) int64 8B 0
* y (y) int64 24B 0 5 10
See Also
--------
Dataset.head
Dataset.tail
DataArray.thin
"""
if (
not indexers_kwargs
and not isinstance(indexers, int)
and not is_dict_like(indexers)
):
raise TypeError("indexers must be either dict-like or a single integer")
if isinstance(indexers, int):
indexers = dict.fromkeys(self.dims, indexers)
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "thin")
for k, v in indexers.items():
if not isinstance(v, int):
raise TypeError(
"expected integer type indexer for "
f"dimension {k!r}, found {type(v)!r}"
)
elif v < 0:
raise ValueError(
"expected positive integer as indexer "
f"for dimension {k!r}, found {v}"
)
elif v == 0:
raise ValueError("step cannot be zero")
indexers_slices = {k: slice(None, None, val) for k, val in indexers.items()}
return self.isel(indexers_slices)
def broadcast_like(
self,
other: T_DataArrayOrSet,
exclude: Iterable[Hashable] | None = None,
) -> Self:
"""Broadcast this DataArray against another Dataset or DataArray.
This is equivalent to xr.broadcast(other, self)[1]
Parameters
----------
other : Dataset or DataArray
Object against which to broadcast this array.
exclude : iterable of hashable, optional
Dimensions that must not be broadcasted
"""
if exclude is None:
exclude = set()
else:
exclude = set(exclude)
args = align(other, self, join="outer", copy=False, exclude=exclude)
dims_map, common_coords = _get_broadcast_dims_map_common_coords(args, exclude)
return _broadcast_helper(args[1], exclude, dims_map, common_coords)
def _reindex_callback(
self,
aligner: alignment.Aligner,
dim_pos_indexers: dict[Hashable, Any],
variables: dict[Hashable, Variable],
indexes: dict[Hashable, Index],
fill_value: Any,
exclude_dims: frozenset[Hashable],
exclude_vars: frozenset[Hashable],
) -> Self:
"""Callback called from ``Aligner`` to create a new reindexed Dataset."""
new_variables = variables.copy()
new_indexes = indexes.copy()
# re-assign variable metadata
for name, new_var in new_variables.items():
var = self._variables.get(name)
if var is not None:
new_var.attrs = var.attrs
new_var.encoding = var.encoding
# pass through indexes from excluded dimensions
# no extra check needed for multi-coordinate indexes, potential conflicts
# should already have been detected when aligning the indexes
for name, idx in self._indexes.items():
var = self._variables[name]
if set(var.dims) <= exclude_dims:
new_indexes[name] = idx
new_variables[name] = var
if not dim_pos_indexers:
# fast path for no reindexing necessary
if set(new_indexes) - set(self._indexes):
# this only adds new indexes and their coordinate variables
reindexed = self._overwrite_indexes(new_indexes, new_variables)
else:
reindexed = self.copy(deep=aligner.copy)
else:
to_reindex = {
k: v
for k, v in self.variables.items()
if k not in variables and k not in exclude_vars
}
reindexed_vars = alignment.reindex_variables(
to_reindex,
dim_pos_indexers,
copy=aligner.copy,
fill_value=fill_value,
sparse=aligner.sparse,
)
new_variables.update(reindexed_vars)
new_coord_names = self._coord_names | set(new_indexes)
reindexed = self._replace_with_new_dims(
new_variables, new_coord_names, indexes=new_indexes
)
reindexed.encoding = self.encoding
return reindexed
def reindex_like(
self,
other: T_Xarray,
method: ReindexMethodOptions = None,
tolerance: float | Iterable[float] | str | None = None,
copy: bool = True,
fill_value: Any = xrdtypes.NA,
) -> Self:
"""
Conform this object onto the indexes of another object, for indexes which the
objects share. Missing values are filled with ``fill_value``. The default fill
value is NaN.
Parameters
----------
other : Dataset or DataArray
Object with an 'indexes' attribute giving a mapping from dimension
names to pandas.Index objects, which provides coordinates upon
which to index the variables in this dataset. The indexes on this
other object need not be the same as the indexes on this
dataset. Any mismatched index values will be filled in with
NaN, and any mismatched dimension names will simply be ignored.
method : {None, "nearest", "pad", "ffill", "backfill", "bfill", None}, optional
Method to use for filling index values from other not found in this
dataset:
- None (default): don't fill gaps
- "pad" / "ffill": propagate last valid index value forward
- "backfill" / "bfill": propagate next valid index value backward
- "nearest": use nearest valid index value
tolerance : float | Iterable[float] | str | None, default: None
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations must
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
Tolerance may be a scalar value, which applies the same tolerance
to all values, or list-like, which applies variable tolerance per
element. List-like must be the same size as the index and its dtype
must exactly match the index’s type.
copy : bool, default: True
If ``copy=True``, data in the return value is always copied. If
``copy=False`` and reindexing is unnecessary, or can be performed
with only slice operations, then the output may share memory with
the input. In either case, a new xarray object is always returned.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like maps
variable names to fill values.
Returns
-------
reindexed : Dataset
Another dataset, with this dataset's data but coordinates from the
other object.
See Also
--------
Dataset.reindex
DataArray.reindex_like
align
"""
return alignment.reindex_like(
self,
other=other,
method=method,
tolerance=tolerance,
copy=copy,
fill_value=fill_value,
)
def reindex(
self,
indexers: Mapping[Any, Any] | None = None,
method: ReindexMethodOptions = None,
tolerance: float | Iterable[float] | str | None = None,
copy: bool = True,
fill_value: Any = xrdtypes.NA,
**indexers_kwargs: Any,
) -> Self:
"""Conform this object onto a new set of indexes, filling in
missing values with ``fill_value``. The default fill value is NaN.
Parameters
----------
indexers : dict, optional
Dictionary with keys given by dimension names and values given by
arrays of coordinates tick labels. Any mismatched coordinate
values will be filled in with NaN, and any mismatched dimension
names will simply be ignored.
One of indexers or indexers_kwargs must be provided.
method : {None, "nearest", "pad", "ffill", "backfill", "bfill", None}, optional
Method to use for filling index values in ``indexers`` not found in
this dataset:
- None (default): don't fill gaps
- "pad" / "ffill": propagate last valid index value forward
- "backfill" / "bfill": propagate next valid index value backward
- "nearest": use nearest valid index value
tolerance : float | Iterable[float] | str | None, default: None
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations must
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
Tolerance may be a scalar value, which applies the same tolerance
to all values, or list-like, which applies variable tolerance per
element. List-like must be the same size as the index and its dtype
must exactly match the index’s type.
copy : bool, default: True
If ``copy=True``, data in the return value is always copied. If
``copy=False`` and reindexing is unnecessary, or can be performed
with only slice operations, then the output may share memory with
the input. In either case, a new xarray object is always returned.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like,
maps variable names (including coordinates) to fill values.
sparse : bool, default: False
use sparse-array.
**indexers_kwargs : {dim: indexer, ...}, optional
Keyword arguments in the same form as ``indexers``.
One of indexers or indexers_kwargs must be provided.
Returns
-------
reindexed : Dataset
Another dataset, with this dataset's data but replaced coordinates.
See Also
--------
Dataset.reindex_like
align
pandas.Index.get_indexer
Examples
--------
Create a dataset with some fictional data.
>>> x = xr.Dataset(
... {
... "temperature": ("station", 20 * np.random.rand(4)),
... "pressure": ("station", 500 * np.random.rand(4)),
... },
... coords={"station": ["boston", "nyc", "seattle", "denver"]},
... )
>>> x
<xarray.Dataset> Size: 176B
Dimensions: (station: 4)
Coordinates:
* station (station) <U7 112B 'boston' 'nyc' 'seattle' 'denver'
Data variables:
temperature (station) float64 32B 10.98 14.3 12.06 10.9
pressure (station) float64 32B 211.8 322.9 218.8 445.9
>>> x.indexes
Indexes:
station Index(['boston', 'nyc', 'seattle', 'denver'], dtype='object', name='station')
Create a new index and reindex the dataset. By default values in the new index that
do not have corresponding records in the dataset are assigned `NaN`.
>>> new_index = ["boston", "austin", "seattle", "lincoln"]
>>> x.reindex({"station": new_index})
<xarray.Dataset> Size: 176B
Dimensions: (station: 4)
Coordinates:
* station (station) <U7 112B 'boston' 'austin' 'seattle' 'lincoln'
Data variables:
temperature (station) float64 32B 10.98 nan 12.06 nan
pressure (station) float64 32B 211.8 nan 218.8 nan
We can fill in the missing values by passing a value to the keyword `fill_value`.
>>> x.reindex({"station": new_index}, fill_value=0)
<xarray.Dataset> Size: 176B
Dimensions: (station: 4)
Coordinates:
* station (station) <U7 112B 'boston' 'austin' 'seattle' 'lincoln'
Data variables:
temperature (station) float64 32B 10.98 0.0 12.06 0.0
pressure (station) float64 32B 211.8 0.0 218.8 0.0
We can also use different fill values for each variable.
>>> x.reindex(
... {"station": new_index}, fill_value={"temperature": 0, "pressure": 100}
... )
<xarray.Dataset> Size: 176B
Dimensions: (station: 4)
Coordinates:
* station (station) <U7 112B 'boston' 'austin' 'seattle' 'lincoln'
Data variables:
temperature (station) float64 32B 10.98 0.0 12.06 0.0
pressure (station) float64 32B 211.8 100.0 218.8 100.0
Because the index is not monotonically increasing or decreasing, we cannot use arguments
to the keyword method to fill the `NaN` values.
>>> x.reindex({"station": new_index}, method="nearest")
Traceback (most recent call last):
...
raise ValueError('index must be monotonic increasing or decreasing')
ValueError: index must be monotonic increasing or decreasing
To further illustrate the filling functionality in reindex, we will create a
dataset with a monotonically increasing index (for example, a sequence of dates).
>>> x2 = xr.Dataset(
... {
... "temperature": (
... "time",
... [15.57, 12.77, np.nan, 0.3081, 16.59, 15.12],
... ),
... "pressure": ("time", 500 * np.random.rand(6)),
... },
... coords={"time": pd.date_range("01/01/2019", periods=6, freq="D")},
... )
>>> x2
<xarray.Dataset> Size: 144B
Dimensions: (time: 6)
Coordinates:
* time (time) datetime64[ns] 48B 2019-01-01 2019-01-02 ... 2019-01-06
Data variables:
temperature (time) float64 48B 15.57 12.77 nan 0.3081 16.59 15.12
pressure (time) float64 48B 481.8 191.7 395.9 264.4 284.0 462.8
Suppose we decide to expand the dataset to cover a wider date range.
>>> time_index2 = pd.date_range("12/29/2018", periods=10, freq="D")
>>> x2.reindex({"time": time_index2})
<xarray.Dataset> Size: 240B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2018-12-29 2018-12-30 ... 2019-01-07
Data variables:
temperature (time) float64 80B nan nan nan 15.57 ... 0.3081 16.59 15.12 nan
pressure (time) float64 80B nan nan nan 481.8 ... 264.4 284.0 462.8 nan
The index entries that did not have a value in the original data frame (for example, `2018-12-29`)
are by default filled with NaN. If desired, we can fill in the missing values using one of several options.
For example, to back-propagate the last valid value to fill the `NaN` values,
pass `bfill` as an argument to the `method` keyword.
>>> x3 = x2.reindex({"time": time_index2}, method="bfill")
>>> x3
<xarray.Dataset> Size: 240B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2018-12-29 2018-12-30 ... 2019-01-07
Data variables:
temperature (time) float64 80B 15.57 15.57 15.57 15.57 ... 16.59 15.12 nan
pressure (time) float64 80B 481.8 481.8 481.8 481.8 ... 284.0 462.8 nan
Please note that the `NaN` value present in the original dataset (at index value `2019-01-03`)
will not be filled by any of the value propagation schemes.
>>> x2.where(x2.temperature.isnull(), drop=True)
<xarray.Dataset> Size: 24B
Dimensions: (time: 1)
Coordinates:
* time (time) datetime64[ns] 8B 2019-01-03
Data variables:
temperature (time) float64 8B nan
pressure (time) float64 8B 395.9
>>> x3.where(x3.temperature.isnull(), drop=True)
<xarray.Dataset> Size: 48B
Dimensions: (time: 2)
Coordinates:
* time (time) datetime64[ns] 16B 2019-01-03 2019-01-07
Data variables:
temperature (time) float64 16B nan nan
pressure (time) float64 16B 395.9 nan
This is because filling while reindexing does not look at dataset values, but only compares
the original and desired indexes. If you do want to fill in the `NaN` values present in the
original dataset, use the :py:meth:`~Dataset.fillna()` method.
"""
indexers = utils.either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")
return alignment.reindex(
self,
indexers=indexers,
method=method,
tolerance=tolerance,
copy=copy,
fill_value=fill_value,
)
def _reindex(
self,
indexers: Mapping[Any, Any] | None = None,
method: str | None = None,
tolerance: int | float | Iterable[int | float] | None = None,
copy: bool = True,
fill_value: Any = xrdtypes.NA,
sparse: bool = False,
**indexers_kwargs: Any,
) -> Self:
"""
Same as reindex but supports sparse option.
"""
indexers = utils.either_dict_or_kwargs(indexers, indexers_kwargs, "reindex")
return alignment.reindex(
self,
indexers=indexers,
method=method,
tolerance=tolerance,
copy=copy,
fill_value=fill_value,
sparse=sparse,
)
def interp(
self,
coords: Mapping[Any, Any] | None = None,
method: InterpOptions = "linear",
assume_sorted: bool = False,
kwargs: Mapping[str, Any] | None = None,
method_non_numeric: str = "nearest",
**coords_kwargs: Any,
) -> Self:
"""
Interpolate a Dataset onto new coordinates.
Performs univariate or multivariate interpolation of a Dataset onto new coordinates,
utilizing either NumPy or SciPy interpolation routines.
Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.
Parameters
----------
coords : dict, optional
Mapping from dimension names to the new coordinates.
New coordinate can be a scalar, array-like or DataArray.
If DataArrays are passed as new coordinates, their dimensions are
used for the broadcasting. Missing values are skipped.
method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \
"quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" }
Interpolation method to use (see descriptions above).
assume_sorted : bool, default: False
If False, values of coordinates that are interpolated over can be
in any order and they are sorted first. If True, interpolated
coordinates are assumed to be an array of monotonically increasing
values.
kwargs : dict, optional
Additional keyword arguments passed to the interpolator. Valid
options and their behavior depend which interpolant is used.
method_non_numeric : {"nearest", "pad", "ffill", "backfill", "bfill"}, optional
Method for non-numeric types. Passed on to :py:meth:`Dataset.reindex`.
``"nearest"`` is used by default.
**coords_kwargs : {dim: coordinate, ...}, optional
The keyword arguments form of ``coords``.
One of coords or coords_kwargs must be provided.
Returns
-------
interpolated : Dataset
New dataset on the new coordinates.
Notes
-----
- SciPy is required for certain interpolation methods.
- When interpolating along multiple dimensions with methods `linear` and `nearest`,
the process attempts to decompose the interpolation into independent interpolations
along one dimension at a time.
- The specific interpolation method and dimensionality determine which
interpolant is used:
1. **Interpolation along one dimension of 1D data (`method='linear'`)**
- Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp`
(as in the case of `method='linear'` for 1D data).
- If `method='polynomial'`, the `order` keyword argument must also be provided.
3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
- `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
- `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
- `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
- `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
(`makima` is handled by passing the `makima` flag).
4. **Interpolation along multiple dimensions of multi-dimensional data**
- Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
"cubic", "quintic", "pchip"}.
See Also
--------
:mod:`scipy.interpolate`
:doc:`xarray-tutorial:fundamentals/02.2_manipulating_dimensions`
Tutorial material on manipulating data resolution using :py:func:`~xarray.Dataset.interp`
Examples
--------
>>> ds = xr.Dataset(
... data_vars={
... "a": ("x", [5, 7, 4]),
... "b": (
... ("x", "y"),
... [[1, 4, 2, 9], [2, 7, 6, np.nan], [6, np.nan, 5, 8]],
... ),
... },
... coords={"x": [0, 1, 2], "y": [10, 12, 14, 16]},
... )
>>> ds
<xarray.Dataset> Size: 176B
Dimensions: (x: 3, y: 4)
Coordinates:
* x (x) int64 24B 0 1 2
* y (y) int64 32B 10 12 14 16
Data variables:
a (x) int64 24B 5 7 4
b (x, y) float64 96B 1.0 4.0 2.0 9.0 2.0 7.0 6.0 nan 6.0 nan 5.0 8.0
1D interpolation with the default method (linear):
>>> ds.interp(x=[0, 0.75, 1.25, 1.75])
<xarray.Dataset> Size: 224B
Dimensions: (x: 4, y: 4)
Coordinates:
* y (y) int64 32B 10 12 14 16
* x (x) float64 32B 0.0 0.75 1.25 1.75
Data variables:
a (x) float64 32B 5.0 6.5 6.25 4.75
b (x, y) float64 128B 1.0 4.0 2.0 nan 1.75 ... nan 5.0 nan 5.25 nan
1D interpolation with a different method:
>>> ds.interp(x=[0, 0.75, 1.25, 1.75], method="nearest")
<xarray.Dataset> Size: 224B
Dimensions: (x: 4, y: 4)
Coordinates:
* y (y) int64 32B 10 12 14 16
* x (x) float64 32B 0.0 0.75 1.25 1.75
Data variables:
a (x) float64 32B 5.0 7.0 7.0 4.0
b (x, y) float64 128B 1.0 4.0 2.0 9.0 2.0 7.0 ... nan 6.0 nan 5.0 8.0
1D extrapolation:
>>> ds.interp(
... x=[1, 1.5, 2.5, 3.5],
... method="linear",
... kwargs={"fill_value": "extrapolate"},
... )
<xarray.Dataset> Size: 224B
Dimensions: (x: 4, y: 4)
Coordinates:
* y (y) int64 32B 10 12 14 16
* x (x) float64 32B 1.0 1.5 2.5 3.5
Data variables:
a (x) float64 32B 7.0 5.5 2.5 -0.5
b (x, y) float64 128B 2.0 7.0 6.0 nan 4.0 ... nan 12.0 nan 3.5 nan
2D interpolation:
>>> ds.interp(x=[0, 0.75, 1.25, 1.75], y=[11, 13, 15], method="linear")
<xarray.Dataset> Size: 184B
Dimensions: (x: 4, y: 3)
Coordinates:
* x (x) float64 32B 0.0 0.75 1.25 1.75
* y (y) int64 24B 11 13 15
Data variables:
a (x) float64 32B 5.0 6.5 6.25 4.75
b (x, y) float64 96B 2.5 3.0 nan 4.0 5.625 ... nan nan nan nan nan
"""
from xarray.core import missing
if kwargs is None:
kwargs = {}
coords = either_dict_or_kwargs(coords, coords_kwargs, "interp")
indexers = dict(self._validate_interp_indexers(coords))
obj = self if assume_sorted else self.sortby(list(coords))
def maybe_variable(obj, k):
# workaround to get variable for dimension without coordinate.
try:
return obj._variables[k]
except KeyError:
return as_variable((k, range(obj.sizes[k])))
def _validate_interp_indexer(x, new_x):
# In the case of datetimes, the restrictions placed on indexers
# used with interp are stronger than those which are placed on
# isel, so we need an additional check after _validate_indexers.
if _contains_datetime_like_objects(
x
) and not _contains_datetime_like_objects(new_x):
raise TypeError(
"When interpolating over a datetime-like "
"coordinate, the coordinates to "
"interpolate to must be either datetime "
"strings or datetimes. "
f"Instead got\n{new_x}"
)
return x, new_x
validated_indexers = {
k: _validate_interp_indexer(maybe_variable(obj, k), v)
for k, v in indexers.items()
}
# optimization: subset to coordinate range of the target index
if method in ["linear", "nearest"]:
for k, v in validated_indexers.items():
obj, newidx = missing._localize(obj, {k: v})
validated_indexers[k] = newidx[k]
has_chunked_array = bool(
any(is_chunked_array(v._data) for v in obj._variables.values())
)
if has_chunked_array:
# optimization: create dask coordinate arrays once per Dataset
# rather than once per Variable when dask.array.unify_chunks is called later
# GH4739
dask_indexers = {
k: (index.to_base_variable().chunk(), dest.to_base_variable().chunk())
for k, (index, dest) in validated_indexers.items()
}
variables: dict[Hashable, Variable] = {}
reindex_vars: list[Hashable] = []
for name, var in obj._variables.items():
if name in indexers:
continue
use_indexers = (
dask_indexers if is_duck_dask_array(var._data) else validated_indexers
)
dtype_kind = var.dtype.kind
if dtype_kind in "uifc":
# For normal number types do the interpolation:
var_indexers = {k: v for k, v in use_indexers.items() if k in var.dims}
variables[name] = missing.interp(var, var_indexers, method, **kwargs)
elif dtype_kind in "ObU" and (use_indexers.keys() & var.dims):
if all(var.sizes[d] == 1 for d in (use_indexers.keys() & var.dims)):
# Broadcastable, can be handled quickly without reindex:
to_broadcast = (var.squeeze(),) + tuple(
dest for _, dest in use_indexers.values()
)
variables[name] = broadcast_variables(*to_broadcast)[0].copy(
deep=True
)
else:
# For types that we do not understand do stepwise
# interpolation to avoid modifying the elements.
# reindex the variable instead because it supports
# booleans and objects and retains the dtype but inside
# this loop there might be some duplicate code that slows it
# down, therefore collect these signals and run it later:
reindex_vars.append(name)
elif all(d not in indexers for d in var.dims):
# For anything else we can only keep variables if they
# are not dependent on any coords that are being
# interpolated along:
variables[name] = var
if reindex_vars and (
reindex_indexers := {
k: v for k, (_, v) in validated_indexers.items() if v.dims == (k,)
}
):
reindexed = alignment.reindex(
obj[reindex_vars],
indexers=reindex_indexers,
method=method_non_numeric,
exclude_vars=variables.keys(),
)
indexes = dict(reindexed._indexes)
variables.update(reindexed.variables)
else:
# Get the indexes that are not being interpolated along
indexes = {k: v for k, v in obj._indexes.items() if k not in indexers}
# Get the coords that also exist in the variables:
coord_names = obj._coord_names & variables.keys()
selected = self._replace_with_new_dims(
variables.copy(), coord_names, indexes=indexes
)
# Attach indexer as coordinate
for k, v in indexers.items():
assert isinstance(v, Variable)
if v.dims == (k,):
index = PandasIndex(v, k, coord_dtype=v.dtype)
index_vars = index.create_variables({k: v})
indexes[k] = index
variables.update(index_vars)
else:
variables[k] = v
# Extract coordinates from indexers
coord_vars, new_indexes = selected._get_indexers_coords_and_indexes(coords)
variables.update(coord_vars)
indexes.update(new_indexes)
coord_names = obj._coord_names & variables.keys() | coord_vars.keys()
return self._replace_with_new_dims(variables, coord_names, indexes=indexes)
def interp_like(
self,
other: T_Xarray,
method: InterpOptions = "linear",
assume_sorted: bool = False,
kwargs: Mapping[str, Any] | None = None,
method_non_numeric: str = "nearest",
) -> Self:
"""Interpolate this object onto the coordinates of another object.
Performs univariate or multivariate interpolation of a Dataset onto new coordinates,
utilizing either NumPy or SciPy interpolation routines.
Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.
Parameters
----------
other : Dataset or DataArray
Object with an 'indexes' attribute giving a mapping from dimension
names to an 1d array-like, which provides coordinates upon
which to index the variables in this dataset. Missing values are skipped.
method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \
"quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" }
Interpolation method to use (see descriptions above).
assume_sorted : bool, default: False
If False, values of coordinates that are interpolated over can be
in any order and they are sorted first. If True, interpolated
coordinates are assumed to be an array of monotonically increasing
values.
kwargs : dict, optional
Additional keyword arguments passed to the interpolator. Valid
options and their behavior depend which interpolant is use
method_non_numeric : {"nearest", "pad", "ffill", "backfill", "bfill"}, optional
Method for non-numeric types. Passed on to :py:meth:`Dataset.reindex`.
``"nearest"`` is used by default.
Returns
-------
interpolated : Dataset
Another dataset by interpolating this dataset's data along the
coordinates of the other object.
Notes
-----
- scipy is required.
- If the dataset has object-type coordinates, reindex is used for these
coordinates instead of the interpolation.
- When interpolating along multiple dimensions with methods `linear` and `nearest`,
the process attempts to decompose the interpolation into independent interpolations
along one dimension at a time.
- The specific interpolation method and dimensionality determine which
interpolant is used:
1. **Interpolation along one dimension of 1D data (`method='linear'`)**
- Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp`
(as in the case of `method='linear'` for 1D data).
- If `method='polynomial'`, the `order` keyword argument must also be provided.
3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
- `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
- `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
- `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
- `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
(`makima` is handled by passing the `makima` flag).
4. **Interpolation along multiple dimensions of multi-dimensional data**
- Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
"cubic", "quintic", "pchip"}.
See Also
--------
:func:`Dataset.interp`
:func:`Dataset.reindex_like`
:mod:`scipy.interpolate`
"""
if kwargs is None:
kwargs = {}
# pick only dimension coordinates with a single index
coords: dict[Hashable, Variable] = {}
other_indexes = other.xindexes
for dim in self.dims:
other_dim_coords = other_indexes.get_all_coords(dim, errors="ignore")
if len(other_dim_coords) == 1:
coords[dim] = other_dim_coords[dim]
numeric_coords: dict[Hashable, Variable] = {}
object_coords: dict[Hashable, Variable] = {}
for k, v in coords.items():
if v.dtype.kind in "uifcMm":
numeric_coords[k] = v
else:
object_coords[k] = v
ds = self
if object_coords:
# We do not support interpolation along object coordinate.
# reindex instead.
ds = self.reindex(object_coords)
return ds.interp(
coords=numeric_coords,
method=method,
assume_sorted=assume_sorted,
kwargs=kwargs,
method_non_numeric=method_non_numeric,
)
# Helper methods for rename()
def _rename_vars(
self, name_dict, dims_dict
) -> tuple[dict[Hashable, Variable], set[Hashable]]:
variables = {}
coord_names = set()
for k, v in self.variables.items():
var = v.copy(deep=False)
var.dims = tuple(dims_dict.get(dim, dim) for dim in v.dims)
name = name_dict.get(k, k)
if name in variables:
raise ValueError(f"the new name {name!r} conflicts")
variables[name] = var
if k in self._coord_names:
coord_names.add(name)
return variables, coord_names
def _rename_dims(self, name_dict: Mapping[Any, Hashable]) -> dict[Hashable, int]:
return {name_dict.get(k, k): v for k, v in self.sizes.items()}
def _rename_indexes(
self, name_dict: Mapping[Any, Hashable], dims_dict: Mapping[Any, Hashable]
) -> tuple[dict[Hashable, Index], dict[Hashable, Variable]]:
if not self._indexes:
return {}, {}
indexes = {}
variables = {}
for index, coord_names in self.xindexes.group_by_index():
new_index = index.rename(name_dict, dims_dict)
new_coord_names = [name_dict.get(k, k) for k in coord_names]
indexes.update(dict.fromkeys(new_coord_names, new_index))
new_index_vars = new_index.create_variables(
{
new: self._variables[old]
for old, new in zip(coord_names, new_coord_names, strict=True)
}
)
variables.update(new_index_vars)
return indexes, variables
def _rename_all(
self, name_dict: Mapping[Any, Hashable], dims_dict: Mapping[Any, Hashable]
) -> tuple[
dict[Hashable, Variable],
set[Hashable],
dict[Hashable, int],
dict[Hashable, Index],
]:
variables, coord_names = self._rename_vars(name_dict, dims_dict)
dims = self._rename_dims(dims_dict)
indexes, index_vars = self._rename_indexes(name_dict, dims_dict)
variables = {k: index_vars.get(k, v) for k, v in variables.items()}
return variables, coord_names, dims, indexes
def _rename(
self,
name_dict: Mapping[Any, Hashable] | None = None,
**names: Hashable,
) -> Self:
"""Also used internally by DataArray so that the warning (if any)
is raised at the right stack level.
"""
name_dict = either_dict_or_kwargs(name_dict, names, "rename")
for k in name_dict.keys():
if k not in self and k not in self.dims:
raise ValueError(
f"cannot rename {k!r} because it is not a "
"variable or dimension in this dataset"
)
create_dim_coord = False
new_k = name_dict[k]
if k == new_k:
continue # Same name, nothing to do
if k in self.dims and new_k in self._coord_names:
coord_dims = self._variables[name_dict[k]].dims
if coord_dims == (k,):
create_dim_coord = True
elif k in self._coord_names and new_k in self.dims:
coord_dims = self._variables[k].dims
if coord_dims == (new_k,):
create_dim_coord = True
if create_dim_coord:
warnings.warn(
f"rename {k!r} to {name_dict[k]!r} does not create an index "
"anymore. Try using swap_dims instead or use set_index "
"after rename to create an indexed coordinate.",
UserWarning,
stacklevel=3,
)
variables, coord_names, dims, indexes = self._rename_all(
name_dict=name_dict, dims_dict=name_dict
)
return self._replace(variables, coord_names, dims=dims, indexes=indexes)
def rename(
self,
name_dict: Mapping[Any, Hashable] | None = None,
**names: Hashable,
) -> Self:
"""Returns a new object with renamed variables, coordinates and dimensions.
Parameters
----------
name_dict : dict-like, optional
Dictionary whose keys are current variable, coordinate or dimension names and
whose values are the desired names.
**names : optional
Keyword form of ``name_dict``.
One of name_dict or names must be provided.
Returns
-------
renamed : Dataset
Dataset with renamed variables, coordinates and dimensions.
See Also
--------
Dataset.swap_dims
Dataset.rename_vars
Dataset.rename_dims
DataArray.rename
"""
return self._rename(name_dict=name_dict, **names)
def rename_dims(
self,
dims_dict: Mapping[Any, Hashable] | None = None,
**dims: Hashable,
) -> Self:
"""Returns a new object with renamed dimensions only.
Parameters
----------
dims_dict : dict-like, optional
Dictionary whose keys are current dimension names and
whose values are the desired names. The desired names must
not be the name of an existing dimension or Variable in the Dataset.
**dims : optional
Keyword form of ``dims_dict``.
One of dims_dict or dims must be provided.
Returns
-------
renamed : Dataset
Dataset with renamed dimensions.
See Also
--------
Dataset.swap_dims
Dataset.rename
Dataset.rename_vars
DataArray.rename
"""
dims_dict = either_dict_or_kwargs(dims_dict, dims, "rename_dims")
for k, v in dims_dict.items():
if k not in self.dims:
raise ValueError(
f"cannot rename {k!r} because it is not found "
f"in the dimensions of this dataset {tuple(self.dims)}"
)
if v in self.dims or v in self:
raise ValueError(
f"Cannot rename {k} to {v} because {v} already exists. "
"Try using swap_dims instead."
)
variables, coord_names, sizes, indexes = self._rename_all(
name_dict={}, dims_dict=dims_dict
)
return self._replace(variables, coord_names, dims=sizes, indexes=indexes)
def rename_vars(
self,
name_dict: Mapping[Any, Hashable] | None = None,
**names: Hashable,
) -> Self:
"""Returns a new object with renamed variables including coordinates
Parameters
----------
name_dict : dict-like, optional
Dictionary whose keys are current variable or coordinate names and
whose values are the desired names.
**names : optional
Keyword form of ``name_dict``.
One of name_dict or names must be provided.
Returns
-------
renamed : Dataset
Dataset with renamed variables including coordinates
See Also
--------
Dataset.swap_dims
Dataset.rename
Dataset.rename_dims
DataArray.rename
"""
name_dict = either_dict_or_kwargs(name_dict, names, "rename_vars")
for k in name_dict:
if k not in self:
raise ValueError(
f"cannot rename {k!r} because it is not a "
"variable or coordinate in this dataset"
)
variables, coord_names, dims, indexes = self._rename_all(
name_dict=name_dict, dims_dict={}
)
return self._replace(variables, coord_names, dims=dims, indexes=indexes)
def swap_dims(
self, dims_dict: Mapping[Any, Hashable] | None = None, **dims_kwargs
) -> Self:
"""Returns a new object with swapped dimensions.
Parameters
----------
dims_dict : dict-like
Dictionary whose keys are current dimension names and whose values
are new names.
**dims_kwargs : {existing_dim: new_dim, ...}, optional
The keyword arguments form of ``dims_dict``.
One of dims_dict or dims_kwargs must be provided.
Returns
-------
swapped : Dataset
Dataset with swapped dimensions.
Examples
--------
>>> ds = xr.Dataset(
... data_vars={"a": ("x", [5, 7]), "b": ("x", [0.1, 2.4])},
... coords={"x": ["a", "b"], "y": ("x", [0, 1])},
... )
>>> ds
<xarray.Dataset> Size: 56B
Dimensions: (x: 2)
Coordinates:
* x (x) <U1 8B 'a' 'b'
y (x) int64 16B 0 1
Data variables:
a (x) int64 16B 5 7
b (x) float64 16B 0.1 2.4
>>> ds.swap_dims({"x": "y"})
<xarray.Dataset> Size: 56B
Dimensions: (y: 2)
Coordinates:
x (y) <U1 8B 'a' 'b'
* y (y) int64 16B 0 1
Data variables:
a (y) int64 16B 5 7
b (y) float64 16B 0.1 2.4
>>> ds.swap_dims({"x": "z"})
<xarray.Dataset> Size: 56B
Dimensions: (z: 2)
Coordinates:
x (z) <U1 8B 'a' 'b'
y (z) int64 16B 0 1
Dimensions without coordinates: z
Data variables:
a (z) int64 16B 5 7
b (z) float64 16B 0.1 2.4
See Also
--------
Dataset.rename
DataArray.swap_dims
"""
# TODO: deprecate this method in favor of a (less confusing)
# rename_dims() method that only renames dimensions.
dims_dict = either_dict_or_kwargs(dims_dict, dims_kwargs, "swap_dims")
for current_name, new_name in dims_dict.items():
if current_name not in self.dims:
raise ValueError(
f"cannot swap from dimension {current_name!r} because it is "
f"not one of the dimensions of this dataset {tuple(self.dims)}"
)
if new_name in self.variables and self.variables[new_name].dims != (
current_name,
):
raise ValueError(
f"replacement dimension {new_name!r} is not a 1D "
f"variable along the old dimension {current_name!r}"
)
result_dims = {dims_dict.get(dim, dim) for dim in self.dims}
coord_names = self._coord_names.copy()
coord_names.update({dim for dim in dims_dict.values() if dim in self.variables})
variables: dict[Hashable, Variable] = {}
indexes: dict[Hashable, Index] = {}
for current_name, current_variable in self.variables.items():
dims = tuple(dims_dict.get(dim, dim) for dim in current_variable.dims)
var: Variable
if current_name in result_dims:
var = current_variable.to_index_variable()
var.dims = dims
if current_name in self._indexes:
indexes[current_name] = self._indexes[current_name]
variables[current_name] = var
else:
index, index_vars = create_default_index_implicit(var)
indexes.update(dict.fromkeys(index_vars, index))
variables.update(index_vars)
coord_names.update(index_vars)
else:
var = current_variable.to_base_variable()
var.dims = dims
variables[current_name] = var
return self._replace_with_new_dims(variables, coord_names, indexes=indexes)
def expand_dims(
self,
dim: Hashable | Sequence[Hashable] | Mapping[Any, Any] | None = None,
axis: int | Sequence[int] | None = None,
create_index_for_new_dim: bool = True,
**dim_kwargs: Any,
) -> Self:
"""Return a new object with an additional axis (or axes) inserted at
the corresponding position in the array shape. The new object is a
view into the underlying array, not a copy.
If dim is already a scalar coordinate, it will be promoted to a 1D
coordinate consisting of a single value.
The automatic creation of indexes to back new 1D coordinate variables
controlled by the create_index_for_new_dim kwarg.
Parameters
----------
dim : hashable, sequence of hashable, mapping, or None
Dimensions to include on the new variable. If provided as hashable
or sequence of hashable, then dimensions are inserted with length
1. If provided as a mapping, then the keys are the new dimensions
and the values are either integers (giving the length of the new
dimensions) or array-like (giving the coordinates of the new
dimensions).
axis : int, sequence of int, or None, default: None
Axis position(s) where new axis is to be inserted (position(s) on
the result array). If a sequence of integers is passed,
multiple axes are inserted. In this case, dim arguments should be
same length list. If axis=None is passed, all the axes will be
inserted to the start of the result array.
create_index_for_new_dim : bool, default: True
Whether to create new ``PandasIndex`` objects when the object being expanded contains scalar variables with names in ``dim``.
**dim_kwargs : int or sequence or ndarray
The keywords are arbitrary dimensions being inserted and the values
are either the lengths of the new dims (if int is given), or their
coordinates. Note, this is an alternative to passing a dict to the
dim kwarg and will only be used if dim is None.
Returns
-------
expanded : Dataset
This object, but with additional dimension(s).
Examples
--------
>>> dataset = xr.Dataset({"temperature": ([], 25.0)})
>>> dataset
<xarray.Dataset> Size: 8B
Dimensions: ()
Data variables:
temperature float64 8B 25.0
# Expand the dataset with a new dimension called "time"
>>> dataset.expand_dims(dim="time")
<xarray.Dataset> Size: 8B
Dimensions: (time: 1)
Dimensions without coordinates: time
Data variables:
temperature (time) float64 8B 25.0
# 1D data
>>> temperature_1d = xr.DataArray([25.0, 26.5, 24.8], dims="x")
>>> dataset_1d = xr.Dataset({"temperature": temperature_1d})
>>> dataset_1d
<xarray.Dataset> Size: 24B
Dimensions: (x: 3)
Dimensions without coordinates: x
Data variables:
temperature (x) float64 24B 25.0 26.5 24.8
# Expand the dataset with a new dimension called "time" using axis argument
>>> dataset_1d.expand_dims(dim="time", axis=0)
<xarray.Dataset> Size: 24B
Dimensions: (time: 1, x: 3)
Dimensions without coordinates: time, x
Data variables:
temperature (time, x) float64 24B 25.0 26.5 24.8
# 2D data
>>> temperature_2d = xr.DataArray(np.random.rand(3, 4), dims=("y", "x"))
>>> dataset_2d = xr.Dataset({"temperature": temperature_2d})
>>> dataset_2d
<xarray.Dataset> Size: 96B
Dimensions: (y: 3, x: 4)
Dimensions without coordinates: y, x
Data variables:
temperature (y, x) float64 96B 0.5488 0.7152 0.6028 ... 0.7917 0.5289
# Expand the dataset with a new dimension called "time" using axis argument
>>> dataset_2d.expand_dims(dim="time", axis=2)
<xarray.Dataset> Size: 96B
Dimensions: (y: 3, x: 4, time: 1)
Dimensions without coordinates: y, x, time
Data variables:
temperature (y, x, time) float64 96B 0.5488 0.7152 0.6028 ... 0.7917 0.5289
# Expand a scalar variable along a new dimension of the same name with and without creating a new index
>>> ds = xr.Dataset(coords={"x": 0})
>>> ds
<xarray.Dataset> Size: 8B
Dimensions: ()
Coordinates:
x int64 8B 0
Data variables:
*empty*
>>> ds.expand_dims("x")
<xarray.Dataset> Size: 8B
Dimensions: (x: 1)
Coordinates:
* x (x) int64 8B 0
Data variables:
*empty*
>>> ds.expand_dims("x").indexes
Indexes:
x Index([0], dtype='int64', name='x')
>>> ds.expand_dims("x", create_index_for_new_dim=False).indexes
Indexes:
*empty*
See Also
--------
DataArray.expand_dims
"""
if dim is None:
pass
elif isinstance(dim, Mapping):
# We're later going to modify dim in place; don't tamper with
# the input
dim = dict(dim)
elif isinstance(dim, int):
raise TypeError(
"dim should be hashable or sequence of hashables or mapping"
)
elif isinstance(dim, str) or not isinstance(dim, Sequence):
dim = {dim: 1}
elif isinstance(dim, Sequence):
if len(dim) != len(set(dim)):
raise ValueError("dims should not contain duplicate values.")
dim = dict.fromkeys(dim, 1)
dim = either_dict_or_kwargs(dim, dim_kwargs, "expand_dims")
assert isinstance(dim, MutableMapping)
if axis is None:
axis = list(range(len(dim)))
elif not isinstance(axis, Sequence):
axis = [axis]
if len(dim) != len(axis):
raise ValueError("lengths of dim and axis should be identical.")
for d in dim:
if d in self.dims:
raise ValueError(f"Dimension {d} already exists.")
if d in self._variables and not utils.is_scalar(self._variables[d]):
raise ValueError(f"{d} already exists as coordinate or variable name.")
variables: dict[Hashable, Variable] = {}
indexes: dict[Hashable, Index] = dict(self._indexes)
coord_names = self._coord_names.copy()
# If dim is a dict, then ensure that the values are either integers
# or iterables.
for k, v in dim.items():
if hasattr(v, "__iter__"):
# If the value for the new dimension is an iterable, then
# save the coordinates to the variables dict, and set the
# value within the dim dict to the length of the iterable
# for later use.
if create_index_for_new_dim:
index = PandasIndex(v, k)
indexes[k] = index
name_and_new_1d_var = index.create_variables()
else:
name_and_new_1d_var = {k: Variable(data=v, dims=k)}
variables.update(name_and_new_1d_var)
coord_names.add(k)
dim[k] = variables[k].size
elif isinstance(v, int):
pass # Do nothing if the dimensions value is just an int
else:
raise TypeError(
f"The value of new dimension {k} must be an iterable or an int"
)
for k, v in self._variables.items():
if k not in dim:
if k in coord_names: # Do not change coordinates
variables[k] = v
else:
result_ndim = len(v.dims) + len(axis)
for a in axis:
if a < -result_ndim or result_ndim - 1 < a:
raise IndexError(
f"Axis {a} of variable {k} is out of bounds of the "
f"expanded dimension size {result_ndim}"
)
axis_pos = [a if a >= 0 else result_ndim + a for a in axis]
if len(axis_pos) != len(set(axis_pos)):
raise ValueError("axis should not contain duplicate values")
# We need to sort them to make sure `axis` equals to the
# axis positions of the result array.
zip_axis_dim = sorted(zip(axis_pos, dim.items(), strict=True))
all_dims = list(zip(v.dims, v.shape, strict=True))
for d, c in zip_axis_dim:
all_dims.insert(d, c)
variables[k] = v.set_dims(dict(all_dims))
elif k not in variables:
if k in coord_names and create_index_for_new_dim:
# If dims includes a label of a non-dimension coordinate,
# it will be promoted to a 1D coordinate with a single value.
index, index_vars = create_default_index_implicit(v.set_dims(k))
indexes[k] = index
variables.update(index_vars)
else:
if create_index_for_new_dim:
warnings.warn(
f"No index created for dimension {k} because variable {k} is not a coordinate. "
f"To create an index for {k}, please first call `.set_coords('{k}')` on this object.",
UserWarning,
stacklevel=2,
)
# create 1D variable without creating a new index
new_1d_var = v.set_dims(k)
variables.update({k: new_1d_var})
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes
)
def set_index(
self,
indexes: Mapping[Any, Hashable | Sequence[Hashable]] | None = None,
append: bool = False,
**indexes_kwargs: Hashable | Sequence[Hashable],
) -> Self:
"""Set Dataset (multi-)indexes using one or more existing coordinates
or variables.
This legacy method is limited to pandas (multi-)indexes and
1-dimensional "dimension" coordinates. See
:py:meth:`~Dataset.set_xindex` for setting a pandas or a custom
Xarray-compatible index from one or more arbitrary coordinates.
Parameters
----------
indexes : {dim: index, ...}
Mapping from names matching dimensions and values given
by (lists of) the names of existing coordinates or variables to set
as new (multi-)index.
append : bool, default: False
If True, append the supplied index(es) to the existing index(es).
Otherwise replace the existing index(es) (default).
**indexes_kwargs : optional
The keyword arguments form of ``indexes``.
One of indexes or indexes_kwargs must be provided.
Returns
-------
obj : Dataset
Another dataset, with this dataset's data but replaced coordinates.
Examples
--------
>>> arr = xr.DataArray(
... data=np.ones((2, 3)),
... dims=["x", "y"],
... coords={"x": range(2), "y": range(3), "a": ("x", [3, 4])},
... )
>>> ds = xr.Dataset({"v": arr})
>>> ds
<xarray.Dataset> Size: 104B
Dimensions: (x: 2, y: 3)
Coordinates:
* x (x) int64 16B 0 1
* y (y) int64 24B 0 1 2
a (x) int64 16B 3 4
Data variables:
v (x, y) float64 48B 1.0 1.0 1.0 1.0 1.0 1.0
>>> ds.set_index(x="a")
<xarray.Dataset> Size: 88B
Dimensions: (x: 2, y: 3)
Coordinates:
* x (x) int64 16B 3 4
* y (y) int64 24B 0 1 2
Data variables:
v (x, y) float64 48B 1.0 1.0 1.0 1.0 1.0 1.0
See Also
--------
Dataset.reset_index
Dataset.set_xindex
Dataset.swap_dims
"""
dim_coords = either_dict_or_kwargs(indexes, indexes_kwargs, "set_index")
new_indexes: dict[Hashable, Index] = {}
new_variables: dict[Hashable, Variable] = {}
drop_indexes: set[Hashable] = set()
drop_variables: set[Hashable] = set()
replace_dims: dict[Hashable, Hashable] = {}
all_var_names: set[Hashable] = set()
for dim, _var_names in dim_coords.items():
if isinstance(_var_names, str) or not isinstance(_var_names, Sequence):
var_names = [_var_names]
else:
var_names = list(_var_names)
invalid_vars = set(var_names) - set(self._variables)
if invalid_vars:
raise ValueError(
", ".join([str(v) for v in invalid_vars])
+ " variable(s) do not exist"
)
all_var_names.update(var_names)
drop_variables.update(var_names)
# drop any pre-existing index involved and its corresponding coordinates
index_coord_names = self.xindexes.get_all_coords(dim, errors="ignore")
all_index_coord_names = set(index_coord_names)
for k in var_names:
all_index_coord_names.update(
self.xindexes.get_all_coords(k, errors="ignore")
)
drop_indexes.update(all_index_coord_names)
drop_variables.update(all_index_coord_names)
if len(var_names) == 1 and (not append or dim not in self._indexes):
var_name = var_names[0]
var = self._variables[var_name]
# an error with a better message will be raised for scalar variables
# when creating the PandasIndex
if var.ndim > 0 and var.dims != (dim,):
raise ValueError(
f"dimension mismatch: try setting an index for dimension {dim!r} with "
f"variable {var_name!r} that has dimensions {var.dims}"
)
idx = PandasIndex.from_variables({dim: var}, options={})
idx_vars = idx.create_variables({var_name: var})
# trick to preserve coordinate order in this case
if dim in self._coord_names:
drop_variables.remove(dim)
else:
if append:
current_variables = {
k: self._variables[k] for k in index_coord_names
}
else:
current_variables = {}
idx, idx_vars = PandasMultiIndex.from_variables_maybe_expand(
dim,
current_variables,
{k: self._variables[k] for k in var_names},
)
for n in idx.index.names:
replace_dims[n] = dim
new_indexes.update(dict.fromkeys(idx_vars, idx))
new_variables.update(idx_vars)
# re-add deindexed coordinates (convert to base variables)
for k in drop_variables:
if (
k not in new_variables
and k not in all_var_names
and k in self._coord_names
):
new_variables[k] = self._variables[k].to_base_variable()
indexes_: dict[Any, Index] = {
k: v for k, v in self._indexes.items() if k not in drop_indexes
}
indexes_.update(new_indexes)
variables = {
k: v for k, v in self._variables.items() if k not in drop_variables
}
variables.update(new_variables)
# update dimensions if necessary, GH: 3512
for k, v in variables.items():
if any(d in replace_dims for d in v.dims):
new_dims = [replace_dims.get(d, d) for d in v.dims]
variables[k] = v._replace(dims=new_dims)
coord_names = self._coord_names - drop_variables | set(new_variables)
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes_
)
def reset_index(
self,
dims_or_levels: Hashable | Sequence[Hashable],
*,
drop: bool = False,
) -> Self:
"""Reset the specified index(es) or multi-index level(s).
This legacy method is specific to pandas (multi-)indexes and
1-dimensional "dimension" coordinates. See the more generic
:py:meth:`~Dataset.drop_indexes` and :py:meth:`~Dataset.set_xindex`
method to respectively drop and set pandas or custom indexes for
arbitrary coordinates.
Parameters
----------
dims_or_levels : Hashable or Sequence of Hashable
Name(s) of the dimension(s) and/or multi-index level(s) that will
be reset.
drop : bool, default: False
If True, remove the specified indexes and/or multi-index levels
instead of extracting them as new coordinates (default: False).
Returns
-------
obj : Dataset
Another dataset, with this dataset's data but replaced coordinates.
See Also
--------
Dataset.set_index
Dataset.set_xindex
Dataset.drop_indexes
"""
if isinstance(dims_or_levels, str) or not isinstance(dims_or_levels, Sequence):
dims_or_levels = [dims_or_levels]
invalid_coords = set(dims_or_levels) - set(self._indexes)
if invalid_coords:
raise ValueError(
f"{tuple(invalid_coords)} are not coordinates with an index"
)
drop_indexes: set[Hashable] = set()
drop_variables: set[Hashable] = set()
seen: set[Index] = set()
new_indexes: dict[Hashable, Index] = {}
new_variables: dict[Hashable, Variable] = {}
def drop_or_convert(var_names):
if drop:
drop_variables.update(var_names)
else:
base_vars = {
k: self._variables[k].to_base_variable() for k in var_names
}
new_variables.update(base_vars)
for name in dims_or_levels:
index = self._indexes[name]
if index in seen:
continue
seen.add(index)
idx_var_names = set(self.xindexes.get_all_coords(name))
drop_indexes.update(idx_var_names)
if isinstance(index, PandasMultiIndex):
# special case for pd.MultiIndex
level_names = index.index.names
keep_level_vars = {
k: self._variables[k]
for k in level_names
if k not in dims_or_levels
}
if index.dim not in dims_or_levels and keep_level_vars:
# do not drop the multi-index completely
# instead replace it by a new (multi-)index with dropped level(s)
idx = index.keep_levels(keep_level_vars)
idx_vars = idx.create_variables(keep_level_vars)
new_indexes.update(dict.fromkeys(idx_vars, idx))
new_variables.update(idx_vars)
if not isinstance(idx, PandasMultiIndex):
# multi-index reduced to single index
# backward compatibility: unique level coordinate renamed to dimension
drop_variables.update(keep_level_vars)
drop_or_convert(
[k for k in level_names if k not in keep_level_vars]
)
else:
# always drop the multi-index dimension variable
drop_variables.add(index.dim)
drop_or_convert(level_names)
else:
drop_or_convert(idx_var_names)
indexes = {k: v for k, v in self._indexes.items() if k not in drop_indexes}
indexes.update(new_indexes)
variables = {
k: v for k, v in self._variables.items() if k not in drop_variables
}
variables.update(new_variables)
coord_names = self._coord_names - drop_variables
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes
)
def set_xindex(
self,
coord_names: str | Sequence[Hashable],
index_cls: type[Index] | None = None,
**options,
) -> Self:
"""Set a new, Xarray-compatible index from one or more existing
coordinate(s).
Parameters
----------
coord_names : str or list
Name(s) of the coordinate(s) used to build the index.
If several names are given, their order matters.
index_cls : subclass of :class:`~xarray.indexes.Index`, optional
The type of index to create. By default, try setting
a ``PandasIndex`` if ``len(coord_names) == 1``,
otherwise a ``PandasMultiIndex``.
**options
Options passed to the index constructor.
Returns
-------
obj : Dataset
Another dataset, with this dataset's data and with a new index.
"""
# the Sequence check is required for mypy
if is_scalar(coord_names) or not isinstance(coord_names, Sequence):
coord_names = [coord_names]
if index_cls is None:
if len(coord_names) == 1:
index_cls = PandasIndex
else:
index_cls = PandasMultiIndex
elif not issubclass(index_cls, Index):
raise TypeError(f"{index_cls} is not a subclass of xarray.Index")
invalid_coords = set(coord_names) - self._coord_names
if invalid_coords:
msg = ["invalid coordinate(s)"]
no_vars = invalid_coords - set(self._variables)
data_vars = invalid_coords - no_vars
if no_vars:
msg.append(f"those variables don't exist: {no_vars}")
if data_vars:
msg.append(
f"those variables are data variables: {data_vars}, use `set_coords` first"
)
raise ValueError("\n".join(msg))
# we could be more clever here (e.g., drop-in index replacement if index
# coordinates do not conflict), but let's not allow this for now
indexed_coords = set(coord_names) & set(self._indexes)
if indexed_coords:
raise ValueError(
f"those coordinates already have an index: {indexed_coords}"
)
coord_vars = {name: self._variables[name] for name in coord_names}
index = index_cls.from_variables(coord_vars, options=options)
new_coord_vars = index.create_variables(coord_vars)
# special case for setting a pandas multi-index from level coordinates
# TODO: remove it once we depreciate pandas multi-index dimension (tuple
# elements) coordinate
if isinstance(index, PandasMultiIndex):
coord_names = [index.dim] + list(coord_names)
# Check for extra variables that don't match the coordinate names
extra_vars = set(new_coord_vars) - set(coord_names)
if extra_vars:
extra_vars_str = ", ".join(f"'{name}'" for name in extra_vars)
coord_names_str = ", ".join(f"'{name}'" for name in coord_names)
raise ValueError(
f"The index created extra variables {extra_vars_str} that are not "
f"in the list of coordinates {coord_names_str}. "
f"Use a factory method pattern instead:\n"
f" index = {index_cls.__name__}.from_variables(ds, {list(coord_names)!r})\n"
f" coords = xr.Coordinates.from_xindex(index)\n"
f" ds = ds.assign_coords(coords)"
)
variables: dict[Hashable, Variable]
indexes: dict[Hashable, Index]
if len(coord_names) == 1:
variables = self._variables.copy()
indexes = self._indexes.copy()
name = list(coord_names).pop()
if name in new_coord_vars:
variables[name] = new_coord_vars[name]
indexes[name] = index
else:
# reorder variables and indexes so that coordinates having the same
# index are next to each other
variables = {}
for name, var in self._variables.items():
if name not in coord_names:
variables[name] = var
indexes = {}
for name, idx in self._indexes.items():
if name not in coord_names:
indexes[name] = idx
for name in coord_names:
try:
variables[name] = new_coord_vars[name]
except KeyError:
variables[name] = self._variables[name]
indexes[name] = index
return self._replace(
variables=variables,
coord_names=self._coord_names | set(coord_names),
indexes=indexes,
)
def reorder_levels(
self,
dim_order: Mapping[Any, Sequence[int | Hashable]] | None = None,
**dim_order_kwargs: Sequence[int | Hashable],
) -> Self:
"""Rearrange index levels using input order.
Parameters
----------
dim_order : dict-like of Hashable to Sequence of int or Hashable, optional
Mapping from names matching dimensions and values given
by lists representing new level orders. Every given dimension
must have a multi-index.
**dim_order_kwargs : Sequence of int or Hashable, optional
The keyword arguments form of ``dim_order``.
One of dim_order or dim_order_kwargs must be provided.
Returns
-------
obj : Dataset
Another dataset, with this dataset's data but replaced
coordinates.
"""
dim_order = either_dict_or_kwargs(dim_order, dim_order_kwargs, "reorder_levels")
variables = self._variables.copy()
indexes = dict(self._indexes)
new_indexes: dict[Hashable, Index] = {}
new_variables: dict[Hashable, IndexVariable] = {}
for dim, order in dim_order.items():
index = self._indexes[dim]
if not isinstance(index, PandasMultiIndex):
raise ValueError(f"coordinate {dim} has no MultiIndex")
level_vars = {k: self._variables[k] for k in order}
idx = index.reorder_levels(level_vars)
idx_vars = idx.create_variables(level_vars)
new_indexes.update(dict.fromkeys(idx_vars, idx))
new_variables.update(idx_vars)
indexes = {k: v for k, v in self._indexes.items() if k not in new_indexes}
indexes.update(new_indexes)
variables = {k: v for k, v in self._variables.items() if k not in new_variables}
variables.update(new_variables)
return self._replace(variables, indexes=indexes)
def _get_stack_index(
self,
dim,
multi=False,
create_index=False,
) -> tuple[Index | None, dict[Hashable, Variable]]:
"""Used by stack and unstack to get one pandas (multi-)index among
the indexed coordinates along dimension `dim`.
If exactly one index is found, return it with its corresponding
coordinate variables(s), otherwise return None and an empty dict.
If `create_index=True`, create a new index if none is found or raise
an error if multiple indexes are found.
"""
stack_index: Index | None = None
stack_coords: dict[Hashable, Variable] = {}
for name, index in self._indexes.items():
var = self._variables[name]
if (
var.ndim == 1
and var.dims[0] == dim
and (
# stack: must be a single coordinate index
(not multi and not self.xindexes.is_multi(name))
# unstack: must be an index that implements .unstack
or (multi and type(index).unstack is not Index.unstack)
)
):
if stack_index is not None and index is not stack_index:
# more than one index found, stop
if create_index:
raise ValueError(
f"cannot stack dimension {dim!r} with `create_index=True` "
"and with more than one index found along that dimension"
)
return None, {}
stack_index = index
stack_coords[name] = var
if create_index and stack_index is None:
if dim in self._variables:
var = self._variables[dim]
else:
_, _, var = _get_virtual_variable(self._variables, dim, self.sizes)
# dummy index (only `stack_coords` will be used to construct the multi-index)
stack_index = PandasIndex([0], dim)
stack_coords = {dim: var}
return stack_index, stack_coords
def _stack_once(
self,
dims: Sequence[Hashable | EllipsisType],
new_dim: Hashable,
index_cls: type[Index],
create_index: bool | None = True,
) -> Self:
if dims == ...:
raise ValueError("Please use [...] for dims, rather than just ...")
if ... in dims:
dims = list(infix_dims(dims, self.dims))
new_variables: dict[Hashable, Variable] = {}
stacked_var_names: list[Hashable] = []
drop_indexes: list[Hashable] = []
for name, var in self.variables.items():
if any(d in var.dims for d in dims):
add_dims = [d for d in dims if d not in var.dims]
vdims = list(var.dims) + add_dims
shape = [self.sizes[d] for d in vdims]
exp_var = var.set_dims(vdims, shape)
stacked_var = exp_var.stack(**{new_dim: dims})
new_variables[name] = stacked_var
stacked_var_names.append(name)
else:
new_variables[name] = var.copy(deep=False)
# drop indexes of stacked coordinates (if any)
for name in stacked_var_names:
drop_indexes += list(self.xindexes.get_all_coords(name, errors="ignore"))
new_indexes = {}
new_coord_names = set(self._coord_names)
if create_index or create_index is None:
product_vars: dict[Any, Variable] = {}
for dim in dims:
idx, idx_vars = self._get_stack_index(dim, create_index=create_index)
if idx is not None:
product_vars.update(idx_vars)
if len(product_vars) == len(dims):
idx = index_cls.stack(product_vars, new_dim)
new_indexes[new_dim] = idx
new_indexes.update(dict.fromkeys(product_vars, idx))
idx_vars = idx.create_variables(product_vars)
# keep consistent multi-index coordinate order
for k in idx_vars:
new_variables.pop(k, None)
new_variables.update(idx_vars)
new_coord_names.update(idx_vars)
indexes = {k: v for k, v in self._indexes.items() if k not in drop_indexes}
indexes.update(new_indexes)
return self._replace_with_new_dims(
new_variables, coord_names=new_coord_names, indexes=indexes
)
@partial(deprecate_dims, old_name="dimensions")
def stack(
self,
dim: Mapping[Any, Sequence[Hashable | EllipsisType]] | None = None,
create_index: bool | None = True,
index_cls: type[Index] = PandasMultiIndex,
**dim_kwargs: Sequence[Hashable | EllipsisType],
) -> Self:
"""
Stack any number of existing dimensions into a single new dimension.
New dimensions will be added at the end, and by default the corresponding
coordinate variables will be combined into a MultiIndex.
Parameters
----------
dim : mapping of hashable to sequence of hashable
Mapping of the form `new_name=(dim1, dim2, ...)`. Names of new
dimensions, and the existing dimensions that they replace. An
ellipsis (`...`) will be replaced by all unlisted dimensions.
Passing a list containing an ellipsis (`stacked_dim=[...]`) will stack over
all dimensions.
create_index : bool or None, default: True
- True: create a multi-index for each of the stacked dimensions.
- False: don't create any index.
- None. create a multi-index only if exactly one single (1-d) coordinate
index is found for every dimension to stack.
index_cls: Index-class, default: PandasMultiIndex
Can be used to pass a custom multi-index type (must be an Xarray index that
implements `.stack()`). By default, a pandas multi-index wrapper is used.
**dim_kwargs
The keyword arguments form of ``dim``.
One of dim or dim_kwargs must be provided.
Returns
-------
stacked : Dataset
Dataset with stacked data.
See Also
--------
Dataset.unstack
"""
dim = either_dict_or_kwargs(dim, dim_kwargs, "stack")
result = self
for new_dim, dims in dim.items():
result = result._stack_once(dims, new_dim, index_cls, create_index)
return result
def to_stacked_array(
self,
new_dim: Hashable,
sample_dims: Collection[Hashable],
variable_dim: Hashable = "variable",
name: Hashable | None = None,
) -> DataArray:
"""Combine variables of differing dimensionality into a DataArray
without broadcasting.
This method is similar to Dataset.to_dataarray but does not broadcast the
variables.
Parameters
----------
new_dim : hashable
Name of the new stacked coordinate
sample_dims : Collection of hashables
List of dimensions that **will not** be stacked. Each array in the
dataset must share these dimensions. For machine learning
applications, these define the dimensions over which samples are
drawn.
variable_dim : hashable, default: "variable"
Name of the level in the stacked coordinate which corresponds to
the variables.
name : hashable, optional
Name of the new data array.
Returns
-------
stacked : DataArray
DataArray with the specified dimensions and data variables
stacked together. The stacked coordinate is named ``new_dim``
and represented by a MultiIndex object with a level containing the
data variable names. The name of this level is controlled using
the ``variable_dim`` argument.
See Also
--------
Dataset.to_dataarray
Dataset.stack
DataArray.to_unstacked_dataset
Examples
--------
>>> data = xr.Dataset(
... data_vars={
... "a": (("x", "y"), [[0, 1, 2], [3, 4, 5]]),
... "b": ("x", [6, 7]),
... },
... coords={"y": ["u", "v", "w"]},
... )
>>> data
<xarray.Dataset> Size: 76B
Dimensions: (x: 2, y: 3)
Coordinates:
* y (y) <U1 12B 'u' 'v' 'w'
Dimensions without coordinates: x
Data variables:
a (x, y) int64 48B 0 1 2 3 4 5
b (x) int64 16B 6 7
>>> data.to_stacked_array("z", sample_dims=["x"])
<xarray.DataArray 'a' (x: 2, z: 4)> Size: 64B
array([[0, 1, 2, 6],
[3, 4, 5, 7]])
Coordinates:
* z (z) object 32B MultiIndex
* variable (z) <U1 16B 'a' 'a' 'a' 'b'
* y (z) object 32B 'u' 'v' 'w' nan
Dimensions without coordinates: x
"""
from xarray.structure.concat import concat
# add stacking dims by order of appearance
stacking_dims_list: list[Hashable] = []
for da in self.data_vars.values():
for dim in da.dims:
if dim not in sample_dims and dim not in stacking_dims_list:
stacking_dims_list.append(dim)
stacking_dims = tuple(stacking_dims_list)
for key, da in self.data_vars.items():
missing_sample_dims = set(sample_dims) - set(da.dims)
if missing_sample_dims:
raise ValueError(
"Variables in the dataset must contain all ``sample_dims`` "
f"({sample_dims!r}) but '{key}' misses {sorted(map(str, missing_sample_dims))}"
)
def stack_dataarray(da):
# add missing dims/ coords and the name of the variable
missing_stack_coords = {variable_dim: da.name}
for dim in set(stacking_dims) - set(da.dims):
missing_stack_coords[dim] = None
missing_stack_dims = list(missing_stack_coords)
return (
da.assign_coords(**missing_stack_coords)
.expand_dims(missing_stack_dims)
.stack({new_dim: (variable_dim,) + stacking_dims})
)
# concatenate the arrays
stackable_vars = [stack_dataarray(da) for da in self.data_vars.values()]
data_array = concat(
stackable_vars,
dim=new_dim,
data_vars="all",
coords="different",
compat="equals",
join="outer",
)
if name is not None:
data_array.name = name
return data_array
def _unstack_once(
self,
dim: Hashable,
index_and_vars: tuple[Index, dict[Hashable, Variable]],
fill_value,
sparse: bool = False,
) -> Self:
index, index_vars = index_and_vars
variables: dict[Hashable, Variable] = {}
indexes = {k: v for k, v in self._indexes.items() if k != dim}
new_indexes, clean_index = index.unstack()
indexes.update(new_indexes)
for idx in new_indexes.values():
variables.update(idx.create_variables(index_vars))
for name, var in self.variables.items():
if name not in index_vars:
if dim in var.dims:
if isinstance(fill_value, Mapping):
fill_value_ = fill_value[name]
else:
fill_value_ = fill_value
variables[name] = var._unstack_once(
index=clean_index,
dim=dim,
fill_value=fill_value_,
sparse=sparse,
)
else:
variables[name] = var
coord_names = set(self._coord_names) - {dim} | set(new_indexes)
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes
)
def _unstack_full_reindex(
self,
dim: Hashable,
index_and_vars: tuple[Index, dict[Hashable, Variable]],
fill_value,
sparse: bool,
) -> Self:
index, index_vars = index_and_vars
variables: dict[Hashable, Variable] = {}
indexes = {k: v for k, v in self._indexes.items() if k != dim}
new_indexes, clean_index = index.unstack()
indexes.update(new_indexes)
new_index_variables = {}
for idx in new_indexes.values():
new_index_variables.update(idx.create_variables(index_vars))
new_dim_sizes = {k: v.size for k, v in new_index_variables.items()}
variables.update(new_index_variables)
# take a shortcut in case the MultiIndex was not modified.
full_idx = pd.MultiIndex.from_product(
clean_index.levels, names=clean_index.names
)
if clean_index.equals(full_idx):
obj = self
else:
# TODO: we may depreciate implicit re-indexing with a pandas.MultiIndex
xr_full_idx = PandasMultiIndex(full_idx, dim)
indexers = Indexes(
dict.fromkeys(index_vars, xr_full_idx),
xr_full_idx.create_variables(index_vars),
)
obj = self._reindex(
indexers, copy=False, fill_value=fill_value, sparse=sparse
)
for name, var in obj.variables.items():
if name not in index_vars:
if dim in var.dims:
variables[name] = var.unstack({dim: new_dim_sizes})
else:
variables[name] = var
coord_names = set(self._coord_names) - {dim} | set(new_dim_sizes)
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes
)
def unstack(
self,
dim: Dims = None,
*,
fill_value: Any = xrdtypes.NA,
sparse: bool = False,
) -> Self:
"""
Unstack existing dimensions corresponding to MultiIndexes into
multiple new dimensions.
New dimensions will be added at the end.
Parameters
----------
dim : str, Iterable of Hashable or None, optional
Dimension(s) over which to unstack. By default unstacks all
MultiIndexes.
fill_value : scalar or dict-like, default: nan
value to be filled. If a dict-like, maps variable names to
fill values. If not provided or if the dict-like does not
contain all variables, the dtype's NA value will be used.
sparse : bool, default: False
use sparse-array if True
Returns
-------
unstacked : Dataset
Dataset with unstacked data.
See Also
--------
Dataset.stack
"""
if dim is None:
dims = list(self.dims)
else:
if isinstance(dim, str) or not isinstance(dim, Iterable):
dims = [dim]
else:
dims = list(dim)
missing_dims = set(dims) - set(self.dims)
if missing_dims:
raise ValueError(
f"Dimensions {tuple(missing_dims)} not found in data dimensions {tuple(self.dims)}"
)
# each specified dimension must have exactly one multi-index
stacked_indexes: dict[Any, tuple[Index, dict[Hashable, Variable]]] = {}
for d in dims:
idx, idx_vars = self._get_stack_index(d, multi=True)
if idx is not None:
stacked_indexes[d] = idx, idx_vars
if dim is None:
dims = list(stacked_indexes)
else:
non_multi_dims = set(dims) - set(stacked_indexes)
if non_multi_dims:
raise ValueError(
"cannot unstack dimensions that do not "
f"have exactly one multi-index: {tuple(non_multi_dims)}"
)
result = self.copy(deep=False)
# we want to avoid allocating an object-dtype ndarray for a MultiIndex,
# so we can't just access self.variables[v].data for every variable.
# We only check the non-index variables.
# https://github.com/pydata/xarray/issues/5902
nonindexes = [
self.variables[k] for k in set(self.variables) - set(self._indexes)
]
# Notes for each of these cases:
# 1. Dask arrays don't support assignment by index, which the fast unstack
# function requires.
# https://github.com/pydata/xarray/pull/4746#issuecomment-753282125
# 2. Sparse doesn't currently support (though we could special-case it)
# https://github.com/pydata/sparse/issues/422
# 3. pint requires checking if it's a NumPy array until
# https://github.com/pydata/xarray/pull/4751 is resolved,
# Once that is resolved, explicitly exclude pint arrays.
# pint doesn't implement `np.full_like` in a way that's
# currently compatible.
sparse_array_type = array_type("sparse")
needs_full_reindex = any(
is_duck_dask_array(v.data)
or isinstance(v.data, sparse_array_type)
or not isinstance(v.data, np.ndarray)
for v in nonindexes
)
for d in dims:
if needs_full_reindex:
result = result._unstack_full_reindex(
d, stacked_indexes[d], fill_value, sparse
)
else:
result = result._unstack_once(d, stacked_indexes[d], fill_value, sparse)
return result
def update(self, other: CoercibleMapping) -> Self:
"""Update this dataset's variables with those from another dataset.
Just like :py:meth:`dict.update` this is a in-place operation.
For a non-inplace version, see :py:meth:`Dataset.merge`.
Parameters
----------
other : Dataset or mapping
Variables with which to update this dataset. One of:
- Dataset
- mapping {var name: DataArray}
- mapping {var name: Variable}
- mapping {var name: (dimension name, array-like)}
- mapping {var name: (tuple of dimension names, array-like)}
Returns
-------
updated : Dataset
Updated dataset. Note that since the update is in-place this is the input
dataset.
It is deprecated since version 0.17 and scheduled to be removed in 0.21.
Raises
------
ValueError
If any dimensions would have inconsistent sizes in the updated
dataset.
See Also
--------
Dataset.assign
Dataset.merge
"""
merge_result = dataset_update_method(self, other)
return self._replace(inplace=True, **merge_result._asdict())
def merge(
self,
other: CoercibleMapping | DataArray,
overwrite_vars: Hashable | Iterable[Hashable] = frozenset(),
compat: CompatOptions | CombineKwargDefault = _COMPAT_DEFAULT,
join: JoinOptions | CombineKwargDefault = _JOIN_DEFAULT,
fill_value: Any = xrdtypes.NA,
combine_attrs: CombineAttrsOptions = "override",
) -> Self:
"""Merge the arrays of two datasets into a single dataset.
This method generally does not allow for overriding data, with the
exception of attributes, which are ignored on the second dataset.
Variables with the same name are checked for conflicts via the equals
or identical methods.
Parameters
----------
other : Dataset or mapping
Dataset or variables to merge with this dataset.
overwrite_vars : hashable or iterable of hashable, optional
If provided, update variables of these name(s) without checking for
conflicts in this dataset.
compat : {"identical", "equals", "broadcast_equals", \
"no_conflicts", "override", "minimal"}, default: "no_conflicts"
String indicating how to compare variables of the same name for
potential conflicts:
- 'identical': all values, dimensions and attributes must be the
same.
- 'equals': all values and dimensions must be the same.
- 'broadcast_equals': all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- 'no_conflicts': only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- 'override': skip comparing and pick variable from first dataset
- 'minimal': drop conflicting coordinates
join : {"outer", "inner", "left", "right", "exact", "override"}, \
default: "outer"
Method for joining ``self`` and ``other`` along shared dimensions:
- 'outer': use the union of the indexes
- 'inner': use the intersection of the indexes
- 'left': use indexes from ``self``
- 'right': use indexes from ``other``
- 'exact': error instead of aligning non-equal indexes
- 'override': use indexes from ``self`` that are the same size
as those of ``other`` in that dimension
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names (including coordinates) to fill values.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "override"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
merged : Dataset
Merged dataset.
Raises
------
MergeError
If any variables conflict (see ``compat``).
See Also
--------
Dataset.update
"""
from xarray.core.dataarray import DataArray
other = other.to_dataset() if isinstance(other, DataArray) else other
merge_result = dataset_merge_method(
self,
other,
overwrite_vars=overwrite_vars,
compat=compat,
join=join,
fill_value=fill_value,
combine_attrs=combine_attrs,
)
return self._replace(**merge_result._asdict())
def _assert_all_in_dataset(
self, names: Iterable[Hashable], virtual_okay: bool = False
) -> None:
bad_names = set(names) - set(self._variables)
if virtual_okay:
bad_names -= self.virtual_variables
if bad_names:
ordered_bad_names = [name for name in names if name in bad_names]
raise ValueError(
f"These variables cannot be found in this dataset: {ordered_bad_names}"
)
def drop_vars(
self,
names: str | Iterable[Hashable] | Callable[[Self], str | Iterable[Hashable]],
*,
errors: ErrorOptions = "raise",
) -> Self:
"""Drop variables from this dataset.
Parameters
----------
names : Hashable or iterable of Hashable or Callable
Name(s) of variables to drop. If a Callable, this object is passed as its
only argument and its result is used.
errors : {"raise", "ignore"}, default: "raise"
If 'raise', raises a ValueError error if any of the variable
passed are not in the dataset. If 'ignore', any given names that are in the
dataset are dropped and no error is raised.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "temperature": (
... ["time", "latitude", "longitude"],
... [[[25.5, 26.3], [27.1, 28.0]]],
... ),
... "humidity": (
... ["time", "latitude", "longitude"],
... [[[65.0, 63.8], [58.2, 59.6]]],
... ),
... "wind_speed": (
... ["time", "latitude", "longitude"],
... [[[10.2, 8.5], [12.1, 9.8]]],
... ),
... },
... coords={
... "time": pd.date_range("2023-07-01", periods=1),
... "latitude": [40.0, 40.2],
... "longitude": [-75.0, -74.8],
... },
... )
>>> dataset
<xarray.Dataset> Size: 136B
Dimensions: (time: 1, latitude: 2, longitude: 2)
Coordinates:
* time (time) datetime64[ns] 8B 2023-07-01
* latitude (latitude) float64 16B 40.0 40.2
* longitude (longitude) float64 16B -75.0 -74.8
Data variables:
temperature (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
humidity (time, latitude, longitude) float64 32B 65.0 63.8 58.2 59.6
wind_speed (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8
Drop the 'humidity' variable
>>> dataset.drop_vars(["humidity"])
<xarray.Dataset> Size: 104B
Dimensions: (time: 1, latitude: 2, longitude: 2)
Coordinates:
* time (time) datetime64[ns] 8B 2023-07-01
* latitude (latitude) float64 16B 40.0 40.2
* longitude (longitude) float64 16B -75.0 -74.8
Data variables:
temperature (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
wind_speed (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8
Drop the 'humidity', 'temperature' variables
>>> dataset.drop_vars(["humidity", "temperature"])
<xarray.Dataset> Size: 72B
Dimensions: (time: 1, latitude: 2, longitude: 2)
Coordinates:
* time (time) datetime64[ns] 8B 2023-07-01
* latitude (latitude) float64 16B 40.0 40.2
* longitude (longitude) float64 16B -75.0 -74.8
Data variables:
wind_speed (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8
Drop all indexes
>>> dataset.drop_vars(lambda x: x.indexes)
<xarray.Dataset> Size: 96B
Dimensions: (time: 1, latitude: 2, longitude: 2)
Dimensions without coordinates: time, latitude, longitude
Data variables:
temperature (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
humidity (time, latitude, longitude) float64 32B 65.0 63.8 58.2 59.6
wind_speed (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8
Attempt to drop non-existent variable with errors="ignore"
>>> dataset.drop_vars(["pressure"], errors="ignore")
<xarray.Dataset> Size: 136B
Dimensions: (time: 1, latitude: 2, longitude: 2)
Coordinates:
* time (time) datetime64[ns] 8B 2023-07-01
* latitude (latitude) float64 16B 40.0 40.2
* longitude (longitude) float64 16B -75.0 -74.8
Data variables:
temperature (time, latitude, longitude) float64 32B 25.5 26.3 27.1 28.0
humidity (time, latitude, longitude) float64 32B 65.0 63.8 58.2 59.6
wind_speed (time, latitude, longitude) float64 32B 10.2 8.5 12.1 9.8
Attempt to drop non-existent variable with errors="raise"
>>> dataset.drop_vars(["pressure"], errors="raise")
Traceback (most recent call last):
ValueError: These variables cannot be found in this dataset: ['pressure']
Raises
------
ValueError
Raised if you attempt to drop a variable which is not present, and the kwarg ``errors='raise'``.
Returns
-------
dropped : Dataset
See Also
--------
DataArray.drop_vars
"""
if callable(names):
names = names(self)
# the Iterable check is required for mypy
if is_scalar(names) or not isinstance(names, Iterable):
names_set = {names}
else:
names_set = set(names)
if errors == "raise":
self._assert_all_in_dataset(names_set)
# GH6505
other_names = set()
for var in names_set:
maybe_midx = self._indexes.get(var, None)
if isinstance(maybe_midx, PandasMultiIndex):
idx_coord_names = set(list(maybe_midx.index.names) + [maybe_midx.dim])
idx_other_names = idx_coord_names - set(names_set)
other_names.update(idx_other_names)
if other_names:
names_set |= set(other_names)
emit_user_level_warning(
f"Deleting a single level of a MultiIndex is deprecated. Previously, this deleted all levels of a MultiIndex. "
f"Please also drop the following variables: {other_names!r} to avoid an error in the future.",
DeprecationWarning,
)
assert_no_index_corrupted(self.xindexes, names_set)
variables = {k: v for k, v in self._variables.items() if k not in names_set}
coord_names = {k for k in self._coord_names if k in variables}
indexes = {k: v for k, v in self._indexes.items() if k not in names_set}
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes
)
def drop_indexes(
self,
coord_names: Hashable | Iterable[Hashable],
*,
errors: ErrorOptions = "raise",
) -> Self:
"""Drop the indexes assigned to the given coordinates.
Parameters
----------
coord_names : hashable or iterable of hashable
Name(s) of the coordinate(s) for which to drop the index.
errors : {"raise", "ignore"}, default: "raise"
If 'raise', raises a ValueError error if any of the coordinates
passed have no index or are not in the dataset.
If 'ignore', no error is raised.
Returns
-------
dropped : Dataset
A new dataset with dropped indexes.
"""
# the Iterable check is required for mypy
if is_scalar(coord_names) or not isinstance(coord_names, Iterable):
coord_names = {coord_names}
else:
coord_names = set(coord_names)
if errors == "raise":
invalid_coords = coord_names - self._coord_names
if invalid_coords:
raise ValueError(
f"The coordinates {tuple(invalid_coords)} are not found in the "
f"dataset coordinates {tuple(self.coords.keys())}"
)
unindexed_coords = set(coord_names) - set(self._indexes)
if unindexed_coords:
raise ValueError(
f"those coordinates do not have an index: {unindexed_coords}"
)
assert_no_index_corrupted(self.xindexes, coord_names, action="remove index(es)")
variables = {}
for name, var in self._variables.items():
if name in coord_names:
variables[name] = var.to_base_variable()
else:
variables[name] = var
indexes = {k: v for k, v in self._indexes.items() if k not in coord_names}
return self._replace(variables=variables, indexes=indexes)
def drop(
self,
labels=None,
dim=None,
*,
errors: ErrorOptions = "raise",
**labels_kwargs,
) -> Self:
"""Backward compatible method based on `drop_vars` and `drop_sel`
Using either `drop_vars` or `drop_sel` is encouraged
See Also
--------
Dataset.drop_vars
Dataset.drop_sel
"""
if errors not in ["raise", "ignore"]:
raise ValueError('errors must be either "raise" or "ignore"')
if is_dict_like(labels) and not isinstance(labels, dict):
emit_user_level_warning(
"dropping coordinates using `drop` is deprecated; use drop_vars.",
DeprecationWarning,
)
return self.drop_vars(labels, errors=errors)
if labels_kwargs or isinstance(labels, dict):
if dim is not None:
raise ValueError("cannot specify dim and dict-like arguments.")
labels = either_dict_or_kwargs(labels, labels_kwargs, "drop")
if dim is None and (is_scalar(labels) or isinstance(labels, Iterable)):
emit_user_level_warning(
"dropping variables using `drop` is deprecated; use drop_vars.",
DeprecationWarning,
)
# for mypy
if is_scalar(labels):
labels = [labels]
return self.drop_vars(labels, errors=errors)
if dim is not None:
warnings.warn(
"dropping labels using list-like labels is deprecated; using "
"dict-like arguments with `drop_sel`, e.g. `ds.drop_sel(dim=[labels]).",
DeprecationWarning,
stacklevel=2,
)
return self.drop_sel({dim: labels}, errors=errors, **labels_kwargs)
emit_user_level_warning(
"dropping labels using `drop` is deprecated; use `drop_sel` instead.",
DeprecationWarning,
)
return self.drop_sel(labels, errors=errors)
def drop_sel(
self, labels=None, *, errors: ErrorOptions = "raise", **labels_kwargs
) -> Self:
"""Drop index labels from this dataset.
Parameters
----------
labels : mapping of hashable to Any
Index labels to drop
errors : {"raise", "ignore"}, default: "raise"
If 'raise', raises a ValueError error if
any of the index labels passed are not
in the dataset. If 'ignore', any given labels that are in the
dataset are dropped and no error is raised.
**labels_kwargs : {dim: label, ...}, optional
The keyword arguments form of ``dim`` and ``labels``
Returns
-------
dropped : Dataset
Examples
--------
>>> data = np.arange(6).reshape(2, 3)
>>> labels = ["a", "b", "c"]
>>> ds = xr.Dataset({"A": (["x", "y"], data), "y": labels})
>>> ds
<xarray.Dataset> Size: 60B
Dimensions: (x: 2, y: 3)
Coordinates:
* y (y) <U1 12B 'a' 'b' 'c'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 48B 0 1 2 3 4 5
>>> ds.drop_sel(y=["a", "c"])
<xarray.Dataset> Size: 20B
Dimensions: (x: 2, y: 1)
Coordinates:
* y (y) <U1 4B 'b'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 16B 1 4
>>> ds.drop_sel(y="b")
<xarray.Dataset> Size: 40B
Dimensions: (x: 2, y: 2)
Coordinates:
* y (y) <U1 8B 'a' 'c'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 32B 0 2 3 5
"""
if errors not in ["raise", "ignore"]:
raise ValueError('errors must be either "raise" or "ignore"')
labels = either_dict_or_kwargs(labels, labels_kwargs, "drop_sel")
ds = self
for dim, labels_for_dim in labels.items():
# Don't cast to set, as it would harm performance when labels
# is a large numpy array
if utils.is_scalar(labels_for_dim):
labels_for_dim = [labels_for_dim]
labels_for_dim = np.asarray(labels_for_dim)
try:
index = self.get_index(dim)
except KeyError as err:
raise ValueError(
f"dimension {dim!r} does not have coordinate labels"
) from err
new_index = index.drop(labels_for_dim, errors=errors)
ds = ds.loc[{dim: new_index}]
return ds
def drop_isel(self, indexers=None, **indexers_kwargs) -> Self:
"""Drop index positions from this Dataset.
Parameters
----------
indexers : mapping of hashable to Any
Index locations to drop
**indexers_kwargs : {dim: position, ...}, optional
The keyword arguments form of ``dim`` and ``positions``
Returns
-------
dropped : Dataset
Raises
------
IndexError
Examples
--------
>>> data = np.arange(6).reshape(2, 3)
>>> labels = ["a", "b", "c"]
>>> ds = xr.Dataset({"A": (["x", "y"], data), "y": labels})
>>> ds
<xarray.Dataset> Size: 60B
Dimensions: (x: 2, y: 3)
Coordinates:
* y (y) <U1 12B 'a' 'b' 'c'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 48B 0 1 2 3 4 5
>>> ds.drop_isel(y=[0, 2])
<xarray.Dataset> Size: 20B
Dimensions: (x: 2, y: 1)
Coordinates:
* y (y) <U1 4B 'b'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 16B 1 4
>>> ds.drop_isel(y=1)
<xarray.Dataset> Size: 40B
Dimensions: (x: 2, y: 2)
Coordinates:
* y (y) <U1 8B 'a' 'c'
Dimensions without coordinates: x
Data variables:
A (x, y) int64 32B 0 2 3 5
"""
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "drop_isel")
ds = self
dimension_index = {}
for dim, pos_for_dim in indexers.items():
# Don't cast to set, as it would harm performance when labels
# is a large numpy array
if utils.is_scalar(pos_for_dim):
pos_for_dim = [pos_for_dim]
pos_for_dim = np.asarray(pos_for_dim)
index = self.get_index(dim)
new_index = index.delete(pos_for_dim)
dimension_index[dim] = new_index
ds = ds.loc[dimension_index]
return ds
def drop_dims(
self,
drop_dims: str | Iterable[Hashable],
*,
errors: ErrorOptions = "raise",
) -> Self:
"""Drop dimensions and associated variables from this dataset.
Parameters
----------
drop_dims : str or Iterable of Hashable
Dimension or dimensions to drop.
errors : {"raise", "ignore"}, default: "raise"
If 'raise', raises a ValueError error if any of the
dimensions passed are not in the dataset. If 'ignore', any given
dimensions that are in the dataset are dropped and no error is raised.
Returns
-------
obj : Dataset
The dataset without the given dimensions (or any variables
containing those dimensions).
"""
if errors not in ["raise", "ignore"]:
raise ValueError('errors must be either "raise" or "ignore"')
if isinstance(drop_dims, str) or not isinstance(drop_dims, Iterable):
drop_dims = {drop_dims}
else:
drop_dims = set(drop_dims)
if errors == "raise":
missing_dims = drop_dims - set(self.dims)
if missing_dims:
raise ValueError(
f"Dimensions {tuple(missing_dims)} not found in data dimensions {tuple(self.dims)}"
)
drop_vars = {k for k, v in self._variables.items() if set(v.dims) & drop_dims}
return self.drop_vars(drop_vars)
@deprecate_dims
def transpose(
self,
*dim: Hashable,
missing_dims: ErrorOptionsWithWarn = "raise",
) -> Self:
"""Return a new Dataset object with all array dimensions transposed.
Although the order of dimensions on each array will change, the dataset
dimensions themselves will remain in fixed (sorted) order.
Parameters
----------
*dim : hashable, optional
By default, reverse the dimensions on each array. Otherwise,
reorder the dimensions to this order.
missing_dims : {"raise", "warn", "ignore"}, default: "raise"
What to do if dimensions that should be selected from are not present in the
Dataset:
- "raise": raise an exception
- "warn": raise a warning, and ignore the missing dimensions
- "ignore": ignore the missing dimensions
Returns
-------
transposed : Dataset
Each array in the dataset (including) coordinates will be
transposed to the given order.
Notes
-----
This operation returns a view of each array's data. It is
lazy for dask-backed DataArrays but not for numpy-backed DataArrays
-- the data will be fully loaded into memory.
See Also
--------
numpy.transpose
DataArray.transpose
"""
# Raise error if list is passed as dim
if (len(dim) > 0) and (isinstance(dim[0], list)):
list_fix = [f"{x!r}" if isinstance(x, str) else f"{x}" for x in dim[0]]
raise TypeError(
f"transpose requires dim to be passed as multiple arguments. Expected `{', '.join(list_fix)}`. Received `{dim[0]}` instead"
)
# Use infix_dims to check once for missing dimensions
if len(dim) != 0:
_ = list(infix_dims(dim, self.dims, missing_dims))
ds = self.copy()
for name, var in self._variables.items():
var_dims = tuple(d for d in dim if d in (var.dims + (...,)))
ds._variables[name] = var.transpose(*var_dims)
return ds
def dropna(
self,
dim: Hashable,
*,
how: Literal["any", "all"] = "any",
thresh: int | None = None,
subset: Iterable[Hashable] | None = None,
) -> Self:
"""Returns a new dataset with dropped labels for missing values along
the provided dimension.
Parameters
----------
dim : hashable
Dimension along which to drop missing values. Dropping along
multiple dimensions simultaneously is not yet supported.
how : {"any", "all"}, default: "any"
- any : if any NA values are present, drop that label
- all : if all values are NA, drop that label
thresh : int or None, optional
If supplied, require this many non-NA values (summed over all the subset variables).
subset : iterable of hashable or None, optional
Which variables to check for missing values. By default, all
variables in the dataset are checked.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "temperature": (
... ["time", "location"],
... [[23.4, 24.1], [np.nan, 22.1], [21.8, 24.2], [20.5, 25.3]],
... )
... },
... coords={"time": [1, 2, 3, 4], "location": ["A", "B"]},
... )
>>> dataset
<xarray.Dataset> Size: 104B
Dimensions: (time: 4, location: 2)
Coordinates:
* time (time) int64 32B 1 2 3 4
* location (location) <U1 8B 'A' 'B'
Data variables:
temperature (time, location) float64 64B 23.4 24.1 nan ... 24.2 20.5 25.3
Drop NaN values from the dataset
>>> dataset.dropna(dim="time")
<xarray.Dataset> Size: 80B
Dimensions: (time: 3, location: 2)
Coordinates:
* time (time) int64 24B 1 3 4
* location (location) <U1 8B 'A' 'B'
Data variables:
temperature (time, location) float64 48B 23.4 24.1 21.8 24.2 20.5 25.3
Drop labels with any NaN values
>>> dataset.dropna(dim="time", how="any")
<xarray.Dataset> Size: 80B
Dimensions: (time: 3, location: 2)
Coordinates:
* time (time) int64 24B 1 3 4
* location (location) <U1 8B 'A' 'B'
Data variables:
temperature (time, location) float64 48B 23.4 24.1 21.8 24.2 20.5 25.3
Drop labels with all NAN values
>>> dataset.dropna(dim="time", how="all")
<xarray.Dataset> Size: 104B
Dimensions: (time: 4, location: 2)
Coordinates:
* time (time) int64 32B 1 2 3 4
* location (location) <U1 8B 'A' 'B'
Data variables:
temperature (time, location) float64 64B 23.4 24.1 nan ... 24.2 20.5 25.3
Drop labels with less than 2 non-NA values
>>> dataset.dropna(dim="time", thresh=2)
<xarray.Dataset> Size: 80B
Dimensions: (time: 3, location: 2)
Coordinates:
* time (time) int64 24B 1 3 4
* location (location) <U1 8B 'A' 'B'
Data variables:
temperature (time, location) float64 48B 23.4 24.1 21.8 24.2 20.5 25.3
Returns
-------
Dataset
See Also
--------
DataArray.dropna
pandas.DataFrame.dropna
"""
# TODO: consider supporting multiple dimensions? Or not, given that
# there are some ugly edge cases, e.g., pandas's dropna differs
# depending on the order of the supplied axes.
if dim not in self.dims:
raise ValueError(
f"Dimension {dim!r} not found in data dimensions {tuple(self.dims)}"
)
if subset is None:
subset = iter(self.data_vars)
count = np.zeros(self.sizes[dim], dtype=np.int64)
size = np.int_(0) # for type checking
for k in subset:
array = self._variables[k]
if dim in array.dims:
dims = [d for d in array.dims if d != dim]
count += to_numpy(array.count(dims).data)
size += math.prod([self.sizes[d] for d in dims])
if thresh is not None:
mask = count >= thresh
elif how == "any":
mask = count == size
elif how == "all":
mask = count > 0
elif how is not None:
raise ValueError(f"invalid how option: {how}")
else:
raise TypeError("must specify how or thresh")
return self.isel({dim: mask})
def fillna(self, value: Any) -> Self:
"""Fill missing values in this object.
This operation follows the normal broadcasting and alignment rules that
xarray uses for binary arithmetic, except the result is aligned to this
object (``join='left'``) instead of aligned to the intersection of
index coordinates (``join='inner'``).
Parameters
----------
value : scalar, ndarray, DataArray, dict or Dataset
Used to fill all matching missing values in this dataset's data
variables. Scalars, ndarrays or DataArrays arguments are used to
fill all data with aligned coordinates (for DataArrays).
Dictionaries or datasets match data variables and then align
coordinates if necessary.
Returns
-------
Dataset
Examples
--------
>>> ds = xr.Dataset(
... {
... "A": ("x", [np.nan, 2, np.nan, 0]),
... "B": ("x", [3, 4, np.nan, 1]),
... "C": ("x", [np.nan, np.nan, np.nan, 5]),
... "D": ("x", [np.nan, 3, np.nan, 4]),
... },
... coords={"x": [0, 1, 2, 3]},
... )
>>> ds
<xarray.Dataset> Size: 160B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
Data variables:
A (x) float64 32B nan 2.0 nan 0.0
B (x) float64 32B 3.0 4.0 nan 1.0
C (x) float64 32B nan nan nan 5.0
D (x) float64 32B nan 3.0 nan 4.0
Replace all `NaN` values with 0s.
>>> ds.fillna(0)
<xarray.Dataset> Size: 160B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
Data variables:
A (x) float64 32B 0.0 2.0 0.0 0.0
B (x) float64 32B 3.0 4.0 0.0 1.0
C (x) float64 32B 0.0 0.0 0.0 5.0
D (x) float64 32B 0.0 3.0 0.0 4.0
Replace all `NaN` elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.
>>> values = {"A": 0, "B": 1, "C": 2, "D": 3}
>>> ds.fillna(value=values)
<xarray.Dataset> Size: 160B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
Data variables:
A (x) float64 32B 0.0 2.0 0.0 0.0
B (x) float64 32B 3.0 4.0 1.0 1.0
C (x) float64 32B 2.0 2.0 2.0 5.0
D (x) float64 32B 3.0 3.0 3.0 4.0
"""
if utils.is_dict_like(value):
value_keys = getattr(value, "data_vars", value).keys()
if not set(value_keys) <= set(self.data_vars.keys()):
raise ValueError(
"all variables in the argument to `fillna` "
"must be contained in the original dataset"
)
out = ops.fillna(self, value)
return out
def interpolate_na(
self,
dim: Hashable | None = None,
method: InterpOptions = "linear",
limit: int | None = None,
use_coordinate: bool | Hashable = True,
max_gap: (
int
| float
| str
| pd.Timedelta
| np.timedelta64
| datetime.timedelta
| None
) = None,
**kwargs: Any,
) -> Self:
"""Fill in NaNs by interpolating according to different methods.
Parameters
----------
dim : Hashable or None, optional
Specifies the dimension along which to interpolate.
method : {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial", \
"barycentric", "krogh", "pchip", "spline", "akima"}, default: "linear"
String indicating which method to use for interpolation:
- 'linear': linear interpolation. Additional keyword
arguments are passed to :py:func:`numpy.interp`
- 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial':
are passed to :py:func:`scipy.interpolate.interp1d`. If
``method='polynomial'``, the ``order`` keyword argument must also be
provided.
- 'barycentric', 'krogh', 'pchip', 'spline', 'akima': use their
respective :py:class:`scipy.interpolate` classes.
use_coordinate : bool or Hashable, default: True
Specifies which index to use as the x values in the interpolation
formulated as `y = f(x)`. If False, values are treated as if
equally-spaced along ``dim``. If True, the IndexVariable `dim` is
used. If ``use_coordinate`` is a string, it specifies the name of a
coordinate variable to use as the index.
limit : int, default: None
Maximum number of consecutive NaNs to fill. Must be greater than 0
or None for no limit. This filling is done regardless of the size of
the gap in the data. To only interpolate over gaps less than a given length,
see ``max_gap``.
max_gap : int, float, str, pandas.Timedelta, numpy.timedelta64, datetime.timedelta \
or None, default: None
Maximum size of gap, a continuous sequence of NaNs, that will be filled.
Use None for no limit. When interpolating along a datetime64 dimension
and ``use_coordinate=True``, ``max_gap`` can be one of the following:
- a string that is valid input for pandas.to_timedelta
- a :py:class:`numpy.timedelta64` object
- a :py:class:`pandas.Timedelta` object
- a :py:class:`datetime.timedelta` object
Otherwise, ``max_gap`` must be an int or a float. Use of ``max_gap`` with unlabeled
dimensions has not been implemented yet. Gap length is defined as the difference
between coordinate values at the first data point after a gap and the last value
before a gap. For gaps at the beginning (end), gap length is defined as the difference
between coordinate values at the first (last) valid data point and the first (last) NaN.
For example, consider::
<xarray.DataArray (x: 9)>
array([nan, nan, nan, 1., nan, nan, 4., nan, nan])
Coordinates:
* x (x) int64 0 1 2 3 4 5 6 7 8
The gap lengths are 3-0 = 3; 6-3 = 3; and 8-6 = 2 respectively
**kwargs : dict, optional
parameters passed verbatim to the underlying interpolation function
Returns
-------
interpolated: Dataset
Filled in Dataset.
Warning
--------
When passing fill_value as a keyword argument with method="linear", it does not use
``numpy.interp`` but it uses ``scipy.interpolate.interp1d``, which provides the fill_value parameter.
See Also
--------
numpy.interp
scipy.interpolate
Examples
--------
>>> ds = xr.Dataset(
... {
... "A": ("x", [np.nan, 2, 3, np.nan, 0]),
... "B": ("x", [3, 4, np.nan, 1, 7]),
... "C": ("x", [np.nan, np.nan, np.nan, 5, 0]),
... "D": ("x", [np.nan, 3, np.nan, -1, 4]),
... },
... coords={"x": [0, 1, 2, 3, 4]},
... )
>>> ds
<xarray.Dataset> Size: 200B
Dimensions: (x: 5)
Coordinates:
* x (x) int64 40B 0 1 2 3 4
Data variables:
A (x) float64 40B nan 2.0 3.0 nan 0.0
B (x) float64 40B 3.0 4.0 nan 1.0 7.0
C (x) float64 40B nan nan nan 5.0 0.0
D (x) float64 40B nan 3.0 nan -1.0 4.0
>>> ds.interpolate_na(dim="x", method="linear")
<xarray.Dataset> Size: 200B
Dimensions: (x: 5)
Coordinates:
* x (x) int64 40B 0 1 2 3 4
Data variables:
A (x) float64 40B nan 2.0 3.0 1.5 0.0
B (x) float64 40B 3.0 4.0 2.5 1.0 7.0
C (x) float64 40B nan nan nan 5.0 0.0
D (x) float64 40B nan 3.0 1.0 -1.0 4.0
>>> ds.interpolate_na(dim="x", method="linear", fill_value="extrapolate")
<xarray.Dataset> Size: 200B
Dimensions: (x: 5)
Coordinates:
* x (x) int64 40B 0 1 2 3 4
Data variables:
A (x) float64 40B 1.0 2.0 3.0 1.5 0.0
B (x) float64 40B 3.0 4.0 2.5 1.0 7.0
C (x) float64 40B 20.0 15.0 10.0 5.0 0.0
D (x) float64 40B 5.0 3.0 1.0 -1.0 4.0
"""
from xarray.core.missing import _apply_over_vars_with_dim, interp_na
new = _apply_over_vars_with_dim(
interp_na,
self,
dim=dim,
method=method,
limit=limit,
use_coordinate=use_coordinate,
max_gap=max_gap,
**kwargs,
)
return new
def ffill(self, dim: Hashable, limit: int | None = None) -> Self:
"""Fill NaN values by propagating values forward
*Requires bottleneck.*
Parameters
----------
dim : Hashable
Specifies the dimension along which to propagate values when filling.
limit : int or None, optional
The maximum number of consecutive NaN values to forward fill. In
other words, if there is a gap with more than this number of
consecutive NaNs, it will only be partially filled. Must be greater
than 0 or None for no limit. Must be None or greater than or equal
to axis length if filling along chunked axes (dimensions).
Examples
--------
>>> time = pd.date_range("2023-01-01", periods=10, freq="D")
>>> data = np.array(
... [1, np.nan, np.nan, np.nan, 5, np.nan, np.nan, 8, np.nan, 10]
... )
>>> dataset = xr.Dataset({"data": (("time",), data)}, coords={"time": time})
>>> dataset
<xarray.Dataset> Size: 160B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
Data variables:
data (time) float64 80B 1.0 nan nan nan 5.0 nan nan 8.0 nan 10.0
# Perform forward fill (ffill) on the dataset
>>> dataset.ffill(dim="time")
<xarray.Dataset> Size: 160B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
Data variables:
data (time) float64 80B 1.0 1.0 1.0 1.0 5.0 5.0 5.0 8.0 8.0 10.0
# Limit the forward filling to a maximum of 2 consecutive NaN values
>>> dataset.ffill(dim="time", limit=2)
<xarray.Dataset> Size: 160B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
Data variables:
data (time) float64 80B 1.0 1.0 1.0 nan 5.0 5.0 5.0 8.0 8.0 10.0
Returns
-------
Dataset
See Also
--------
Dataset.bfill
"""
from xarray.core.missing import _apply_over_vars_with_dim, ffill
new = _apply_over_vars_with_dim(ffill, self, dim=dim, limit=limit)
return new
def bfill(self, dim: Hashable, limit: int | None = None) -> Self:
"""Fill NaN values by propagating values backward
*Requires bottleneck.*
Parameters
----------
dim : Hashable
Specifies the dimension along which to propagate values when
filling.
limit : int or None, optional
The maximum number of consecutive NaN values to backward fill. In
other words, if there is a gap with more than this number of
consecutive NaNs, it will only be partially filled. Must be greater
than 0 or None for no limit. Must be None or greater than or equal
to axis length if filling along chunked axes (dimensions).
Examples
--------
>>> time = pd.date_range("2023-01-01", periods=10, freq="D")
>>> data = np.array(
... [1, np.nan, np.nan, np.nan, 5, np.nan, np.nan, 8, np.nan, 10]
... )
>>> dataset = xr.Dataset({"data": (("time",), data)}, coords={"time": time})
>>> dataset
<xarray.Dataset> Size: 160B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
Data variables:
data (time) float64 80B 1.0 nan nan nan 5.0 nan nan 8.0 nan 10.0
# filled dataset, fills NaN values by propagating values backward
>>> dataset.bfill(dim="time")
<xarray.Dataset> Size: 160B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
Data variables:
data (time) float64 80B 1.0 5.0 5.0 5.0 5.0 8.0 8.0 8.0 10.0 10.0
# Limit the backward filling to a maximum of 2 consecutive NaN values
>>> dataset.bfill(dim="time", limit=2)
<xarray.Dataset> Size: 160B
Dimensions: (time: 10)
Coordinates:
* time (time) datetime64[ns] 80B 2023-01-01 2023-01-02 ... 2023-01-10
Data variables:
data (time) float64 80B 1.0 nan 5.0 5.0 5.0 8.0 8.0 8.0 10.0 10.0
Returns
-------
Dataset
See Also
--------
Dataset.ffill
"""
from xarray.core.missing import _apply_over_vars_with_dim, bfill
new = _apply_over_vars_with_dim(bfill, self, dim=dim, limit=limit)
return new
def combine_first(self, other: Self) -> Self:
"""Combine two Datasets, default to data_vars of self.
The new coordinates follow the normal broadcasting and alignment rules
of ``join='outer'``. Vacant cells in the expanded coordinates are
filled with np.nan.
Parameters
----------
other : Dataset
Used to fill all matching missing values in this array.
Returns
-------
Dataset
"""
out = ops.fillna(self, other, join="outer", dataset_join="outer")
return out
def reduce(
self,
func: Callable,
dim: Dims = None,
*,
keep_attrs: bool | None = None,
keepdims: bool = False,
numeric_only: bool = False,
**kwargs: Any,
) -> Self:
"""Reduce this dataset by applying `func` along some dimension(s).
Parameters
----------
func : callable
Function which can be called in the form
`f(x, axis=axis, **kwargs)` to return the result of reducing an
np.ndarray over an integer valued axis.
dim : str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`. By default `func` is
applied over all dimensions.
keep_attrs : bool or None, optional
If True, the dataset's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
keepdims : bool, default: False
If True, the dimensions which are reduced are left in the result
as dimensions of size one. Coordinates that use these dimensions
are removed.
numeric_only : bool, default: False
If True, only apply ``func`` to variables with a numeric dtype.
**kwargs : Any
Additional keyword arguments passed on to ``func``.
Returns
-------
reduced : Dataset
Dataset with this object's DataArrays replaced with new DataArrays
of summarized data and the indicated dimension(s) removed.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "math_scores": (
... ["student", "test"],
... [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
... ),
... "english_scores": (
... ["student", "test"],
... [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
... ),
... },
... coords={
... "student": ["Alice", "Bob", "Charlie"],
... "test": ["Test 1", "Test 2", "Test 3"],
... },
... )
# Calculate the 75th percentile of math scores for each student using np.percentile
>>> percentile_scores = dataset.reduce(np.percentile, q=75, dim="test")
>>> percentile_scores
<xarray.Dataset> Size: 132B
Dimensions: (student: 3)
Coordinates:
* student (student) <U7 84B 'Alice' 'Bob' 'Charlie'
Data variables:
math_scores (student) float64 24B 91.0 82.5 96.5
english_scores (student) float64 24B 91.0 80.5 94.5
"""
if kwargs.get("axis") is not None:
raise ValueError(
"passing 'axis' to Dataset reduce methods is ambiguous."
" Please use 'dim' instead."
)
dims = parse_dims_as_set(dim, set(self._dims.keys()))
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
variables: dict[Hashable, Variable] = {}
for name, var in self._variables.items():
reduce_dims = [d for d in var.dims if d in dims]
if name in self.coords:
if not reduce_dims:
variables[name] = var
elif (
# Some reduction functions (e.g. std, var) need to run on variables
# that don't have the reduce dims: PR5393
not pd.api.types.is_extension_array_dtype(var.dtype) # noqa: TID251
and (
not reduce_dims
or not numeric_only
or np.issubdtype(var.dtype, np.number)
or (var.dtype == np.bool_)
)
):
# prefer to aggregate over axis=None rather than
# axis=(0, 1) if they will be equivalent, because
# the former is often more efficient
# keep single-element dims as list, to support Hashables
reduce_maybe_single = (
None
if len(reduce_dims) == var.ndim and var.ndim != 1
else reduce_dims
)
variables[name] = var.reduce(
func,
dim=reduce_maybe_single,
keep_attrs=keep_attrs,
keepdims=keepdims,
**kwargs,
)
coord_names = {k for k in self.coords if k in variables}
indexes = {k: v for k, v in self._indexes.items() if k in variables}
attrs = self.attrs if keep_attrs else None
return self._replace_with_new_dims(
variables, coord_names=coord_names, attrs=attrs, indexes=indexes
)
def map(
self,
func: Callable,
keep_attrs: bool | None = None,
args: Iterable[Any] = (),
**kwargs: Any,
) -> Self:
"""Apply a function to each data variable in this dataset
Parameters
----------
func : callable
Function which can be called in the form `func(x, *args, **kwargs)`
to transform each DataArray `x` in this dataset into another
DataArray.
keep_attrs : bool or None, optional
If True, both the dataset's and variables' attributes (`attrs`) will be
copied from the original objects to the new ones. If False, the new dataset
and variables will be returned without copying the attributes.
args : iterable, optional
Positional arguments passed on to `func`.
**kwargs : Any
Keyword arguments passed on to `func`.
Returns
-------
applied : Dataset
Resulting dataset from applying ``func`` to each data variable.
Examples
--------
>>> da = xr.DataArray(np.random.randn(2, 3))
>>> ds = xr.Dataset({"foo": da, "bar": ("x", [-1, 2])})
>>> ds
<xarray.Dataset> Size: 64B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Dimensions without coordinates: dim_0, dim_1, x
Data variables:
foo (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 -0.9773
bar (x) int64 16B -1 2
>>> ds.map(np.fabs)
<xarray.Dataset> Size: 64B
Dimensions: (dim_0: 2, dim_1: 3, x: 2)
Dimensions without coordinates: dim_0, dim_1, x
Data variables:
foo (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 0.9773
bar (x) float64 16B 1.0 2.0
"""
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
variables = {
k: maybe_wrap_array(v, func(v, *args, **kwargs))
for k, v in self.data_vars.items()
}
if keep_attrs:
for k, v in variables.items():
v._copy_attrs_from(self.data_vars[k])
attrs = self.attrs if keep_attrs else None
return type(self)(variables, attrs=attrs)
def apply(
self,
func: Callable,
keep_attrs: bool | None = None,
args: Iterable[Any] = (),
**kwargs: Any,
) -> Self:
"""
Backward compatible implementation of ``map``
See Also
--------
Dataset.map
"""
warnings.warn(
"Dataset.apply may be deprecated in the future. Using Dataset.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func, keep_attrs, args, **kwargs)
def assign(
self,
variables: Mapping[Any, Any] | None = None,
**variables_kwargs: Any,
) -> Self:
"""Assign new data variables to a Dataset, returning a new object
with all the original variables in addition to the new ones.
Parameters
----------
variables : mapping of hashable to Any
Mapping from variables names to the new values. If the new values
are callable, they are computed on the Dataset and assigned to new
data variables. If the values are not callable, (e.g. a DataArray,
scalar, or array), they are simply assigned.
**variables_kwargs
The keyword arguments form of ``variables``.
One of variables or variables_kwargs must be provided.
Returns
-------
ds : Dataset
A new Dataset with the new variables in addition to all the
existing variables.
Notes
-----
Since ``kwargs`` is a dictionary, the order of your arguments may not
be preserved, and so the order of the new variables is not well
defined. Assigning multiple variables within the same ``assign`` is
possible, but you cannot reference other variables created within the
same ``assign`` call.
The new assigned variables that replace existing coordinates in the
original dataset are still listed as coordinates in the returned
Dataset.
See Also
--------
pandas.DataFrame.assign
Examples
--------
>>> x = xr.Dataset(
... {
... "temperature_c": (
... ("lat", "lon"),
... 20 * np.random.rand(4).reshape(2, 2),
... ),
... "precipitation": (("lat", "lon"), np.random.rand(4).reshape(2, 2)),
... },
... coords={"lat": [10, 20], "lon": [150, 160]},
... )
>>> x
<xarray.Dataset> Size: 96B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
Where the value is a callable, evaluated on dataset:
>>> x.assign(temperature_f=lambda x: x.temperature_c * 9 / 5 + 32)
<xarray.Dataset> Size: 128B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
temperature_f (lat, lon) float64 32B 51.76 57.75 53.7 51.62
Alternatively, the same behavior can be achieved by directly referencing an existing dataarray:
>>> x.assign(temperature_f=x["temperature_c"] * 9 / 5 + 32)
<xarray.Dataset> Size: 128B
Dimensions: (lat: 2, lon: 2)
Coordinates:
* lat (lat) int64 16B 10 20
* lon (lon) int64 16B 150 160
Data variables:
temperature_c (lat, lon) float64 32B 10.98 14.3 12.06 10.9
precipitation (lat, lon) float64 32B 0.4237 0.6459 0.4376 0.8918
temperature_f (lat, lon) float64 32B 51.76 57.75 53.7 51.62
"""
variables = either_dict_or_kwargs(variables, variables_kwargs, "assign")
data = self.copy()
# do all calculations first...
results: CoercibleMapping = data._calc_assign_results(variables)
# split data variables to add/replace vs. coordinates to replace
results_data_vars: dict[Hashable, CoercibleValue] = {}
results_coords: dict[Hashable, CoercibleValue] = {}
for k, v in results.items():
if k in data._coord_names:
results_coords[k] = v
else:
results_data_vars[k] = v
# ... and then assign
data.coords.update(results_coords)
data.update(results_data_vars)
return data
def to_dataarray(
self, dim: Hashable = "variable", name: Hashable | None = None
) -> DataArray:
"""Convert this dataset into an xarray.DataArray
The data variables of this dataset will be broadcast against each other
and stacked along the first axis of the new array. All coordinates of
this dataset will remain coordinates.
Parameters
----------
dim : Hashable, default: "variable"
Name of the new dimension.
name : Hashable or None, optional
Name of the new data array.
Returns
-------
array : xarray.DataArray
"""
from xarray.core.dataarray import DataArray
data_vars = [self.variables[k] for k in self.data_vars]
broadcast_vars = broadcast_variables(*data_vars)
data = duck_array_ops.stack([b.data for b in broadcast_vars], axis=0)
dims = (dim,) + broadcast_vars[0].dims
variable = Variable(dims, data, self.attrs, fastpath=True)
coords = {k: v.variable for k, v in self.coords.items()}
indexes = filter_indexes_from_coords(self._indexes, set(coords))
new_dim_index = PandasIndex(list(self.data_vars), dim)
indexes[dim] = new_dim_index
coords.update(new_dim_index.create_variables())
return DataArray._construct_direct(variable, coords, name, indexes)
def to_array(
self, dim: Hashable = "variable", name: Hashable | None = None
) -> DataArray:
"""Deprecated version of to_dataarray"""
return self.to_dataarray(dim=dim, name=name)
def _normalize_dim_order(
self, dim_order: Sequence[Hashable] | None = None
) -> dict[Hashable, int]:
"""
Check the validity of the provided dimensions if any and return the mapping
between dimension name and their size.
Parameters
----------
dim_order: Sequence of Hashable or None, optional
Dimension order to validate (default to the alphabetical order if None).
Returns
-------
result : dict[Hashable, int]
Validated dimensions mapping.
"""
if dim_order is None:
dim_order = list(self.dims)
elif set(dim_order) != set(self.dims):
raise ValueError(
f"dim_order {dim_order} does not match the set of dimensions of this "
f"Dataset: {list(self.dims)}"
)
ordered_dims = {k: self.sizes[k] for k in dim_order}
return ordered_dims
def to_pandas(self) -> pd.Series | pd.DataFrame:
"""Convert this dataset into a pandas object without changing the number of dimensions.
The type of the returned object depends on the number of Dataset
dimensions:
* 0D -> `pandas.Series`
* 1D -> `pandas.DataFrame`
Only works for Datasets with 1 or fewer dimensions.
"""
if len(self.dims) == 0:
return pd.Series({k: v.item() for k, v in self.items()})
if len(self.dims) == 1:
return self.to_dataframe()
raise ValueError(
f"cannot convert Datasets with {len(self.dims)} dimensions into "
"pandas objects without changing the number of dimensions. "
"Please use Dataset.to_dataframe() instead."
)
def _to_dataframe(self, ordered_dims: Mapping[Any, int]):
from xarray.core.extension_array import PandasExtensionArray
columns_in_order = [k for k in self.variables if k not in self.dims]
non_extension_array_columns = [
k
for k in columns_in_order
if not pd.api.types.is_extension_array_dtype(self.variables[k].data) # noqa: TID251
]
extension_array_columns = [
k
for k in columns_in_order
if pd.api.types.is_extension_array_dtype(self.variables[k].data) # noqa: TID251
]
extension_array_columns_different_index = [
k
for k in extension_array_columns
if set(self.variables[k].dims) != set(ordered_dims.keys())
]
extension_array_columns_same_index = [
k
for k in extension_array_columns
if k not in extension_array_columns_different_index
]
data = [
self._variables[k].set_dims(ordered_dims).values.reshape(-1)
for k in non_extension_array_columns
]
index = self.coords.to_index([*ordered_dims])
broadcasted_df = pd.DataFrame(
{
**dict(zip(non_extension_array_columns, data, strict=True)),
**{
c: self.variables[c].data
for c in extension_array_columns_same_index
},
},
index=index,
)
for extension_array_column in extension_array_columns_different_index:
extension_array = self.variables[extension_array_column].data
index = self[
self.variables[extension_array_column].dims[0]
].coords.to_index()
extension_array_df = pd.DataFrame(
{extension_array_column: extension_array},
index=pd.Index(index.array)
if isinstance(index, PandasExtensionArray) # type: ignore[redundant-expr]
else index,
)
extension_array_df.index.name = self.variables[extension_array_column].dims[
0
]
broadcasted_df = broadcasted_df.join(extension_array_df)
return broadcasted_df[columns_in_order]
def to_dataframe(self, dim_order: Sequence[Hashable] | None = None) -> pd.DataFrame:
"""Convert this dataset into a pandas.DataFrame.
Non-index variables in this dataset form the columns of the
DataFrame. The DataFrame is indexed by the Cartesian product of
this dataset's indices.
Parameters
----------
dim_order: Sequence of Hashable or None, optional
Hierarchical dimension order for the resulting dataframe. All
arrays are transposed to this order and then written out as flat
vectors in contiguous order, so the last dimension in this list
will be contiguous in the resulting DataFrame. This has a major
influence on which operations are efficient on the resulting
dataframe.
If provided, must include all dimensions of this dataset. By
default, dimensions are in the same order as in `Dataset.sizes`.
Returns
-------
result : DataFrame
Dataset as a pandas DataFrame.
"""
ordered_dims = self._normalize_dim_order(dim_order=dim_order)
return self._to_dataframe(ordered_dims=ordered_dims)
def _set_sparse_data_from_dataframe(
self, idx: pd.Index, arrays: list[tuple[Hashable, np.ndarray]], dims: tuple
) -> None:
from sparse import COO
if isinstance(idx, pd.MultiIndex):
coords = np.stack([np.asarray(code) for code in idx.codes], axis=0)
is_sorted = idx.is_monotonic_increasing
shape = tuple(lev.size for lev in idx.levels)
else:
coords = np.arange(idx.size).reshape(1, -1)
is_sorted = True
shape = (idx.size,)
for name, values in arrays:
# In virtually all real use cases, the sparse array will now have
# missing values and needs a fill_value. For consistency, don't
# special case the rare exceptions (e.g., dtype=int without a
# MultiIndex).
dtype, fill_value = xrdtypes.maybe_promote(values.dtype)
values = np.asarray(values, dtype=dtype)
data = COO(
coords,
values,
shape,
has_duplicates=False,
sorted=is_sorted,
fill_value=fill_value,
)
self[name] = (dims, data)
def _set_numpy_data_from_dataframe(
self, idx: pd.Index, arrays: list[tuple[Hashable, np.ndarray]], dims: tuple
) -> None:
if not isinstance(idx, pd.MultiIndex):
for name, values in arrays:
self[name] = (dims, values)
return
# NB: similar, more general logic, now exists in
# variable.unstack_once; we could consider combining them at some
# point.
shape = tuple(lev.size for lev in idx.levels)
indexer = tuple(idx.codes)
# We already verified that the MultiIndex has all unique values, so
# there are missing values if and only if the size of output arrays is
# larger that the index.
missing_values = math.prod(shape) > idx.shape[0]
for name, values in arrays:
# NumPy indexing is much faster than using DataFrame.reindex() to
# fill in missing values:
# https://stackoverflow.com/a/35049899/809705
if missing_values:
dtype, fill_value = xrdtypes.maybe_promote(values.dtype)
data = np.full(shape, fill_value, dtype)
else:
# If there are no missing values, keep the existing dtype
# instead of promoting to support NA, e.g., keep integer
# columns as integers.
# TODO: consider removing this special case, which doesn't
# exist for sparse=True.
data = np.zeros(shape, values.dtype)
data[indexer] = values
self[name] = (dims, data)
@classmethod
def from_dataframe(cls, dataframe: pd.DataFrame, sparse: bool = False) -> Self:
"""Convert a pandas.DataFrame into an xarray.Dataset
Each column will be converted into an independent variable in the
Dataset. If the dataframe's index is a MultiIndex, it will be expanded
into a tensor product of one-dimensional indices (filling in missing
values with NaN). If you rather preserve the MultiIndex use
`xr.Dataset(df)`. This method will produce a Dataset very similar to
that on which the 'to_dataframe' method was called, except with
possibly redundant dimensions (since all dataset variables will have
the same dimensionality).
Parameters
----------
dataframe : DataFrame
DataFrame from which to copy data and indices.
sparse : bool, default: False
If true, create a sparse arrays instead of dense numpy arrays. This
can potentially save a large amount of memory if the DataFrame has
a MultiIndex. Requires the sparse package (sparse.pydata.org).
Returns
-------
New Dataset.
See Also
--------
xarray.DataArray.from_series
pandas.DataFrame.to_xarray
"""
# TODO: Add an option to remove dimensions along which the variables
# are constant, to enable consistent serialization to/from a dataframe,
# even if some variables have different dimensionality.
if not dataframe.columns.is_unique:
raise ValueError("cannot convert DataFrame with non-unique columns")
idx = remove_unused_levels_categories(dataframe.index)
if isinstance(idx, pd.MultiIndex) and not idx.is_unique:
raise ValueError(
"cannot convert a DataFrame with a non-unique MultiIndex into xarray"
)
arrays = []
extension_arrays = []
for k, v in dataframe.items():
if not is_allowed_extension_array(v) or isinstance(
v.array, UNSUPPORTED_EXTENSION_ARRAY_TYPES
):
arrays.append((k, np.asarray(v)))
else:
extension_arrays.append((k, v))
indexes: dict[Hashable, Index] = {}
index_vars: dict[Hashable, Variable] = {}
if isinstance(idx, pd.MultiIndex):
dims = tuple(
name if name is not None else f"level_{n}" # type: ignore[redundant-expr]
for n, name in enumerate(idx.names)
)
for dim, lev in zip(dims, idx.levels, strict=True):
xr_idx = PandasIndex(lev, dim)
indexes[dim] = xr_idx
index_vars.update(xr_idx.create_variables())
arrays += [(k, np.asarray(v)) for k, v in extension_arrays]
extension_arrays = []
else:
index_name = idx.name if idx.name is not None else "index"
dims = (index_name,)
xr_idx = PandasIndex(idx, index_name)
indexes[index_name] = xr_idx
index_vars.update(xr_idx.create_variables())
obj = cls._construct_direct(index_vars, set(index_vars), indexes=indexes)
if sparse:
obj._set_sparse_data_from_dataframe(idx, arrays, dims)
else:
obj._set_numpy_data_from_dataframe(idx, arrays, dims)
for name, extension_array in extension_arrays:
obj[name] = (dims, extension_array)
return obj[dataframe.columns] if len(dataframe.columns) else obj
def to_dask_dataframe(
self, dim_order: Sequence[Hashable] | None = None, set_index: bool = False
) -> DaskDataFrame:
"""
Convert this dataset into a dask.dataframe.DataFrame.
The dimensions, coordinates and data variables in this dataset form
the columns of the DataFrame.
Parameters
----------
dim_order : list, optional
Hierarchical dimension order for the resulting dataframe. All
arrays are transposed to this order and then written out as flat
vectors in contiguous order, so the last dimension in this list
will be contiguous in the resulting DataFrame. This has a major
influence on which operations are efficient on the resulting dask
dataframe.
If provided, must include all dimensions of this dataset. By
default, dimensions are sorted alphabetically.
set_index : bool, default: False
If set_index=True, the dask DataFrame is indexed by this dataset's
coordinate. Since dask DataFrames do not support multi-indexes,
set_index only works if the dataset only contains one dimension.
Returns
-------
dask.dataframe.DataFrame
"""
import dask.array as da
import dask.dataframe as dd
ordered_dims = self._normalize_dim_order(dim_order=dim_order)
columns = list(ordered_dims)
columns.extend(k for k in self.coords if k not in self.dims)
columns.extend(self.data_vars)
ds_chunks = self.chunks
series_list = []
df_meta = pd.DataFrame()
for name in columns:
try:
var = self.variables[name]
except KeyError:
# dimension without a matching coordinate
size = self.sizes[name]
data = da.arange(size, chunks=size, dtype=np.int64)
var = Variable((name,), data)
# IndexVariable objects have a dummy .chunk() method
if isinstance(var, IndexVariable):
var = var.to_base_variable()
# Make sure var is a dask array, otherwise the array can become too large
# when it is broadcasted to several dimensions:
if not is_duck_dask_array(var._data):
var = var.chunk()
# Broadcast then flatten the array:
var_new_dims = var.set_dims(ordered_dims).chunk(ds_chunks)
dask_array = var_new_dims._data.reshape(-1)
series = dd.from_dask_array(dask_array, columns=name, meta=df_meta)
series_list.append(series)
df = dd.concat(series_list, axis=1)
if set_index:
dim_order = [*ordered_dims]
if len(dim_order) == 1:
(dim,) = dim_order
df = df.set_index(dim)
else:
# triggers an error about multi-indexes, even if only one
# dimension is passed
df = df.set_index(dim_order)
return df
def to_dict(
self, data: bool | Literal["list", "array"] = "list", encoding: bool = False
) -> dict[str, Any]:
"""
Convert this dataset to a dictionary following xarray naming
conventions.
Converts all variables and attributes to native Python objects
Useful for converting to json. To avoid datetime incompatibility
use decode_times=False kwarg in xarrray.open_dataset.
Parameters
----------
data : bool or {"list", "array"}, default: "list"
Whether to include the actual data in the dictionary. When set to
False, returns just the schema. If set to "array", returns data as
underlying array type. If set to "list" (or True for backwards
compatibility), returns data in lists of Python data types. Note
that for obtaining the "list" output efficiently, use
`ds.compute().to_dict(data="list")`.
encoding : bool, default: False
Whether to include the Dataset's encoding in the dictionary.
Returns
-------
d : dict
Dict with keys: "coords", "attrs", "dims", "data_vars" and optionally
"encoding".
See Also
--------
Dataset.from_dict
DataArray.to_dict
"""
d: dict = {
"coords": {},
"attrs": decode_numpy_dict_values(self.attrs),
"dims": dict(self.sizes),
"data_vars": {},
}
for k in self.coords:
d["coords"].update(
{k: self[k].variable.to_dict(data=data, encoding=encoding)}
)
for k in self.data_vars:
d["data_vars"].update(
{k: self[k].variable.to_dict(data=data, encoding=encoding)}
)
if encoding:
d["encoding"] = dict(self.encoding)
return d
@classmethod
def from_dict(cls, d: Mapping[Any, Any]) -> Self:
"""Convert a dictionary into an xarray.Dataset.
Parameters
----------
d : dict-like
Mapping with a minimum structure of
``{"var_0": {"dims": [..], "data": [..]}, \
...}``
Returns
-------
obj : Dataset
See also
--------
Dataset.to_dict
DataArray.from_dict
Examples
--------
>>> d = {
... "t": {"dims": ("t"), "data": [0, 1, 2]},
... "a": {"dims": ("t"), "data": ["a", "b", "c"]},
... "b": {"dims": ("t"), "data": [10, 20, 30]},
... }
>>> ds = xr.Dataset.from_dict(d)
>>> ds
<xarray.Dataset> Size: 60B
Dimensions: (t: 3)
Coordinates:
* t (t) int64 24B 0 1 2
Data variables:
a (t) <U1 12B 'a' 'b' 'c'
b (t) int64 24B 10 20 30
>>> d = {
... "coords": {
... "t": {"dims": "t", "data": [0, 1, 2], "attrs": {"units": "s"}}
... },
... "attrs": {"title": "air temperature"},
... "dims": "t",
... "data_vars": {
... "a": {"dims": "t", "data": [10, 20, 30]},
... "b": {"dims": "t", "data": ["a", "b", "c"]},
... },
... }
>>> ds = xr.Dataset.from_dict(d)
>>> ds
<xarray.Dataset> Size: 60B
Dimensions: (t: 3)
Coordinates:
* t (t) int64 24B 0 1 2
Data variables:
a (t) int64 24B 10 20 30
b (t) <U1 12B 'a' 'b' 'c'
Attributes:
title: air temperature
"""
variables: Iterable[tuple[Hashable, Any]]
if not {"coords", "data_vars"}.issubset(set(d)):
variables = d.items()
else:
import itertools
variables = itertools.chain(
d.get("coords", {}).items(), d.get("data_vars", {}).items()
)
try:
variable_dict = {
k: (v["dims"], v["data"], v.get("attrs"), v.get("encoding"))
for k, v in variables
}
except KeyError as e:
raise ValueError(
f"cannot convert dict without the key '{e.args[0]}'"
) from e
obj = cls(variable_dict)
# what if coords aren't dims?
coords = set(d.get("coords", {})) - set(d.get("dims", {}))
obj = obj.set_coords(coords)
obj.attrs.update(d.get("attrs", {}))
obj.encoding.update(d.get("encoding", {}))
return obj
def _unary_op(self, f, *args, **kwargs) -> Self:
variables = {}
keep_attrs = kwargs.pop("keep_attrs", None)
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
for k, v in self._variables.items():
if k in self._coord_names:
variables[k] = v
else:
variables[k] = f(v, *args, **kwargs)
if keep_attrs:
variables[k]._attrs = v._attrs
attrs = self._attrs if keep_attrs else None
return self._replace_with_new_dims(variables, attrs=attrs)
def _binary_op(self, other, f, reflexive=False, join=None) -> Dataset:
from xarray.core.dataarray import DataArray
from xarray.core.datatree import DataTree
from xarray.core.groupby import GroupBy
if isinstance(other, DataTree | GroupBy):
return NotImplemented
align_type = OPTIONS["arithmetic_join"] if join is None else join
if isinstance(other, DataArray | Dataset):
self, other = align(self, other, join=align_type, copy=False)
g = f if not reflexive else lambda x, y: f(y, x)
ds = self._calculate_binary_op(g, other, join=align_type)
keep_attrs = _get_keep_attrs(default=False)
if keep_attrs:
ds.attrs = self.attrs
return ds
def _inplace_binary_op(self, other, f) -> Self:
from xarray.core.dataarray import DataArray
from xarray.core.groupby import GroupBy
if isinstance(other, GroupBy):
raise TypeError(
"in-place operations between a Dataset and "
"a grouped object are not permitted"
)
# we don't actually modify arrays in-place with in-place Dataset
# arithmetic -- this lets us automatically align things
if isinstance(other, DataArray | Dataset):
other = other.reindex_like(self, copy=False)
g = ops.inplace_to_noninplace_op(f)
ds = self._calculate_binary_op(g, other, inplace=True)
self._replace_with_new_dims(
ds._variables,
ds._coord_names,
attrs=ds._attrs,
indexes=ds._indexes,
inplace=True,
)
return self
def _calculate_binary_op(
self, f, other, join="inner", inplace: bool = False
) -> Dataset:
def apply_over_both(lhs_data_vars, rhs_data_vars, lhs_vars, rhs_vars):
if inplace and set(lhs_data_vars) != set(rhs_data_vars):
raise ValueError(
"datasets must have the same data variables "
f"for in-place arithmetic operations: {list(lhs_data_vars)}, {list(rhs_data_vars)}"
)
dest_vars = {}
for k in lhs_data_vars:
if k in rhs_data_vars:
dest_vars[k] = f(lhs_vars[k], rhs_vars[k])
elif join in ["left", "outer"]:
dest_vars[k] = f(lhs_vars[k], np.nan)
for k in rhs_data_vars:
if k not in dest_vars and join in ["right", "outer"]:
dest_vars[k] = f(rhs_vars[k], np.nan)
return dest_vars
if utils.is_dict_like(other) and not isinstance(other, Dataset):
# can't use our shortcut of doing the binary operation with
# Variable objects, so apply over our data vars instead.
new_data_vars = apply_over_both(
self.data_vars, other, self.data_vars, other
)
return type(self)(new_data_vars)
other_coords: Coordinates | None = getattr(other, "coords", None)
ds = self.coords.merge(other_coords)
if isinstance(other, Dataset):
new_vars = apply_over_both(
self.data_vars, other.data_vars, self.variables, other.variables
)
else:
other_variable = getattr(other, "variable", other)
new_vars = {k: f(self.variables[k], other_variable) for k in self.data_vars}
ds._variables.update(new_vars)
ds._dims = calculate_dimensions(ds._variables)
return ds
def _copy_attrs_from(self, other):
self.attrs = other.attrs
for v in other.variables:
if v in self.variables:
self.variables[v].attrs = other.variables[v].attrs
def diff(
self,
dim: Hashable,
n: int = 1,
*,
label: Literal["upper", "lower"] = "upper",
) -> Self:
"""Calculate the n-th order discrete difference along given axis.
Parameters
----------
dim : Hashable
Dimension over which to calculate the finite difference.
n : int, default: 1
The number of times values are differenced.
label : {"upper", "lower"}, default: "upper"
The new coordinate in dimension ``dim`` will have the
values of either the minuend's or subtrahend's coordinate
for values 'upper' and 'lower', respectively.
Returns
-------
difference : Dataset
The n-th order finite difference of this object.
Notes
-----
`n` matches numpy's behavior and is different from pandas' first argument named
`periods`.
Examples
--------
>>> ds = xr.Dataset({"foo": ("x", [5, 5, 6, 6])})
>>> ds.diff("x")
<xarray.Dataset> Size: 24B
Dimensions: (x: 3)
Dimensions without coordinates: x
Data variables:
foo (x) int64 24B 0 1 0
>>> ds.diff("x", 2)
<xarray.Dataset> Size: 16B
Dimensions: (x: 2)
Dimensions without coordinates: x
Data variables:
foo (x) int64 16B 1 -1
See Also
--------
Dataset.differentiate
"""
if n == 0:
return self
if n < 0:
raise ValueError(f"order `n` must be non-negative but got {n}")
# prepare slices
slice_start = {dim: slice(None, -1)}
slice_end = {dim: slice(1, None)}
# prepare new coordinate
if label == "upper":
slice_new = slice_end
elif label == "lower":
slice_new = slice_start
else:
raise ValueError("The 'label' argument has to be either 'upper' or 'lower'")
indexes, index_vars = isel_indexes(self.xindexes, slice_new)
variables = {}
for name, var in self.variables.items():
if name in index_vars:
variables[name] = index_vars[name]
elif dim in var.dims:
if name in self.data_vars:
variables[name] = var.isel(slice_end) - var.isel(slice_start)
else:
variables[name] = var.isel(slice_new)
else:
variables[name] = var
difference = self._replace_with_new_dims(variables, indexes=indexes)
if n > 1:
return difference.diff(dim, n - 1)
else:
return difference
def shift(
self,
shifts: Mapping[Any, int] | None = None,
fill_value: Any = xrdtypes.NA,
**shifts_kwargs: int,
) -> Self:
"""Shift this dataset by an offset along one or more dimensions.
Only data variables are moved; coordinates stay in place. This is
consistent with the behavior of ``shift`` in pandas.
Values shifted from beyond array bounds will appear at one end of
each dimension, which are filled according to `fill_value`. For periodic
offsets instead see `roll`.
Parameters
----------
shifts : mapping of hashable to int
Integer offset to shift along each of the given dimensions.
Positive offsets shift to the right; negative offsets shift to the
left.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names (including coordinates) to fill values.
**shifts_kwargs
The keyword arguments form of ``shifts``.
One of shifts or shifts_kwargs must be provided.
Returns
-------
shifted : Dataset
Dataset with the same coordinates and attributes but shifted data
variables.
See Also
--------
roll
Examples
--------
>>> ds = xr.Dataset({"foo": ("x", list("abcde"))})
>>> ds.shift(x=2)
<xarray.Dataset> Size: 40B
Dimensions: (x: 5)
Dimensions without coordinates: x
Data variables:
foo (x) object 40B nan nan 'a' 'b' 'c'
"""
shifts = either_dict_or_kwargs(shifts, shifts_kwargs, "shift")
invalid = tuple(k for k in shifts if k not in self.dims)
if invalid:
raise ValueError(
f"Dimensions {invalid} not found in data dimensions {tuple(self.dims)}"
)
variables = {}
for name, var in self.variables.items():
if name in self.data_vars:
fill_value_ = (
fill_value.get(name, xrdtypes.NA)
if isinstance(fill_value, dict)
else fill_value
)
var_shifts = {k: v for k, v in shifts.items() if k in var.dims}
variables[name] = var.shift(fill_value=fill_value_, shifts=var_shifts)
else:
variables[name] = var
return self._replace(variables)
def roll(
self,
shifts: Mapping[Any, int] | None = None,
roll_coords: bool = False,
**shifts_kwargs: int,
) -> Self:
"""Roll this dataset by an offset along one or more dimensions.
Unlike shift, roll treats the given dimensions as periodic, so will not
create any missing values to be filled.
Also unlike shift, roll may rotate all variables, including coordinates
if specified. The direction of rotation is consistent with
:py:func:`numpy.roll`.
Parameters
----------
shifts : mapping of hashable to int, optional
A dict with keys matching dimensions and values given
by integers to rotate each of the given dimensions. Positive
offsets roll to the right; negative offsets roll to the left.
roll_coords : bool, default: False
Indicates whether to roll the coordinates by the offset too.
**shifts_kwargs : {dim: offset, ...}, optional
The keyword arguments form of ``shifts``.
One of shifts or shifts_kwargs must be provided.
Returns
-------
rolled : Dataset
Dataset with the same attributes but rolled data and coordinates.
See Also
--------
shift
Examples
--------
>>> ds = xr.Dataset({"foo": ("x", list("abcde"))}, coords={"x": np.arange(5)})
>>> ds.roll(x=2)
<xarray.Dataset> Size: 60B
Dimensions: (x: 5)
Coordinates:
* x (x) int64 40B 0 1 2 3 4
Data variables:
foo (x) <U1 20B 'd' 'e' 'a' 'b' 'c'
>>> ds.roll(x=2, roll_coords=True)
<xarray.Dataset> Size: 60B
Dimensions: (x: 5)
Coordinates:
* x (x) int64 40B 3 4 0 1 2
Data variables:
foo (x) <U1 20B 'd' 'e' 'a' 'b' 'c'
"""
shifts = either_dict_or_kwargs(shifts, shifts_kwargs, "roll")
invalid = [k for k in shifts if k not in self.dims]
if invalid:
raise ValueError(
f"Dimensions {invalid} not found in data dimensions {tuple(self.dims)}"
)
unrolled_vars: tuple[Hashable, ...]
if roll_coords:
indexes, index_vars = roll_indexes(self.xindexes, shifts)
unrolled_vars = ()
else:
indexes = dict(self._indexes)
index_vars = dict(self.xindexes.variables)
unrolled_vars = tuple(self.coords)
variables = {}
for k, var in self.variables.items():
if k in index_vars:
variables[k] = index_vars[k]
elif k not in unrolled_vars:
variables[k] = var.roll(
shifts={k: s for k, s in shifts.items() if k in var.dims}
)
else:
variables[k] = var
return self._replace(variables, indexes=indexes)
def sortby(
self,
variables: (
Hashable
| DataArray
| Sequence[Hashable | DataArray]
| Callable[[Self], Hashable | DataArray | list[Hashable | DataArray]]
),
ascending: bool = True,
) -> Self:
"""
Sort object by labels or values (along an axis).
Sorts the dataset, either along specified dimensions,
or according to values of 1-D dataarrays that share dimension
with calling object.
If the input variables are dataarrays, then the dataarrays are aligned
(via left-join) to the calling object prior to sorting by cell values.
NaNs are sorted to the end, following Numpy convention.
If multiple sorts along the same dimension is
given, numpy's lexsort is performed along that dimension:
https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html
and the FIRST key in the sequence is used as the primary sort key,
followed by the 2nd key, etc.
Parameters
----------
variables : Hashable, DataArray, sequence of Hashable or DataArray, or Callable
1D DataArray objects or name(s) of 1D variable(s) in coords whose values are
used to sort this array. If a callable, the callable is passed this object,
and the result is used as the value for cond.
ascending : bool, default: True
Whether to sort by ascending or descending order.
Returns
-------
sorted : Dataset
A new dataset where all the specified dims are sorted by dim
labels.
See Also
--------
DataArray.sortby
numpy.sort
pandas.sort_values
pandas.sort_index
Examples
--------
>>> ds = xr.Dataset(
... {
... "A": (("x", "y"), [[1, 2], [3, 4]]),
... "B": (("x", "y"), [[5, 6], [7, 8]]),
... },
... coords={"x": ["b", "a"], "y": [1, 0]},
... )
>>> ds.sortby("x")
<xarray.Dataset> Size: 88B
Dimensions: (x: 2, y: 2)
Coordinates:
* x (x) <U1 8B 'a' 'b'
* y (y) int64 16B 1 0
Data variables:
A (x, y) int64 32B 3 4 1 2
B (x, y) int64 32B 7 8 5 6
>>> ds.sortby(lambda x: -x["y"])
<xarray.Dataset> Size: 88B
Dimensions: (x: 2, y: 2)
Coordinates:
* x (x) <U1 8B 'b' 'a'
* y (y) int64 16B 1 0
Data variables:
A (x, y) int64 32B 1 2 3 4
B (x, y) int64 32B 5 6 7 8
"""
from xarray.core.dataarray import DataArray
if callable(variables):
variables = variables(self)
if not isinstance(variables, list):
variables = [variables]
arrays = [v if isinstance(v, DataArray) else self[v] for v in variables]
aligned_vars = align(self, *arrays, join="left")
aligned_self = cast("Self", aligned_vars[0])
aligned_other_vars = cast(tuple[DataArray, ...], aligned_vars[1:])
vars_by_dim = defaultdict(list)
for data_array in aligned_other_vars:
if data_array.ndim != 1:
raise ValueError("Input DataArray is not 1-D.")
(key,) = data_array.dims
vars_by_dim[key].append(data_array)
indices = {}
for key, arrays in vars_by_dim.items():
order = np.lexsort(tuple(reversed(arrays)))
indices[key] = order if ascending else order[::-1]
return aligned_self.isel(indices)
def quantile(
self,
q: ArrayLike,
dim: Dims = None,
*,
method: QuantileMethods = "linear",
numeric_only: bool = False,
keep_attrs: bool | None = None,
skipna: bool | None = None,
interpolation: QuantileMethods | None = None,
) -> Self:
"""Compute the qth quantile of the data along the specified dimension.
Returns the qth quantiles(s) of the array elements for each variable
in the Dataset.
Parameters
----------
q : float or array-like of float
Quantile to compute, which must be between 0 and 1 inclusive.
dim : str or Iterable of Hashable, optional
Dimension(s) over which to apply quantile.
method : str, default: "linear"
This optional parameter specifies the interpolation method to use when the
desired quantile lies between two data points. The options sorted by their R
type as summarized in the H&F paper [1]_ are:
1. "inverted_cdf"
2. "averaged_inverted_cdf"
3. "closest_observation"
4. "interpolated_inverted_cdf"
5. "hazen"
6. "weibull"
7. "linear" (default)
8. "median_unbiased"
9. "normal_unbiased"
The first three methods are discontiuous. The following discontinuous
variations of the default "linear" (7.) option are also available:
* "lower"
* "higher"
* "midpoint"
* "nearest"
See :py:func:`numpy.quantile` or [1]_ for details. The "method" argument
was previously called "interpolation", renamed in accordance with numpy
version 1.22.0.
keep_attrs : bool, optional
If True, the dataset's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
numeric_only : bool, optional
If True, only apply ``func`` to variables with a numeric dtype.
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
quantiles : Dataset
If `q` is a single quantile, then the result is a scalar for each
variable in data_vars. If multiple percentiles are given, first
axis of the result corresponds to the quantile and a quantile
dimension is added to the return Dataset. The other dimensions are
the dimensions that remain after the reduction of the array.
See Also
--------
numpy.nanquantile, numpy.quantile, pandas.Series.quantile, DataArray.quantile
Examples
--------
>>> ds = xr.Dataset(
... {"a": (("x", "y"), [[0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]])},
... coords={"x": [7, 9], "y": [1, 1.5, 2, 2.5]},
... )
>>> ds.quantile(0) # or ds.quantile(0, dim=...)
<xarray.Dataset> Size: 16B
Dimensions: ()
Coordinates:
quantile float64 8B 0.0
Data variables:
a float64 8B 0.7
>>> ds.quantile(0, dim="x")
<xarray.Dataset> Size: 72B
Dimensions: (y: 4)
Coordinates:
* y (y) float64 32B 1.0 1.5 2.0 2.5
quantile float64 8B 0.0
Data variables:
a (y) float64 32B 0.7 4.2 2.6 1.5
>>> ds.quantile([0, 0.5, 1])
<xarray.Dataset> Size: 48B
Dimensions: (quantile: 3)
Coordinates:
* quantile (quantile) float64 24B 0.0 0.5 1.0
Data variables:
a (quantile) float64 24B 0.7 3.4 9.4
>>> ds.quantile([0, 0.5, 1], dim="x")
<xarray.Dataset> Size: 152B
Dimensions: (quantile: 3, y: 4)
Coordinates:
* y (y) float64 32B 1.0 1.5 2.0 2.5
* quantile (quantile) float64 24B 0.0 0.5 1.0
Data variables:
a (quantile, y) float64 96B 0.7 4.2 2.6 1.5 3.6 ... 6.5 7.3 9.4 1.9
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
"""
# interpolation renamed to method in version 0.21.0
# check here and in variable to avoid repeated warnings
if interpolation is not None:
warnings.warn(
"The `interpolation` argument to quantile was renamed to `method`.",
FutureWarning,
stacklevel=2,
)
if method != "linear":
raise TypeError("Cannot pass interpolation and method keywords!")
method = interpolation
dims: set[Hashable]
if isinstance(dim, str):
dims = {dim}
elif dim is None or dim is ...:
dims = set(self.dims)
else:
dims = set(dim)
invalid_dims = set(dims) - set(self.dims)
if invalid_dims:
raise ValueError(
f"Dimensions {tuple(invalid_dims)} not found in data dimensions {tuple(self.dims)}"
)
q = np.asarray(q, dtype=np.float64)
variables = {}
for name, var in self.variables.items():
reduce_dims = [d for d in var.dims if d in dims]
if reduce_dims or not var.dims:
if name not in self.coords and (
not numeric_only
or np.issubdtype(var.dtype, np.number)
or var.dtype == np.bool_
):
variables[name] = var.quantile(
q,
dim=reduce_dims,
method=method,
keep_attrs=keep_attrs,
skipna=skipna,
)
else:
variables[name] = var
# construct the new dataset
coord_names = {k for k in self.coords if k in variables}
indexes = {k: v for k, v in self._indexes.items() if k in variables}
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
attrs = self.attrs if keep_attrs else None
new = self._replace_with_new_dims(
variables, coord_names=coord_names, attrs=attrs, indexes=indexes
)
return new.assign_coords(quantile=q)
def rank(
self,
dim: Hashable,
*,
pct: bool = False,
keep_attrs: bool | None = None,
) -> Self:
"""Ranks the data.
Equal values are assigned a rank that is the average of the ranks that
would have been otherwise assigned to all of the values within
that set.
Ranks begin at 1, not 0. If pct is True, computes percentage ranks.
NaNs in the input array are returned as NaNs.
The `bottleneck` library is required.
Parameters
----------
dim : Hashable
Dimension over which to compute rank.
pct : bool, default: False
If True, compute percentage ranks, otherwise compute integer ranks.
keep_attrs : bool or None, optional
If True, the dataset's attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
Returns
-------
ranked : Dataset
Variables that do not depend on `dim` are dropped.
"""
if not OPTIONS["use_bottleneck"]:
raise RuntimeError(
"rank requires bottleneck to be enabled."
" Call `xr.set_options(use_bottleneck=True)` to enable it."
)
if dim not in self.dims:
raise ValueError(
f"Dimension {dim!r} not found in data dimensions {tuple(self.dims)}"
)
variables = {}
for name, var in self.variables.items():
if name in self.data_vars:
if dim in var.dims:
variables[name] = var.rank(dim, pct=pct)
else:
variables[name] = var
coord_names = set(self.coords)
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
attrs = self.attrs if keep_attrs else None
return self._replace(variables, coord_names, attrs=attrs)
def differentiate(
self,
coord: Hashable,
edge_order: Literal[1, 2] = 1,
datetime_unit: DatetimeUnitOptions | None = None,
) -> Self:
"""Differentiate with the second order accurate central
differences.
.. note::
This feature is limited to simple cartesian geometry, i.e. coord
must be one dimensional.
Parameters
----------
coord : Hashable
The coordinate to be used to compute the gradient.
edge_order : {1, 2}, default: 1
N-th order accurate differences at the boundaries.
datetime_unit : None or {"W", "D", "h", "m", "s", "ms", \
"us", "ns", "ps", "fs", "as", None}, default: None
Unit to compute gradient. Only valid for datetime coordinate.
Returns
-------
differentiated: Dataset
See also
--------
numpy.gradient: corresponding numpy function
"""
if coord not in self.variables and coord not in self.dims:
variables_and_dims = tuple(set(self.variables.keys()).union(self.dims))
raise ValueError(
f"Coordinate {coord!r} not found in variables or dimensions {variables_and_dims}."
)
coord_var = self[coord].variable
if coord_var.ndim != 1:
raise ValueError(
f"Coordinate {coord} must be 1 dimensional but is {coord_var.ndim}"
" dimensional"
)
dim = coord_var.dims[0]
if _contains_datetime_like_objects(coord_var):
if coord_var.dtype.kind in "mM" and datetime_unit is None:
datetime_unit = cast(
"DatetimeUnitOptions", np.datetime_data(coord_var.dtype)[0]
)
elif datetime_unit is None:
datetime_unit = "s" # Default to seconds for cftime objects
coord_var = coord_var._to_numeric(datetime_unit=datetime_unit)
variables = {}
for k, v in self.variables.items():
if k in self.data_vars and dim in v.dims and k not in self.coords:
if _contains_datetime_like_objects(v):
v = v._to_numeric(datetime_unit=datetime_unit)
grad = duck_array_ops.gradient(
v.data,
coord_var.data,
edge_order=edge_order,
axis=v.get_axis_num(dim),
)
variables[k] = Variable(v.dims, grad)
else:
variables[k] = v
return self._replace(variables)
def integrate(
self,
coord: Hashable | Sequence[Hashable],
datetime_unit: DatetimeUnitOptions = None,
) -> Self:
"""Integrate along the given coordinate using the trapezoidal rule.
.. note::
This feature is limited to simple cartesian geometry, i.e. coord
must be one dimensional.
Parameters
----------
coord : hashable, or sequence of hashable
Coordinate(s) used for the integration.
datetime_unit : {'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', \
'ps', 'fs', 'as', None}, optional
Specify the unit if datetime coordinate is used.
Returns
-------
integrated : Dataset
See also
--------
DataArray.integrate
numpy.trapz : corresponding numpy function
Examples
--------
>>> ds = xr.Dataset(
... data_vars={"a": ("x", [5, 5, 6, 6]), "b": ("x", [1, 2, 1, 0])},
... coords={"x": [0, 1, 2, 3], "y": ("x", [1, 7, 3, 5])},
... )
>>> ds
<xarray.Dataset> Size: 128B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
y (x) int64 32B 1 7 3 5
Data variables:
a (x) int64 32B 5 5 6 6
b (x) int64 32B 1 2 1 0
>>> ds.integrate("x")
<xarray.Dataset> Size: 16B
Dimensions: ()
Data variables:
a float64 8B 16.5
b float64 8B 3.5
>>> ds.integrate("y")
<xarray.Dataset> Size: 16B
Dimensions: ()
Data variables:
a float64 8B 20.0
b float64 8B 4.0
"""
if not isinstance(coord, list | tuple):
coord = (coord,)
result = self
for c in coord:
result = result._integrate_one(c, datetime_unit=datetime_unit)
return result
def _integrate_one(self, coord, datetime_unit=None, cumulative=False):
from xarray.core.variable import Variable
if coord not in self.variables and coord not in self.dims:
variables_and_dims = tuple(set(self.variables.keys()).union(self.dims))
raise ValueError(
f"Coordinate {coord!r} not found in variables or dimensions {variables_and_dims}."
)
coord_var = self[coord].variable
if coord_var.ndim != 1:
raise ValueError(
f"Coordinate {coord} must be 1 dimensional but is {coord_var.ndim}"
" dimensional"
)
dim = coord_var.dims[0]
if _contains_datetime_like_objects(coord_var):
if coord_var.dtype.kind in "mM" and datetime_unit is None:
datetime_unit, _ = np.datetime_data(coord_var.dtype)
elif datetime_unit is None:
datetime_unit = "s" # Default to seconds for cftime objects
coord_var = coord_var._replace(
data=datetime_to_numeric(coord_var.data, datetime_unit=datetime_unit)
)
variables = {}
coord_names = set()
for k, v in self.variables.items():
if k in self.coords:
if dim not in v.dims or cumulative:
variables[k] = v
coord_names.add(k)
elif k in self.data_vars and dim in v.dims:
coord_data = to_like_array(coord_var.data, like=v.data)
if _contains_datetime_like_objects(v):
v = datetime_to_numeric(v, datetime_unit=datetime_unit)
if cumulative:
integ = duck_array_ops.cumulative_trapezoid(
v.data, coord_data, axis=v.get_axis_num(dim)
)
v_dims = v.dims
else:
integ = duck_array_ops.trapz(
v.data, coord_data, axis=v.get_axis_num(dim)
)
v_dims = list(v.dims)
v_dims.remove(dim)
variables[k] = Variable(v_dims, integ)
else:
variables[k] = v
indexes = {k: v for k, v in self._indexes.items() if k in variables}
return self._replace_with_new_dims(
variables, coord_names=coord_names, indexes=indexes
)
def cumulative_integrate(
self,
coord: Hashable | Sequence[Hashable],
datetime_unit: DatetimeUnitOptions = None,
) -> Self:
"""Integrate along the given coordinate using the trapezoidal rule.
.. note::
This feature is limited to simple cartesian geometry, i.e. coord
must be one dimensional.
The first entry of the cumulative integral of each variable is always 0, in
order to keep the length of the dimension unchanged between input and
output.
Parameters
----------
coord : hashable, or sequence of hashable
Coordinate(s) used for the integration.
datetime_unit : {'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', \
'ps', 'fs', 'as', None}, optional
Specify the unit if datetime coordinate is used.
Returns
-------
integrated : Dataset
See also
--------
DataArray.cumulative_integrate
scipy.integrate.cumulative_trapezoid : corresponding scipy function
Examples
--------
>>> ds = xr.Dataset(
... data_vars={"a": ("x", [5, 5, 6, 6]), "b": ("x", [1, 2, 1, 0])},
... coords={"x": [0, 1, 2, 3], "y": ("x", [1, 7, 3, 5])},
... )
>>> ds
<xarray.Dataset> Size: 128B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
y (x) int64 32B 1 7 3 5
Data variables:
a (x) int64 32B 5 5 6 6
b (x) int64 32B 1 2 1 0
>>> ds.cumulative_integrate("x")
<xarray.Dataset> Size: 128B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
y (x) int64 32B 1 7 3 5
Data variables:
a (x) float64 32B 0.0 5.0 10.5 16.5
b (x) float64 32B 0.0 1.5 3.0 3.5
>>> ds.cumulative_integrate("y")
<xarray.Dataset> Size: 128B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
y (x) int64 32B 1 7 3 5
Data variables:
a (x) float64 32B 0.0 30.0 8.0 20.0
b (x) float64 32B 0.0 9.0 3.0 4.0
"""
if not isinstance(coord, list | tuple):
coord = (coord,)
result = self
for c in coord:
result = result._integrate_one(
c, datetime_unit=datetime_unit, cumulative=True
)
return result
@property
def real(self) -> Self:
"""
The real part of each data variable.
See Also
--------
numpy.ndarray.real
"""
return self.map(lambda x: x.real, keep_attrs=True)
@property
def imag(self) -> Self:
"""
The imaginary part of each data variable.
See Also
--------
numpy.ndarray.imag
"""
return self.map(lambda x: x.imag, keep_attrs=True)
plot = utils.UncachedAccessor(DatasetPlotAccessor)
def filter_by_attrs(self, **kwargs) -> Self:
"""Returns a ``Dataset`` with variables that match specific conditions.
Can pass in ``key=value`` or ``key=callable``. A Dataset is returned
containing only the variables for which all the filter tests pass.
These tests are either ``key=value`` for which the attribute ``key``
has the exact value ``value`` or the callable passed into
``key=callable`` returns True. The callable will be passed a single
value, either the value of the attribute ``key`` or ``None`` if the
DataArray does not have an attribute with the name ``key``.
Parameters
----------
**kwargs
key : str
Attribute name.
value : callable or obj
If value is a callable, it should return a boolean in the form
of bool = func(attr) where attr is da.attrs[key].
Otherwise, value will be compared to the each
DataArray's attrs[key].
Returns
-------
new : Dataset
New dataset with variables filtered by attribute.
Examples
--------
>>> temp = 15 + 8 * np.random.randn(2, 2, 3)
>>> precip = 10 * np.random.rand(2, 2, 3)
>>> lon = [[-99.83, -99.32], [-99.79, -99.23]]
>>> lat = [[42.25, 42.21], [42.63, 42.59]]
>>> dims = ["x", "y", "time"]
>>> temp_attr = dict(standard_name="air_potential_temperature")
>>> precip_attr = dict(standard_name="convective_precipitation_flux")
>>> ds = xr.Dataset(
... dict(
... temperature=(dims, temp, temp_attr),
... precipitation=(dims, precip, precip_attr),
... ),
... coords=dict(
... lon=(["x", "y"], lon),
... lat=(["x", "y"], lat),
... time=pd.date_range("2014-09-06", periods=3),
... reference_time=pd.Timestamp("2014-09-05"),
... ),
... )
Get variables matching a specific standard_name:
>>> ds.filter_by_attrs(standard_name="convective_precipitation_flux")
<xarray.Dataset> Size: 192B
Dimensions: (x: 2, y: 2, time: 3)
Coordinates:
lon (x, y) float64 32B -99.83 -99.32 -99.79 -99.23
lat (x, y) float64 32B 42.25 42.21 42.63 42.59
* time (time) datetime64[ns] 24B 2014-09-06 2014-09-07 2014-09-08
reference_time datetime64[ns] 8B 2014-09-05
Dimensions without coordinates: x, y
Data variables:
precipitation (x, y, time) float64 96B 5.68 9.256 0.7104 ... 4.615 7.805
Get all variables that have a standard_name attribute:
>>> standard_name = lambda v: v is not None
>>> ds.filter_by_attrs(standard_name=standard_name)
<xarray.Dataset> Size: 288B
Dimensions: (x: 2, y: 2, time: 3)
Coordinates:
lon (x, y) float64 32B -99.83 -99.32 -99.79 -99.23
lat (x, y) float64 32B 42.25 42.21 42.63 42.59
* time (time) datetime64[ns] 24B 2014-09-06 2014-09-07 2014-09-08
reference_time datetime64[ns] 8B 2014-09-05
Dimensions without coordinates: x, y
Data variables:
temperature (x, y, time) float64 96B 29.11 18.2 22.83 ... 16.15 26.63
precipitation (x, y, time) float64 96B 5.68 9.256 0.7104 ... 4.615 7.805
"""
selection = []
for var_name, variable in self.variables.items():
has_value_flag = False
for attr_name, pattern in kwargs.items():
attr_value = variable.attrs.get(attr_name)
if (callable(pattern) and pattern(attr_value)) or attr_value == pattern:
has_value_flag = True
else:
has_value_flag = False
break
if has_value_flag is True:
selection.append(var_name)
return self[selection]
def unify_chunks(self) -> Self:
"""Unify chunk size along all chunked dimensions of this Dataset.
Returns
-------
Dataset with consistent chunk sizes for all dask-array variables
See Also
--------
dask.array.core.unify_chunks
"""
return unify_chunks(self)[0]
def map_blocks(
self,
func: Callable[..., T_Xarray],
args: Sequence[Any] = (),
kwargs: Mapping[str, Any] | None = None,
template: DataArray | Dataset | None = None,
) -> T_Xarray:
"""
Apply a function to each block of this Dataset.
.. warning::
This method is experimental and its signature may change.
Parameters
----------
func : callable
User-provided function that accepts a Dataset as its first
parameter. The function will receive a subset or 'block' of this Dataset (see below),
corresponding to one chunk along each chunked dimension. ``func`` will be
executed as ``func(subset_dataset, *subset_args, **kwargs)``.
This function must return either a single DataArray or a single Dataset.
This function cannot add a new chunked dimension.
args : sequence
Passed to func after unpacking and subsetting any xarray objects by blocks.
xarray objects in args must be aligned with obj, otherwise an error is raised.
kwargs : Mapping or None
Passed verbatim to func after unpacking. xarray objects, if any, will not be
subset to blocks. Passing dask collections in kwargs is not allowed.
template : DataArray, Dataset or None, optional
xarray object representing the final result after compute is called. If not provided,
the function will be first run on mocked-up data, that looks like this object but
has sizes 0, to determine properties of the returned object such as dtype,
variable names, attributes, new dimensions and new indexes (if any).
``template`` must be provided if the function changes the size of existing dimensions.
When provided, ``attrs`` on variables in `template` are copied over to the result. Any
``attrs`` set by ``func`` will be ignored.
Returns
-------
A single DataArray or Dataset with dask backend, reassembled from the outputs of the
function.
Notes
-----
This function is designed for when ``func`` needs to manipulate a whole xarray object
subset to each block. Each block is loaded into memory. In the more common case where
``func`` can work on numpy arrays, it is recommended to use ``apply_ufunc``.
If none of the variables in this object is backed by dask arrays, calling this function is
equivalent to calling ``func(obj, *args, **kwargs)``.
See Also
--------
:func:`dask.array.map_blocks <dask.array.map_blocks>`
:func:`xarray.apply_ufunc <apply_ufunc>`
:func:`xarray.DataArray.map_blocks <xarray.DataArray.map_blocks>`
:doc:`xarray-tutorial:advanced/map_blocks/map_blocks`
Advanced Tutorial on map_blocks with dask
Examples
--------
Calculate an anomaly from climatology using ``.groupby()``. Using
``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``,
its indices, and its methods like ``.groupby()``.
>>> def calculate_anomaly(da, groupby_type="time.month"):
... gb = da.groupby(groupby_type)
... clim = gb.mean(dim="time")
... return gb - clim
...
>>> time = xr.date_range("1990-01", "1992-01", freq="ME", use_cftime=True)
>>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"])
>>> np.random.seed(123)
>>> array = xr.DataArray(
... np.random.rand(len(time)),
... dims=["time"],
... coords={"time": time, "month": month},
... ).chunk()
>>> ds = xr.Dataset({"a": array})
>>> ds.map_blocks(calculate_anomaly, template=ds).compute()
<xarray.Dataset> Size: 576B
Dimensions: (time: 24)
Coordinates:
* time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 192B 1 2 3 4 5 6 7 8 9 10 ... 3 4 5 6 7 8 9 10 11 12
Data variables:
a (time) float64 192B 0.1289 0.1132 -0.0856 ... 0.1906 -0.05901
Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments
to the function being applied in ``xr.map_blocks()``:
>>> ds.map_blocks(
... calculate_anomaly,
... kwargs={"groupby_type": "time.year"},
... template=ds,
... )
<xarray.Dataset> Size: 576B
Dimensions: (time: 24)
Coordinates:
* time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 192B dask.array<chunksize=(24,), meta=np.ndarray>
Data variables:
a (time) float64 192B dask.array<chunksize=(24,), meta=np.ndarray>
"""
from xarray.core.parallel import map_blocks
return map_blocks(func, self, args, kwargs, template)
def polyfit(
self,
dim: Hashable,
deg: int,
skipna: bool | None = None,
rcond: float | None = None,
w: Hashable | Any = None,
full: bool = False,
cov: bool | Literal["unscaled"] = False,
) -> Self:
"""
Least squares polynomial fit.
This replicates the behaviour of `numpy.polyfit` but differs by skipping
invalid values when `skipna = True`.
Parameters
----------
dim : hashable
Coordinate along which to fit the polynomials.
deg : int
Degree of the fitting polynomial.
skipna : bool or None, optional
If True, removes all invalid values before fitting each 1D slices of the array.
Default is True if data is stored in a dask.array or if there is any
invalid values, False otherwise.
rcond : float or None, optional
Relative condition number to the fit.
w : hashable or Any, optional
Weights to apply to the y-coordinate of the sample points.
Can be an array-like object or the name of a coordinate in the dataset.
full : bool, default: False
Whether to return the residuals, matrix rank and singular values in addition
to the coefficients.
cov : bool or "unscaled", default: False
Whether to return to the covariance matrix in addition to the coefficients.
The matrix is not scaled if `cov='unscaled'`.
Returns
-------
polyfit_results : Dataset
A single dataset which contains (for each "var" in the input dataset):
[var]_polyfit_coefficients
The coefficients of the best fit for each variable in this dataset.
[var]_polyfit_residuals
The residuals of the least-square computation for each variable (only included if `full=True`)
When the matrix rank is deficient, np.nan is returned.
[dim]_matrix_rank
The effective rank of the scaled Vandermonde coefficient matrix (only included if `full=True`)
The rank is computed ignoring the NaN values that might be skipped.
[dim]_singular_values
The singular values of the scaled Vandermonde coefficient matrix (only included if `full=True`)
[var]_polyfit_covariance
The covariance matrix of the polynomial coefficient estimates (only included if `full=False` and `cov=True`)
Warns
-----
RankWarning
The rank of the coefficient matrix in the least-squares fit is deficient.
The warning is not raised with in-memory (not dask) data and `full=True`.
See Also
--------
numpy.polyfit
numpy.polyval
xarray.polyval
"""
from xarray.computation.fit import polyfit as polyfit_impl
return polyfit_impl(self, dim, deg, skipna, rcond, w, full, cov)
def pad(
self,
pad_width: Mapping[Any, int | tuple[int, int]] | None = None,
mode: PadModeOptions = "constant",
stat_length: (
int | tuple[int, int] | Mapping[Any, tuple[int, int]] | None
) = None,
constant_values: T_DatasetPadConstantValues | None = None,
end_values: int | tuple[int, int] | Mapping[Any, tuple[int, int]] | None = None,
reflect_type: PadReflectOptions = None,
keep_attrs: bool | None = None,
**pad_width_kwargs: Any,
) -> Self:
"""Pad this dataset along one or more dimensions.
.. warning::
This function is experimental and its behaviour is likely to change
especially regarding padding of dimension coordinates (or IndexVariables).
When using one of the modes ("edge", "reflect", "symmetric", "wrap"),
coordinates will be padded with the same mode, otherwise coordinates
are padded using the "constant" mode with fill_value dtypes.NA.
Parameters
----------
pad_width : mapping of hashable to tuple of int
Mapping with the form of {dim: (pad_before, pad_after)}
describing the number of values padded along each dimension.
{dim: pad} is a shortcut for pad_before = pad_after = pad
mode : {"constant", "edge", "linear_ramp", "maximum", "mean", "median", \
"minimum", "reflect", "symmetric", "wrap"}, default: "constant"
How to pad the DataArray (taken from numpy docs):
- "constant": Pads with a constant value.
- "edge": Pads with the edge values of array.
- "linear_ramp": Pads with the linear ramp between end_value and the
array edge value.
- "maximum": Pads with the maximum value of all or part of the
vector along each axis.
- "mean": Pads with the mean value of all or part of the
vector along each axis.
- "median": Pads with the median value of all or part of the
vector along each axis.
- "minimum": Pads with the minimum value of all or part of the
vector along each axis.
- "reflect": Pads with the reflection of the vector mirrored on
the first and last values of the vector along each axis.
- "symmetric": Pads with the reflection of the vector mirrored
along the edge of the array.
- "wrap": Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
stat_length : int, tuple or mapping of hashable to tuple, default: None
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value.
{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)} unique
statistic lengths along each dimension.
((before, after),) yields same before and after statistic lengths
for each dimension.
(stat_length,) or int is a shortcut for before = after = statistic
length for all axes.
Default is ``None``, to use the entire axis.
constant_values : scalar, tuple, mapping of dim name to scalar or tuple, or \
mapping of var name to scalar, tuple or to mapping of dim name to scalar or tuple, default: None
Used in 'constant'. The values to set the padded values for each data variable / axis.
``{var_1: {dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}, ...
var_M: (before, after)}`` unique pad constants per data variable.
``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique
pad constants along each dimension.
``((before, after),)`` yields same before and after constants for each
dimension.
``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
all dimensions.
Default is ``None``, pads with ``np.nan``.
end_values : scalar, tuple or mapping of hashable to tuple, default: None
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
``{dim_1: (before_1, after_1), ... dim_N: (before_N, after_N)}`` unique
end values along each dimension.
``((before, after),)`` yields same before and after end values for each
axis.
``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
all axes.
Default is None.
reflect_type : {"even", "odd", None}, optional
Used in "reflect", and "symmetric". The "even" style is the
default with an unaltered reflection around the edge value. For
the "odd" style, the extended part of the array is created by
subtracting the reflected values from two times the edge value.
keep_attrs : bool or None, optional
If True, the attributes (``attrs``) will be copied from the
original object to the new one. If False, the new object
will be returned without attributes.
**pad_width_kwargs
The keyword arguments form of ``pad_width``.
One of ``pad_width`` or ``pad_width_kwargs`` must be provided.
Returns
-------
padded : Dataset
Dataset with the padded coordinates and data.
See Also
--------
Dataset.shift, Dataset.roll, Dataset.bfill, Dataset.ffill, numpy.pad, dask.array.pad
Notes
-----
By default when ``mode="constant"`` and ``constant_values=None``, integer types will be
promoted to ``float`` and padded with ``np.nan``. To avoid type promotion
specify ``constant_values=np.nan``
Padding coordinates will drop their corresponding index (if any) and will reset default
indexes for dimension coordinates.
Examples
--------
>>> ds = xr.Dataset({"foo": ("x", range(5))})
>>> ds.pad(x=(1, 2))
<xarray.Dataset> Size: 64B
Dimensions: (x: 8)
Dimensions without coordinates: x
Data variables:
foo (x) float64 64B nan 0.0 1.0 2.0 3.0 4.0 nan nan
"""
pad_width = either_dict_or_kwargs(pad_width, pad_width_kwargs, "pad")
if mode in ("edge", "reflect", "symmetric", "wrap"):
coord_pad_mode = mode
coord_pad_options = {
"stat_length": stat_length,
"constant_values": constant_values,
"end_values": end_values,
"reflect_type": reflect_type,
}
else:
coord_pad_mode = "constant"
coord_pad_options = {}
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
variables = {}
# keep indexes that won't be affected by pad and drop all other indexes
xindexes = self.xindexes
pad_dims = set(pad_width)
indexes = {
k: idx
for k, idx in xindexes.items()
if not pad_dims.intersection(xindexes.get_all_dims(k))
}
for name, var in self.variables.items():
var_pad_width = {k: v for k, v in pad_width.items() if k in var.dims}
if not var_pad_width:
variables[name] = var
elif name in self.data_vars:
if utils.is_dict_like(constant_values):
if name in constant_values.keys():
filtered_constant_values = constant_values[name]
elif not set(var.dims).isdisjoint(constant_values.keys()):
filtered_constant_values = {
k: v for k, v in constant_values.items() if k in var.dims
}
else:
filtered_constant_values = 0 # TODO: https://github.com/pydata/xarray/pull/9353#discussion_r1724018352
else:
filtered_constant_values = constant_values
variables[name] = var.pad(
pad_width=var_pad_width,
mode=mode,
stat_length=stat_length,
constant_values=filtered_constant_values,
end_values=end_values,
reflect_type=reflect_type,
keep_attrs=keep_attrs,
)
else:
variables[name] = var.pad(
pad_width=var_pad_width,
mode=coord_pad_mode,
keep_attrs=keep_attrs,
**coord_pad_options, # type: ignore[arg-type]
)
# reset default index of dimension coordinates
if (name,) == var.dims:
dim_var = {name: variables[name]}
index = PandasIndex.from_variables(dim_var, options={})
index_vars = index.create_variables(dim_var)
indexes[name] = index
variables[name] = index_vars[name]
attrs = self._attrs if keep_attrs else None
return self._replace_with_new_dims(variables, indexes=indexes, attrs=attrs)
def idxmin(
self,
dim: Hashable | None = None,
*,
skipna: bool | None = None,
fill_value: Any = xrdtypes.NA,
keep_attrs: bool | None = None,
) -> Self:
"""Return the coordinate label of the minimum value along a dimension.
Returns a new `Dataset` named after the dimension with the values of
the coordinate labels along that dimension corresponding to minimum
values along that dimension.
In comparison to :py:meth:`~Dataset.argmin`, this returns the
coordinate label while :py:meth:`~Dataset.argmin` returns the index.
Parameters
----------
dim : Hashable, optional
Dimension over which to apply `idxmin`. This is optional for 1D
variables, but required for variables with 2 or more dimensions.
skipna : bool or None, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for ``float``, ``complex``, and ``object``
dtypes; other dtypes either do not have a sentinel missing value
(``int``) or ``skipna=True`` has not been implemented
(``datetime64`` or ``timedelta64``).
fill_value : Any, default: NaN
Value to be filled in case all of the values along a dimension are
null. By default this is NaN. The fill value and result are
automatically converted to a compatible dtype if possible.
Ignored if ``skipna`` is False.
keep_attrs : bool or None, optional
If True, the attributes (``attrs``) will be copied from the
original object to the new one. If False, the new object
will be returned without attributes.
Returns
-------
reduced : Dataset
New `Dataset` object with `idxmin` applied to its data and the
indicated dimension removed.
See Also
--------
DataArray.idxmin, Dataset.idxmax, Dataset.min, Dataset.argmin
Examples
--------
>>> array1 = xr.DataArray(
... [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]}
... )
>>> array2 = xr.DataArray(
... [
... [2.0, 1.0, 2.0, 0.0, -2.0],
... [-4.0, np.nan, 2.0, np.nan, -2.0],
... [np.nan, np.nan, 1.0, np.nan, np.nan],
... ],
... dims=["y", "x"],
... coords={"y": [-1, 0, 1], "x": ["a", "b", "c", "d", "e"]},
... )
>>> ds = xr.Dataset({"int": array1, "float": array2})
>>> ds.min(dim="x")
<xarray.Dataset> Size: 56B
Dimensions: (y: 3)
Coordinates:
* y (y) int64 24B -1 0 1
Data variables:
int int64 8B -2
float (y) float64 24B -2.0 -4.0 1.0
>>> ds.argmin(dim="x")
<xarray.Dataset> Size: 56B
Dimensions: (y: 3)
Coordinates:
* y (y) int64 24B -1 0 1
Data variables:
int int64 8B 4
float (y) int64 24B 4 0 2
>>> ds.idxmin(dim="x")
<xarray.Dataset> Size: 52B
Dimensions: (y: 3)
Coordinates:
* y (y) int64 24B -1 0 1
Data variables:
int <U1 4B 'e'
float (y) object 24B 'e' 'a' 'c'
"""
return self.map(
methodcaller(
"idxmin",
dim=dim,
skipna=skipna,
fill_value=fill_value,
keep_attrs=keep_attrs,
)
)
def idxmax(
self,
dim: Hashable | None = None,
*,
skipna: bool | None = None,
fill_value: Any = xrdtypes.NA,
keep_attrs: bool | None = None,
) -> Self:
"""Return the coordinate label of the maximum value along a dimension.
Returns a new `Dataset` named after the dimension with the values of
the coordinate labels along that dimension corresponding to maximum
values along that dimension.
In comparison to :py:meth:`~Dataset.argmax`, this returns the
coordinate label while :py:meth:`~Dataset.argmax` returns the index.
Parameters
----------
dim : str, optional
Dimension over which to apply `idxmax`. This is optional for 1D
variables, but required for variables with 2 or more dimensions.
skipna : bool or None, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for ``float``, ``complex``, and ``object``
dtypes; other dtypes either do not have a sentinel missing value
(``int``) or ``skipna=True`` has not been implemented
(``datetime64`` or ``timedelta64``).
fill_value : Any, default: NaN
Value to be filled in case all of the values along a dimension are
null. By default this is NaN. The fill value and result are
automatically converted to a compatible dtype if possible.
Ignored if ``skipna`` is False.
keep_attrs : bool or None, optional
If True, the attributes (``attrs``) will be copied from the
original object to the new one. If False, the new object
will be returned without attributes.
Returns
-------
reduced : Dataset
New `Dataset` object with `idxmax` applied to its data and the
indicated dimension removed.
See Also
--------
DataArray.idxmax, Dataset.idxmin, Dataset.max, Dataset.argmax
Examples
--------
>>> array1 = xr.DataArray(
... [0, 2, 1, 0, -2], dims="x", coords={"x": ["a", "b", "c", "d", "e"]}
... )
>>> array2 = xr.DataArray(
... [
... [2.0, 1.0, 2.0, 0.0, -2.0],
... [-4.0, np.nan, 2.0, np.nan, -2.0],
... [np.nan, np.nan, 1.0, np.nan, np.nan],
... ],
... dims=["y", "x"],
... coords={"y": [-1, 0, 1], "x": ["a", "b", "c", "d", "e"]},
... )
>>> ds = xr.Dataset({"int": array1, "float": array2})
>>> ds.max(dim="x")
<xarray.Dataset> Size: 56B
Dimensions: (y: 3)
Coordinates:
* y (y) int64 24B -1 0 1
Data variables:
int int64 8B 2
float (y) float64 24B 2.0 2.0 1.0
>>> ds.argmax(dim="x")
<xarray.Dataset> Size: 56B
Dimensions: (y: 3)
Coordinates:
* y (y) int64 24B -1 0 1
Data variables:
int int64 8B 1
float (y) int64 24B 0 2 2
>>> ds.idxmax(dim="x")
<xarray.Dataset> Size: 52B
Dimensions: (y: 3)
Coordinates:
* y (y) int64 24B -1 0 1
Data variables:
int <U1 4B 'b'
float (y) object 24B 'a' 'c' 'c'
"""
return self.map(
methodcaller(
"idxmax",
dim=dim,
skipna=skipna,
fill_value=fill_value,
keep_attrs=keep_attrs,
)
)
def argmin(self, dim: Hashable | None = None, **kwargs) -> Self:
"""Indices of the minima of the member variables.
If there are multiple minima, the indices of the first one found will be
returned.
Parameters
----------
dim : Hashable, optional
The dimension over which to find the minimum. By default, finds minimum over
all dimensions - for now returning an int for backward compatibility, but
this is deprecated, in future will be an error, since DataArray.argmin will
return a dict with indices for all dimensions, which does not make sense for
a Dataset.
keep_attrs : bool, optional
If True, the attributes (`attrs`) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
result : Dataset
Examples
--------
>>> dataset = xr.Dataset(
... {
... "math_scores": (
... ["student", "test"],
... [[90, 85, 79], [78, 80, 85], [95, 92, 98]],
... ),
... "english_scores": (
... ["student", "test"],
... [[88, 90, 92], [75, 82, 79], [39, 96, 78]],
... ),
... },
... coords={
... "student": ["Alice", "Bob", "Charlie"],
... "test": ["Test 1", "Test 2", "Test 3"],
... },
... )
# Indices of the minimum values along the 'student' dimension are calculated
>>> argmin_indices = dataset.argmin(dim="student")
>>> min_score_in_math = dataset["student"].isel(
... student=argmin_indices["math_scores"]
... )
>>> min_score_in_math
<xarray.DataArray 'student' (test: 3)> Size: 84B
array(['Bob', 'Bob', 'Alice'], dtype='<U7')
Coordinates:
student (test) <U7 84B 'Bob' 'Bob' 'Alice'
* test (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'
>>> min_score_in_english = dataset["student"].isel(
... student=argmin_indices["english_scores"]
... )
>>> min_score_in_english
<xarray.DataArray 'student' (test: 3)> Size: 84B
array(['Charlie', 'Bob', 'Charlie'], dtype='<U7')
Coordinates:
student (test) <U7 84B 'Charlie' 'Bob' 'Charlie'
* test (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'
See Also
--------
Dataset.idxmin
DataArray.argmin
"""
if dim is None:
warnings.warn(
"Once the behaviour of DataArray.argmin() and Variable.argmin() without "
"dim changes to return a dict of indices of each dimension, for "
"consistency it will be an error to call Dataset.argmin() with no argument,"
"since we don't return a dict of Datasets.",
DeprecationWarning,
stacklevel=2,
)
if (
dim is None
or (not isinstance(dim, Sequence) and dim is not ...)
or isinstance(dim, str)
):
# Return int index if single dimension is passed, and is not part of a
# sequence
argmin_func = duck_array_ops.argmin
return self.reduce(
argmin_func, dim=None if dim is None else [dim], **kwargs
)
else:
raise ValueError(
"When dim is a sequence or ..., DataArray.argmin() returns a dict. "
"dicts cannot be contained in a Dataset, so cannot call "
"Dataset.argmin() with a sequence or ... for dim"
)
def argmax(self, dim: Hashable | None = None, **kwargs) -> Self:
"""Indices of the maxima of the member variables.
If there are multiple maxima, the indices of the first one found will be
returned.
Parameters
----------
dim : str, optional
The dimension over which to find the maximum. By default, finds maximum over
all dimensions - for now returning an int for backward compatibility, but
this is deprecated, in future will be an error, since DataArray.argmax will
return a dict with indices for all dimensions, which does not make sense for
a Dataset.
keep_attrs : bool, optional
If True, the attributes (`attrs`) will be copied from the original
object to the new one. If False (default), the new object will be
returned without attributes.
skipna : bool, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
result : Dataset
Examples
--------
>>> dataset = xr.Dataset(
... {
... "math_scores": (
... ["student", "test"],
... [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
... ),
... "english_scores": (
... ["student", "test"],
... [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
... ),
... },
... coords={
... "student": ["Alice", "Bob", "Charlie"],
... "test": ["Test 1", "Test 2", "Test 3"],
... },
... )
# Indices of the maximum values along the 'student' dimension are calculated
>>> argmax_indices = dataset.argmax(dim="test")
>>> argmax_indices
<xarray.Dataset> Size: 132B
Dimensions: (student: 3)
Coordinates:
* student (student) <U7 84B 'Alice' 'Bob' 'Charlie'
Data variables:
math_scores (student) int64 24B 2 2 2
english_scores (student) int64 24B 2 1 1
See Also
--------
DataArray.argmax
"""
if dim is None:
warnings.warn(
"Once the behaviour of DataArray.argmin() and Variable.argmin() without "
"dim changes to return a dict of indices of each dimension, for "
"consistency it will be an error to call Dataset.argmin() with no argument,"
"since we don't return a dict of Datasets.",
DeprecationWarning,
stacklevel=2,
)
if (
dim is None
or (not isinstance(dim, Sequence) and dim is not ...)
or isinstance(dim, str)
):
# Return int index if single dimension is passed, and is not part of a
# sequence
argmax_func = duck_array_ops.argmax
return self.reduce(
argmax_func, dim=None if dim is None else [dim], **kwargs
)
else:
raise ValueError(
"When dim is a sequence or ..., DataArray.argmin() returns a dict. "
"dicts cannot be contained in a Dataset, so cannot call "
"Dataset.argmin() with a sequence or ... for dim"
)
def eval(
self,
statement: str,
*,
parser: QueryParserOptions = "pandas",
) -> Self | T_DataArray:
"""
Calculate an expression supplied as a string in the context of the dataset.
This is currently experimental; the API may change particularly around
assignments, which currently return a ``Dataset`` with the additional variable.
Currently only the ``python`` engine is supported, which has the same
performance as executing in python.
Parameters
----------
statement : str
String containing the Python-like expression to evaluate.
Returns
-------
result : Dataset or DataArray, depending on whether ``statement`` contains an
assignment.
Examples
--------
>>> ds = xr.Dataset(
... {"a": ("x", np.arange(0, 5, 1)), "b": ("x", np.linspace(0, 1, 5))}
... )
>>> ds
<xarray.Dataset> Size: 80B
Dimensions: (x: 5)
Dimensions without coordinates: x
Data variables:
a (x) int64 40B 0 1 2 3 4
b (x) float64 40B 0.0 0.25 0.5 0.75 1.0
>>> ds.eval("a + b")
<xarray.DataArray (x: 5)> Size: 40B
array([0. , 1.25, 2.5 , 3.75, 5. ])
Dimensions without coordinates: x
>>> ds.eval("c = a + b")
<xarray.Dataset> Size: 120B
Dimensions: (x: 5)
Dimensions without coordinates: x
Data variables:
a (x) int64 40B 0 1 2 3 4
b (x) float64 40B 0.0 0.25 0.5 0.75 1.0
c (x) float64 40B 0.0 1.25 2.5 3.75 5.0
"""
return pd.eval( # type: ignore[return-value]
statement,
resolvers=[self],
target=self,
parser=parser,
# Because numexpr returns a numpy array, using that engine results in
# different behavior. We'd be very open to a contribution handling this.
engine="python",
)
def query(
self,
queries: Mapping[Any, Any] | None = None,
parser: QueryParserOptions = "pandas",
engine: QueryEngineOptions = None,
missing_dims: ErrorOptionsWithWarn = "raise",
**queries_kwargs: Any,
) -> Self:
"""Return a new dataset with each array indexed along the specified
dimension(s), where the indexers are given as strings containing
Python expressions to be evaluated against the data variables in the
dataset.
Parameters
----------
queries : dict-like, optional
A dict-like with keys matching dimensions and values given by strings
containing Python expressions to be evaluated against the data variables
in the dataset. The expressions will be evaluated using the pandas
eval() function, and can contain any valid Python expressions but cannot
contain any Python statements.
parser : {"pandas", "python"}, default: "pandas"
The parser to use to construct the syntax tree from the expression.
The default of 'pandas' parses code slightly different than standard
Python. Alternatively, you can parse an expression using the 'python'
parser to retain strict Python semantics.
engine : {"python", "numexpr", None}, default: None
The engine used to evaluate the expression. Supported engines are:
- None: tries to use numexpr, falls back to python
- "numexpr": evaluates expressions using numexpr
- "python": performs operations as if you had eval’d in top level python
missing_dims : {"raise", "warn", "ignore"}, default: "raise"
What to do if dimensions that should be selected from are not present in the
Dataset:
- "raise": raise an exception
- "warn": raise a warning, and ignore the missing dimensions
- "ignore": ignore the missing dimensions
**queries_kwargs : {dim: query, ...}, optional
The keyword arguments form of ``queries``.
One of queries or queries_kwargs must be provided.
Returns
-------
obj : Dataset
A new Dataset with the same contents as this dataset, except each
array and dimension is indexed by the results of the appropriate
queries.
See Also
--------
Dataset.isel
pandas.eval
Examples
--------
>>> a = np.arange(0, 5, 1)
>>> b = np.linspace(0, 1, 5)
>>> ds = xr.Dataset({"a": ("x", a), "b": ("x", b)})
>>> ds
<xarray.Dataset> Size: 80B
Dimensions: (x: 5)
Dimensions without coordinates: x
Data variables:
a (x) int64 40B 0 1 2 3 4
b (x) float64 40B 0.0 0.25 0.5 0.75 1.0
>>> ds.query(x="a > 2")
<xarray.Dataset> Size: 32B
Dimensions: (x: 2)
Dimensions without coordinates: x
Data variables:
a (x) int64 16B 3 4
b (x) float64 16B 0.75 1.0
"""
# allow queries to be given either as a dict or as kwargs
queries = either_dict_or_kwargs(queries, queries_kwargs, "query")
# check queries
for dim, expr in queries.items():
if not isinstance(expr, str):
msg = f"expr for dim {dim} must be a string to be evaluated, {type(expr)} given"
raise ValueError(msg)
# evaluate the queries to create the indexers
indexers = {
dim: pd.eval(expr, resolvers=[self], parser=parser, engine=engine)
for dim, expr in queries.items()
}
# apply the selection
return self.isel(indexers, missing_dims=missing_dims)
def curvefit(
self,
coords: str | DataArray | Iterable[str | DataArray],
func: Callable[..., Any],
reduce_dims: Dims = None,
skipna: bool = True,
p0: Mapping[str, float | DataArray] | None = None,
bounds: Mapping[str, tuple[float | DataArray, float | DataArray]] | None = None,
param_names: Sequence[str] | None = None,
errors: ErrorOptions = "raise",
kwargs: dict[str, Any] | None = None,
) -> Self:
"""
Curve fitting optimization for arbitrary functions.
Wraps :py:func:`scipy.optimize.curve_fit` with :py:func:`~xarray.apply_ufunc`.
Parameters
----------
coords : hashable, DataArray, or sequence of hashable or DataArray
Independent coordinate(s) over which to perform the curve fitting. Must share
at least one dimension with the calling object. When fitting multi-dimensional
functions, supply `coords` as a sequence in the same order as arguments in
`func`. To fit along existing dimensions of the calling object, `coords` can
also be specified as a str or sequence of strs.
func : callable
User specified function in the form `f(x, *params)` which returns a numpy
array of length `len(x)`. `params` are the fittable parameters which are optimized
by scipy curve_fit. `x` can also be specified as a sequence containing multiple
coordinates, e.g. `f((x0, x1), *params)`.
reduce_dims : str, Iterable of Hashable or None, optional
Additional dimension(s) over which to aggregate while fitting. For example,
calling `ds.curvefit(coords='time', reduce_dims=['lat', 'lon'], ...)` will
aggregate all lat and lon points and fit the specified function along the
time dimension.
skipna : bool, default: True
Whether to skip missing values when fitting. Default is True.
p0 : dict-like, optional
Optional dictionary of parameter names to initial guesses passed to the
`curve_fit` `p0` arg. If the values are DataArrays, they will be appropriately
broadcast to the coordinates of the array. If none or only some parameters are
passed, the rest will be assigned initial values following the default scipy
behavior.
bounds : dict-like, optional
Optional dictionary of parameter names to tuples of bounding values passed to the
`curve_fit` `bounds` arg. If any of the bounds are DataArrays, they will be
appropriately broadcast to the coordinates of the array. If none or only some
parameters are passed, the rest will be unbounded following the default scipy
behavior.
param_names : sequence of hashable, optional
Sequence of names for the fittable parameters of `func`. If not supplied,
this will be automatically determined by arguments of `func`. `param_names`
should be manually supplied when fitting a function that takes a variable
number of parameters.
errors : {"raise", "ignore"}, default: "raise"
If 'raise', any errors from the `scipy.optimize_curve_fit` optimization will
raise an exception. If 'ignore', the coefficients and covariances for the
coordinates where the fitting failed will be NaN.
**kwargs : optional
Additional keyword arguments to passed to scipy curve_fit.
Returns
-------
curvefit_results : Dataset
A single dataset which contains:
[var]_curvefit_coefficients
The coefficients of the best fit.
[var]_curvefit_covariance
The covariance matrix of the coefficient estimates.
See Also
--------
Dataset.polyfit
scipy.optimize.curve_fit
xarray.Dataset.xlm.modelfit
External method from `xarray-lmfit <https://xarray-lmfit.readthedocs.io/>`_
with more curve fitting functionality.
"""
from xarray.computation.fit import curvefit as curvefit_impl
return curvefit_impl(
self,
coords,
func,
reduce_dims,
skipna,
p0,
bounds,
param_names,
errors,
kwargs,
)
def drop_duplicates(
self,
dim: Hashable | Iterable[Hashable],
*,
keep: Literal["first", "last", False] = "first",
) -> Self:
"""Returns a new Dataset with duplicate dimension values removed.
Parameters
----------
dim : dimension label or labels
Pass `...` to drop duplicates along all dimensions.
keep : {"first", "last", False}, default: "first"
Determines which duplicates (if any) to keep.
- ``"first"`` : Drop duplicates except for the first occurrence.
- ``"last"`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
Returns
-------
Dataset
See Also
--------
DataArray.drop_duplicates
"""
if isinstance(dim, str):
dims: Iterable = (dim,)
elif dim is ...:
dims = self.dims
elif not isinstance(dim, Iterable):
dims = [dim]
else:
dims = dim
missing_dims = set(dims) - set(self.dims)
if missing_dims:
raise ValueError(
f"Dimensions {tuple(missing_dims)} not found in data dimensions {tuple(self.dims)}"
)
indexes = {dim: ~self.get_index(dim).duplicated(keep=keep) for dim in dims}
return self.isel(indexes)
def convert_calendar(
self,
calendar: CFCalendar,
dim: Hashable = "time",
align_on: Literal["date", "year"] | None = None,
missing: Any | None = None,
use_cftime: bool | None = None,
) -> Self:
"""Convert the Dataset to another calendar.
Only converts the individual timestamps, does not modify any data except
in dropping invalid/surplus dates or inserting missing dates.
If the source and target calendars are either no_leap, all_leap or a
standard type, only the type of the time array is modified.
When converting to a leap year from a non-leap year, the 29th of February
is removed from the array. In the other direction the 29th of February
will be missing in the output, unless `missing` is specified,
in which case that value is inserted.
For conversions involving `360_day` calendars, see Notes.
This method is safe to use with sub-daily data as it doesn't touch the
time part of the timestamps.
Parameters
---------
calendar : str
The target calendar name.
dim : Hashable, default: "time"
Name of the time coordinate.
align_on : {None, 'date', 'year'}, optional
Must be specified when either source or target is a `360_day` calendar,
ignored otherwise. See Notes.
missing : Any or None, optional
By default, i.e. if the value is None, this method will simply attempt
to convert the dates in the source calendar to the same dates in the
target calendar, and drop any of those that are not possible to
represent. If a value is provided, a new time coordinate will be
created in the target calendar with the same frequency as the original
time coordinate; for any dates that are not present in the source, the
data will be filled with this value. Note that using this mode requires
that the source data have an inferable frequency; for more information
see :py:func:`xarray.infer_freq`. For certain frequency, source, and
target calendar combinations, this could result in many missing values, see notes.
use_cftime : bool or None, optional
Whether to use cftime objects in the output, only used if `calendar`
is one of {"proleptic_gregorian", "gregorian" or "standard"}.
If True, the new time axis uses cftime objects.
If None (default), it uses :py:class:`numpy.datetime64` values if the
date range permits it, and :py:class:`cftime.datetime` objects if not.
If False, it uses :py:class:`numpy.datetime64` or fails.
Returns
-------
Dataset
Copy of the dataarray with the time coordinate converted to the
target calendar. If 'missing' was None (default), invalid dates in
the new calendar are dropped, but missing dates are not inserted.
If `missing` was given, the new data is reindexed to have a time axis
with the same frequency as the source, but in the new calendar; any
missing datapoints are filled with `missing`.
Notes
-----
Passing a value to `missing` is only usable if the source's time coordinate as an
inferable frequencies (see :py:func:`~xarray.infer_freq`) and is only appropriate
if the target coordinate, generated from this frequency, has dates equivalent to the
source. It is usually **not** appropriate to use this mode with:
- Period-end frequencies : 'A', 'Y', 'Q' or 'M', in opposition to 'AS' 'YS', 'QS' and 'MS'
- Sub-monthly frequencies that do not divide a day evenly : 'W', 'nD' where `N != 1`
or 'mH' where 24 % m != 0).
If one of the source or target calendars is `"360_day"`, `align_on` must
be specified and two options are offered.
- "year"
The dates are translated according to their relative position in the year,
ignoring their original month and day information, meaning that the
missing/surplus days are added/removed at regular intervals.
From a `360_day` to a standard calendar, the output will be missing the
following dates (day of year in parentheses):
To a leap year:
January 31st (31), March 31st (91), June 1st (153), July 31st (213),
September 31st (275) and November 30th (335).
To a non-leap year:
February 6th (36), April 19th (109), July 2nd (183),
September 12th (255), November 25th (329).
From a standard calendar to a `"360_day"`, the following dates in the
source array will be dropped:
From a leap year:
January 31st (31), April 1st (92), June 1st (153), August 1st (214),
September 31st (275), December 1st (336)
From a non-leap year:
February 6th (37), April 20th (110), July 2nd (183),
September 13th (256), November 25th (329)
This option is best used on daily and subdaily data.
- "date"
The month/day information is conserved and invalid dates are dropped
from the output. This means that when converting from a `"360_day"` to a
standard calendar, all 31st (Jan, March, May, July, August, October and
December) will be missing as there is no equivalent dates in the
`"360_day"` calendar and the 29th (on non-leap years) and 30th of February
will be dropped as there are no equivalent dates in a standard calendar.
This option is best used with data on a frequency coarser than daily.
"""
return convert_calendar(
self,
calendar,
dim=dim,
align_on=align_on,
missing=missing,
use_cftime=use_cftime,
)
def interp_calendar(
self,
target: pd.DatetimeIndex | CFTimeIndex | DataArray,
dim: Hashable = "time",
) -> Self:
"""Interpolates the Dataset to another calendar based on decimal year measure.
Each timestamp in `source` and `target` are first converted to their decimal
year equivalent then `source` is interpolated on the target coordinate.
The decimal year of a timestamp is its year plus its sub-year component
converted to the fraction of its year. For example "2000-03-01 12:00" is
2000.1653 in a standard calendar or 2000.16301 in a `"noleap"` calendar.
This method should only be used when the time (HH:MM:SS) information of
time coordinate is not important.
Parameters
----------
target: DataArray or DatetimeIndex or CFTimeIndex
The target time coordinate of a valid dtype
(np.datetime64 or cftime objects)
dim : Hashable, default: "time"
The time coordinate name.
Return
------
DataArray
The source interpolated on the decimal years of target,
"""
return interp_calendar(self, target, dim=dim)
@_deprecate_positional_args("v2024.07.0")
def groupby(
self,
group: GroupInput = None,
*,
squeeze: Literal[False] = False,
restore_coord_dims: bool = False,
eagerly_compute_group: Literal[False] | None = None,
**groupers: Grouper,
) -> DatasetGroupBy:
"""Returns a DatasetGroupBy object for performing grouped operations.
Parameters
----------
group : str or DataArray or IndexVariable or sequence of hashable or mapping of hashable to Grouper
Array whose unique values should be used to group this array. If a
Hashable, must be the name of a coordinate contained in this dataarray. If a dictionary,
must map an existing variable name to a :py:class:`Grouper` instance.
squeeze : False
This argument is deprecated.
restore_coord_dims : bool, default: False
If True, also restore the dimension order of multi-dimensional
coordinates.
eagerly_compute_group: False, optional
This argument is deprecated.
**groupers : Mapping of str to Grouper or Resampler
Mapping of variable name to group by to :py:class:`Grouper` or :py:class:`Resampler` object.
One of ``group`` or ``groupers`` must be provided.
Only a single ``grouper`` is allowed at present.
Returns
-------
grouped : DatasetGroupBy
A `DatasetGroupBy` object patterned after `pandas.GroupBy` that can be
iterated over in the form of `(unique_value, grouped_array)` pairs.
Examples
--------
>>> ds = xr.Dataset(
... {"foo": (("x", "y"), np.arange(12).reshape((4, 3)))},
... coords={"x": [10, 20, 30, 40], "letters": ("x", list("abba"))},
... )
Grouping by a single variable is easy
>>> ds.groupby("letters")
<DatasetGroupBy, grouped over 1 grouper(s), 2 groups in total:
'letters': UniqueGrouper('letters'), 2/2 groups with labels 'a', 'b'>
Execute a reduction
>>> ds.groupby("letters").sum()
<xarray.Dataset> Size: 64B
Dimensions: (letters: 2, y: 3)
Coordinates:
* letters (letters) object 16B 'a' 'b'
Dimensions without coordinates: y
Data variables:
foo (letters, y) int64 48B 9 11 13 9 11 13
Grouping by multiple variables
>>> ds.groupby(["letters", "x"])
<DatasetGroupBy, grouped over 2 grouper(s), 8 groups in total:
'letters': UniqueGrouper('letters'), 2/2 groups with labels 'a', 'b'
'x': UniqueGrouper('x'), 4/4 groups with labels 10, 20, 30, 40>
Use Grouper objects to express more complicated GroupBy operations
>>> from xarray.groupers import BinGrouper, UniqueGrouper
>>>
>>> ds.groupby(x=BinGrouper(bins=[5, 15, 25]), letters=UniqueGrouper()).sum()
<xarray.Dataset> Size: 144B
Dimensions: (y: 3, x_bins: 2, letters: 2)
Coordinates:
* x_bins (x_bins) interval[int64, right] 32B (5, 15] (15, 25]
* letters (letters) object 16B 'a' 'b'
Dimensions without coordinates: y
Data variables:
foo (y, x_bins, letters) float64 96B 0.0 nan nan 3.0 ... nan nan 5.0
See Also
--------
:ref:`groupby`
Users guide explanation of how to group and bin data.
:doc:`xarray-tutorial:intermediate/computation/01-high-level-computation-patterns`
Tutorial on :py:func:`~xarray.Dataset.Groupby` for windowed computation.
:doc:`xarray-tutorial:fundamentals/03.2_groupby_with_xarray`
Tutorial on :py:func:`~xarray.Dataset.Groupby` demonstrating reductions, transformation and comparison with :py:func:`~xarray.Dataset.resample`.
:external:py:meth:`pandas.DataFrame.groupby <pandas.DataFrame.groupby>`
:func:`Dataset.groupby_bins <Dataset.groupby_bins>`
:func:`DataArray.groupby <DataArray.groupby>`
:class:`core.groupby.DatasetGroupBy`
:func:`Dataset.coarsen <Dataset.coarsen>`
:func:`Dataset.resample <Dataset.resample>`
:func:`DataArray.resample <DataArray.resample>`
"""
from xarray.core.groupby import (
DatasetGroupBy,
_parse_group_and_groupers,
_validate_groupby_squeeze,
)
_validate_groupby_squeeze(squeeze)
rgroupers = _parse_group_and_groupers(
self, group, groupers, eagerly_compute_group=eagerly_compute_group
)
return DatasetGroupBy(self, rgroupers, restore_coord_dims=restore_coord_dims)
@_deprecate_positional_args("v2024.07.0")
def groupby_bins(
self,
group: Hashable | DataArray | IndexVariable,
bins: Bins,
right: bool = True,
labels: ArrayLike | None = None,
precision: int = 3,
include_lowest: bool = False,
squeeze: Literal[False] = False,
restore_coord_dims: bool = False,
duplicates: Literal["raise", "drop"] = "raise",
eagerly_compute_group: Literal[False] | None = None,
) -> DatasetGroupBy:
"""Returns a DatasetGroupBy object for performing grouped operations.
Rather than using all unique values of `group`, the values are discretized
first by applying `pandas.cut` [1]_ to `group`.
Parameters
----------
group : Hashable, DataArray or IndexVariable
Array whose binned values should be used to group this array. If a
string, must be the name of a variable contained in this dataset.
bins : int or array-like
If bins is an int, it defines the number of equal-width bins in the
range of x. However, in this case, the range of x is extended by .1%
on each side to include the min or max values of x. If bins is a
sequence it defines the bin edges allowing for non-uniform bin
width. No extension of the range of x is done in this case.
right : bool, default: True
Indicates whether the bins include the rightmost edge or not. If
right == True (the default), then the bins [1,2,3,4] indicate
(1,2], (2,3], (3,4].
labels : array-like or bool, default: None
Used as labels for the resulting bins. Must be of the same length as
the resulting bins. If False, string bin labels are assigned by
`pandas.cut`.
precision : int, default: 3
The precision at which to store and display the bins labels.
include_lowest : bool, default: False
Whether the first interval should be left-inclusive or not.
squeeze : False
This argument is deprecated.
restore_coord_dims : bool, default: False
If True, also restore the dimension order of multi-dimensional
coordinates.
duplicates : {"raise", "drop"}, default: "raise"
If bin edges are not unique, raise ValueError or drop non-uniques.
eagerly_compute_group: False, optional
This argument is deprecated.
Returns
-------
grouped : DatasetGroupBy
A `DatasetGroupBy` object patterned after `pandas.GroupBy` that can be
iterated over in the form of `(unique_value, grouped_array)` pairs.
The name of the group has the added suffix `_bins` in order to
distinguish it from the original variable.
See Also
--------
:ref:`groupby`
Users guide explanation of how to group and bin data.
Dataset.groupby
DataArray.groupby_bins
core.groupby.DatasetGroupBy
pandas.DataFrame.groupby
References
----------
.. [1] https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
"""
from xarray.core.groupby import (
DatasetGroupBy,
ResolvedGrouper,
_validate_groupby_squeeze,
)
from xarray.groupers import BinGrouper
_validate_groupby_squeeze(squeeze)
grouper = BinGrouper(
bins=bins,
right=right,
labels=labels,
precision=precision,
include_lowest=include_lowest,
)
rgrouper = ResolvedGrouper(
grouper, group, self, eagerly_compute_group=eagerly_compute_group
)
return DatasetGroupBy(
self,
(rgrouper,),
restore_coord_dims=restore_coord_dims,
)
def weighted(self, weights: DataArray) -> DatasetWeighted:
"""
Weighted Dataset operations.
Parameters
----------
weights : DataArray
An array of weights associated with the values in this Dataset.
Each value in the data contributes to the reduction operation
according to its associated weight.
Notes
-----
``weights`` must be a DataArray and cannot contain missing values.
Missing values can be replaced by ``weights.fillna(0)``.
Returns
-------
computation.weighted.DatasetWeighted
See Also
--------
:func:`DataArray.weighted <DataArray.weighted>`
:ref:`compute.weighted`
User guide on weighted array reduction using :py:func:`~xarray.Dataset.weighted`
:doc:`xarray-tutorial:fundamentals/03.4_weighted`
Tutorial on Weighted Reduction using :py:func:`~xarray.Dataset.weighted`
"""
from xarray.computation.weighted import DatasetWeighted
return DatasetWeighted(self, weights)
def rolling(
self,
dim: Mapping[Any, int] | None = None,
min_periods: int | None = None,
center: bool | Mapping[Any, bool] = False,
**window_kwargs: int,
) -> DatasetRolling:
"""
Rolling window object for Datasets.
Parameters
----------
dim : dict, optional
Mapping from the dimension name to create the rolling iterator
along (e.g. `time`) to its moving window size.
min_periods : int or None, default: None
Minimum number of observations in window required to have a value
(otherwise result is NA). The default, None, is equivalent to
setting min_periods equal to the size of the window.
center : bool or Mapping to int, default: False
Set the labels at the center of the window. The default, False,
sets the labels at the right edge of the window.
**window_kwargs : optional
The keyword arguments form of ``dim``.
One of dim or window_kwargs must be provided.
Returns
-------
computation.rolling.DatasetRolling
See Also
--------
Dataset.cumulative
DataArray.rolling
DataArray.rolling_exp
"""
from xarray.computation.rolling import DatasetRolling
dim = either_dict_or_kwargs(dim, window_kwargs, "rolling")
return DatasetRolling(self, dim, min_periods=min_periods, center=center)
def cumulative(
self,
dim: str | Iterable[Hashable],
min_periods: int = 1,
) -> DatasetRolling:
"""
Accumulating object for Datasets
Parameters
----------
dims : iterable of hashable
The name(s) of the dimensions to create the cumulative window along
min_periods : int, default: 1
Minimum number of observations in window required to have a value
(otherwise result is NA). The default is 1 (note this is different
from ``Rolling``, whose default is the size of the window).
Returns
-------
computation.rolling.DatasetRolling
See Also
--------
DataArray.cumulative
Dataset.rolling
Dataset.rolling_exp
"""
from xarray.computation.rolling import DatasetRolling
if isinstance(dim, str):
if dim not in self.dims:
raise ValueError(
f"Dimension {dim} not found in data dimensions: {self.dims}"
)
dim = {dim: self.sizes[dim]}
else:
missing_dims = set(dim) - set(self.dims)
if missing_dims:
raise ValueError(
f"Dimensions {missing_dims} not found in data dimensions: {self.dims}"
)
dim = {d: self.sizes[d] for d in dim}
return DatasetRolling(self, dim, min_periods=min_periods, center=False)
def coarsen(
self,
dim: Mapping[Any, int] | None = None,
boundary: CoarsenBoundaryOptions = "exact",
side: SideOptions | Mapping[Any, SideOptions] = "left",
coord_func: str | Callable | Mapping[Any, str | Callable] = "mean",
**window_kwargs: int,
) -> DatasetCoarsen:
"""
Coarsen object for Datasets.
Parameters
----------
dim : mapping of hashable to int, optional
Mapping from the dimension name to the window size.
boundary : {"exact", "trim", "pad"}, default: "exact"
If 'exact', a ValueError will be raised if dimension size is not a
multiple of the window size. If 'trim', the excess entries are
dropped. If 'pad', NA will be padded.
side : {"left", "right"} or mapping of str to {"left", "right"}, default: "left"
coord_func : str or mapping of hashable to str, default: "mean"
function (name) that is applied to the coordinates,
or a mapping from coordinate name to function (name).
Returns
-------
computation.rolling.DatasetCoarsen
See Also
--------
:class:`computation.rolling.DatasetCoarsen`
:func:`DataArray.coarsen <DataArray.coarsen>`
:ref:`reshape.coarsen`
User guide describing :py:func:`~xarray.Dataset.coarsen`
:ref:`compute.coarsen`
User guide on block arrgragation :py:func:`~xarray.Dataset.coarsen`
:doc:`xarray-tutorial:fundamentals/03.3_windowed`
Tutorial on windowed computation using :py:func:`~xarray.Dataset.coarsen`
"""
from xarray.computation.rolling import DatasetCoarsen
dim = either_dict_or_kwargs(dim, window_kwargs, "coarsen")
return DatasetCoarsen(
self,
dim,
boundary=boundary,
side=side,
coord_func=coord_func,
)
@_deprecate_positional_args("v2024.07.0")
def resample(
self,
indexer: Mapping[Any, ResampleCompatible | Resampler] | None = None,
*,
skipna: bool | None = None,
closed: SideOptions | None = None,
label: SideOptions | None = None,
offset: pd.Timedelta | datetime.timedelta | str | None = None,
origin: str | DatetimeLike = "start_day",
restore_coord_dims: bool | None = None,
**indexer_kwargs: ResampleCompatible | Resampler,
) -> DatasetResample:
"""Returns a Resample object for performing resampling operations.
Handles both downsampling and upsampling. The resampled
dimension must be a datetime-like coordinate. If any intervals
contain no values from the original object, they will be given
the value ``NaN``.
Parameters
----------
indexer : Mapping of Hashable to str, datetime.timedelta, pd.Timedelta, pd.DateOffset, or Resampler, optional
Mapping from the dimension name to resample frequency [1]_. The
dimension must be datetime-like.
skipna : bool, optional
Whether to skip missing values when aggregating in downsampling.
closed : {"left", "right"}, optional
Side of each interval to treat as closed.
label : {"left", "right"}, optional
Side of each interval to use for labeling.
origin : {'epoch', 'start', 'start_day', 'end', 'end_day'}, pd.Timestamp, datetime.datetime, np.datetime64, or cftime.datetime, default 'start_day'
The datetime on which to adjust the grouping. The timezone of origin
must match the timezone of the index.
If a datetime is not used, these values are also supported:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
offset : pd.Timedelta, datetime.timedelta, or str, default is None
An offset timedelta added to the origin.
restore_coord_dims : bool, optional
If True, also restore the dimension order of multi-dimensional
coordinates.
**indexer_kwargs : str, datetime.timedelta, pd.Timedelta, pd.DateOffset, or Resampler
The keyword arguments form of ``indexer``.
One of indexer or indexer_kwargs must be provided.
Returns
-------
resampled : core.resample.DataArrayResample
This object resampled.
See Also
--------
DataArray.resample
pandas.Series.resample
pandas.DataFrame.resample
Dataset.groupby
DataArray.groupby
References
----------
.. [1] https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
"""
from xarray.core.resample import DatasetResample
return self._resample(
resample_cls=DatasetResample,
indexer=indexer,
skipna=skipna,
closed=closed,
label=label,
offset=offset,
origin=origin,
restore_coord_dims=restore_coord_dims,
**indexer_kwargs,
)
def drop_attrs(self, *, deep: bool = True) -> Self:
"""
Removes all attributes from the Dataset and its variables.
Parameters
----------
deep : bool, default True
Removes attributes from all variables.
Returns
-------
Dataset
"""
# Remove attributes from the dataset
self = self._replace(attrs={})
if not deep:
return self
# Remove attributes from each variable in the dataset
for var in self.variables:
# variables don't have a `._replace` method, so we copy and then remove
# attrs. If we added a `._replace` method, we could use that instead.
if var not in self.indexes:
self[var] = self[var].copy()
self[var].attrs = {}
new_idx_variables = {}
# Not sure this is the most elegant way of doing this, but it works.
# (Should we have a more general "map over all variables, including
# indexes" approach?)
for idx, idx_vars in self.xindexes.group_by_index():
# copy each coordinate variable of an index and drop their attrs
temp_idx_variables = {k: v.copy() for k, v in idx_vars.items()}
for v in temp_idx_variables.values():
v.attrs = {}
# re-wrap the index object in new coordinate variables
new_idx_variables.update(idx.create_variables(temp_idx_variables))
self = self.assign(new_idx_variables)
return self
|