File: datatree.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (2376 lines) | stat: -rw-r--r-- 86,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
from __future__ import annotations

import functools
import io
import itertools
import textwrap
from collections import ChainMap
from collections.abc import (
    Callable,
    Hashable,
    Iterable,
    Iterator,
    Mapping,
)
from html import escape
from os import PathLike
from typing import (
    TYPE_CHECKING,
    Any,
    Concatenate,
    NoReturn,
    ParamSpec,
    TypeVar,
    Union,
    overload,
)

from xarray.core import utils
from xarray.core._aggregations import DataTreeAggregations
from xarray.core._typed_ops import DataTreeOpsMixin
from xarray.core.common import TreeAttrAccessMixin, get_chunksizes
from xarray.core.coordinates import Coordinates, DataTreeCoordinates
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.dataset_variables import DataVariables
from xarray.core.datatree_mapping import (
    _handle_errors_with_path_context,
    map_over_datasets,
)
from xarray.core.formatting import (
    datatree_repr,
    diff_treestructure,
    dims_and_coords_repr,
)
from xarray.core.formatting_html import (
    datatree_repr as datatree_repr_html,
)
from xarray.core.indexes import Index, Indexes
from xarray.core.options import OPTIONS as XR_OPTS
from xarray.core.options import _get_keep_attrs
from xarray.core.treenode import NamedNode, NodePath, zip_subtrees
from xarray.core.types import Self
from xarray.core.utils import (
    Default,
    FilteredMapping,
    Frozen,
    _default,
    drop_dims_from_indexers,
    either_dict_or_kwargs,
    maybe_wrap_array,
    parse_dims_as_set,
)
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import get_chunked_array_type
from xarray.namedarray.pycompat import is_chunked_array
from xarray.structure.alignment import align
from xarray.structure.merge import dataset_update_method

try:
    from xarray.core.variable import calculate_dimensions
except ImportError:
    # for xarray versions 2022.03.0 and earlier
    from xarray.core.dataset import calculate_dimensions

if TYPE_CHECKING:
    import numpy as np
    import pandas as pd

    from xarray.core.datatree_io import T_DataTreeNetcdfEngine, T_DataTreeNetcdfTypes
    from xarray.core.types import (
        Dims,
        DtCompatible,
        ErrorOptions,
        ErrorOptionsWithWarn,
        NetcdfWriteModes,
        T_ChunkDimFreq,
        T_ChunksFreq,
        ZarrWriteModes,
    )
    from xarray.namedarray.parallelcompat import ChunkManagerEntrypoint
    from xarray.structure.merge import CoercibleMapping, CoercibleValue

# """
# DEVELOPERS' NOTE
# ----------------
# The idea of this module is to create a `DataTree` class which inherits the tree
# structure from TreeNode, and also copies the entire API of `xarray.Dataset`, but with
# certain methods decorated to instead map the dataset function over every node in the
# tree. As this API is copied without directly subclassing `xarray.Dataset` we instead
# create various Mixin classes (in ops.py) which each define part of `xarray.Dataset`'s
# extensive API.
#
# Some of these methods must be wrapped to map over all nodes in the subtree. Others are
# fine to inherit unaltered (normally because they (a) only call dataset properties and
# (b) don't return a dataset that should be nested into a new tree) and some will get
# overridden by the class definition of DataTree.
# """


T_Path = Union[str, NodePath]
T = TypeVar("T")
P = ParamSpec("P")


def _collect_data_and_coord_variables(
    data: Dataset,
) -> tuple[dict[Hashable, Variable], dict[Hashable, Variable]]:
    data_variables = {}
    coord_variables = {}
    for k, v in data.variables.items():
        if k in data._coord_names:
            coord_variables[k] = v
        else:
            data_variables[k] = v
    return data_variables, coord_variables


def _to_new_dataset(data: Dataset | Coordinates | None) -> Dataset:
    if isinstance(data, Dataset):
        ds = data.copy(deep=False)
    elif isinstance(data, Coordinates):
        ds = data.to_dataset()
    elif data is None:
        ds = Dataset()
    else:
        raise TypeError(f"data object is not an xarray.Dataset, dict, or None: {data}")
    return ds


def _inherited_dataset(ds: Dataset, parent: Dataset) -> Dataset:
    return Dataset._construct_direct(
        variables=parent._variables | ds._variables,
        coord_names=parent._coord_names | ds._coord_names,
        dims=parent._dims | ds._dims,
        attrs=ds._attrs,
        indexes=parent._indexes | ds._indexes,
        encoding=ds._encoding,
        close=ds._close,
    )


def _without_header(text: str) -> str:
    return "\n".join(text.split("\n")[1:])


def _indented(text: str) -> str:
    return textwrap.indent(text, prefix="    ")


def check_alignment(
    path: str,
    node_ds: Dataset,
    parent_ds: Dataset | None,
    children: Mapping[str, DataTree],
) -> None:
    if parent_ds is not None:
        try:
            align(node_ds, parent_ds, join="exact", copy=False)
        except ValueError as e:
            node_repr = _indented(_without_header(repr(node_ds)))
            parent_repr = _indented(dims_and_coords_repr(parent_ds))
            raise ValueError(
                f"group {path!r} is not aligned with its parents:\n"
                f"Group:\n{node_repr}\nFrom parents:\n{parent_repr}"
            ) from e

    if children:
        if parent_ds is not None:
            base_ds = _inherited_dataset(node_ds, parent_ds)
        else:
            base_ds = node_ds

        for child_name, child in children.items():
            child_path = str(NodePath(path) / child_name)
            child_ds = child.to_dataset(inherit=False)
            check_alignment(child_path, child_ds, base_ds, child.children)


def _deduplicate_inherited_coordinates(child: DataTree, parent: DataTree) -> None:
    # This method removes repeated indexes (and corresponding coordinates)
    # that are repeated between a DataTree and its parents.
    removed_something = False
    for name in parent._indexes:
        if name in child._node_indexes:
            # Indexes on a Dataset always have a corresponding coordinate.
            # We already verified that these coordinates match in the
            # check_alignment() call from _pre_attach().
            del child._node_indexes[name]
            del child._node_coord_variables[name]
            removed_something = True

    if removed_something:
        child._node_dims = calculate_dimensions(
            child._data_variables | child._node_coord_variables
        )

    for grandchild in child._children.values():
        _deduplicate_inherited_coordinates(grandchild, child)


def _check_for_slashes_in_names(variables: Iterable[Hashable]) -> None:
    offending_variable_names = [
        name for name in variables if isinstance(name, str) and "/" in name
    ]
    if len(offending_variable_names) > 0:
        raise ValueError(
            "Given variables have names containing the '/' character: "
            f"{offending_variable_names}. "
            "Variables stored in DataTree objects cannot have names containing '/' characters, as this would make path-like access to variables ambiguous."
        )


class DatasetView(Dataset):
    """
    An immutable Dataset-like view onto the data in a single DataTree node.

    In-place operations modifying this object should raise an AttributeError.
    This requires overriding all inherited constructors.

    Operations returning a new result will return a new xarray.Dataset object.
    This includes all API on Dataset, which will be inherited.
    """

    # TODO what happens if user alters (in-place) a DataArray they extracted from this object?

    __slots__ = (
        "_attrs",
        "_cache",  # used by _CachedAccessor
        "_close",
        "_coord_names",
        "_dims",
        "_encoding",
        "_indexes",
        "_variables",
    )

    def __init__(
        self,
        data_vars: Mapping[Any, Any] | None = None,
        coords: Mapping[Any, Any] | None = None,
        attrs: Mapping[Any, Any] | None = None,
    ):
        raise AttributeError("DatasetView objects are not to be initialized directly")

    @classmethod
    def _constructor(
        cls,
        variables: dict[Any, Variable],
        coord_names: set[Hashable],
        dims: dict[Any, int],
        attrs: dict | None,
        indexes: dict[Any, Index],
        encoding: dict | None,
        close: Callable[[], None] | None,
    ) -> DatasetView:
        """Private constructor, from Dataset attributes."""
        # We override Dataset._construct_direct below, so we need a new
        # constructor for creating DatasetView objects.
        obj: DatasetView = object.__new__(cls)
        obj._variables = variables
        obj._coord_names = coord_names
        obj._dims = dims
        obj._indexes = indexes
        obj._attrs = attrs
        obj._close = close
        obj._encoding = encoding
        return obj

    def __setitem__(self, key, val) -> None:
        raise AttributeError(
            "Mutation of the DatasetView is not allowed, please use `.__setitem__` on the wrapping DataTree node, "
            "or use `dt.to_dataset()` if you want a mutable dataset. If calling this from within `map_over_datasets`,"
            "use `.copy()` first to get a mutable version of the input dataset."
        )

    def update(self, other) -> NoReturn:
        raise AttributeError(
            "Mutation of the DatasetView is not allowed, please use `.update` on the wrapping DataTree node, "
            "or use `dt.to_dataset()` if you want a mutable dataset. If calling this from within `map_over_datasets`,"
            "use `.copy()` first to get a mutable version of the input dataset."
        )

    def set_close(self, close: Callable[[], None] | None) -> None:
        raise AttributeError("cannot modify a DatasetView()")

    def close(self) -> None:
        raise AttributeError(
            "cannot close a DatasetView(). Close the associated DataTree node instead"
        )

    # FIXME https://github.com/python/mypy/issues/7328
    @overload  # type: ignore[override]
    def __getitem__(self, key: Mapping) -> Dataset:  # type: ignore[overload-overlap]
        ...

    @overload
    def __getitem__(self, key: Hashable) -> DataArray: ...

    # See: https://github.com/pydata/xarray/issues/8855
    @overload
    def __getitem__(self, key: Any) -> Dataset: ...

    def __getitem__(self, key) -> DataArray | Dataset:
        # TODO call the `_get_item` method of DataTree to allow path-like access to contents of other nodes
        # For now just call Dataset.__getitem__
        return Dataset.__getitem__(self, key)

    @classmethod
    def _construct_direct(  # type: ignore[override]
        cls,
        variables: dict[Any, Variable],
        coord_names: set[Hashable],
        dims: dict[Any, int] | None = None,
        attrs: dict | None = None,
        indexes: dict[Any, Index] | None = None,
        encoding: dict | None = None,
        close: Callable[[], None] | None = None,
    ) -> Dataset:
        """
        Overriding this method (along with ._replace) and modifying it to return a Dataset object
        should hopefully ensure that the return type of any method on this object is a Dataset.
        """
        if dims is None:
            dims = calculate_dimensions(variables)
        if indexes is None:
            indexes = {}
        obj = object.__new__(Dataset)
        obj._variables = variables
        obj._coord_names = coord_names
        obj._dims = dims
        obj._indexes = indexes
        obj._attrs = attrs
        obj._close = close
        obj._encoding = encoding
        return obj

    def _replace(  # type: ignore[override]
        self,
        variables: dict[Hashable, Variable] | None = None,
        coord_names: set[Hashable] | None = None,
        dims: dict[Any, int] | None = None,
        attrs: dict[Hashable, Any] | Default | None = _default,
        indexes: dict[Hashable, Index] | None = None,
        encoding: dict | Default | None = _default,
        inplace: bool = False,
    ) -> Dataset:
        """
        Overriding this method (along with ._construct_direct) and modifying it to return a Dataset object
        should hopefully ensure that the return type of any method on this object is a Dataset.
        """

        if inplace:
            raise AttributeError("In-place mutation of the DatasetView is not allowed")

        return Dataset._replace(
            self,
            variables=variables,
            coord_names=coord_names,
            dims=dims,
            attrs=attrs,
            indexes=indexes,
            encoding=encoding,
            inplace=inplace,
        )

    def map(  # type: ignore[override]
        self,
        func: Callable,
        keep_attrs: bool | None = None,
        args: Iterable[Any] = (),
        **kwargs: Any,
    ) -> Dataset:
        """Apply a function to each data variable in this dataset

        Parameters
        ----------
        func : callable
            Function which can be called in the form `func(x, *args, **kwargs)`
            to transform each DataArray `x` in this dataset into another
            DataArray.
        keep_attrs : bool | None, optional
            If True, both the dataset's and variables' attributes (`attrs`) will be
            copied from the original objects to the new ones. If False, the new dataset
            and variables will be returned without copying the attributes.
        args : iterable, optional
            Positional arguments passed on to `func`.
        **kwargs : Any
            Keyword arguments passed on to `func`.

        Returns
        -------
        applied : Dataset
            Resulting dataset from applying ``func`` to each data variable.

        Examples
        --------
        >>> da = xr.DataArray(np.random.randn(2, 3))
        >>> ds = xr.Dataset({"foo": da, "bar": ("x", [-1, 2])})
        >>> ds
        <xarray.Dataset> Size: 64B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Dimensions without coordinates: dim_0, dim_1, x
        Data variables:
            foo      (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 -0.9773
            bar      (x) int64 16B -1 2
        >>> ds.map(np.fabs)
        <xarray.Dataset> Size: 64B
        Dimensions:  (dim_0: 2, dim_1: 3, x: 2)
        Dimensions without coordinates: dim_0, dim_1, x
        Data variables:
            foo      (dim_0, dim_1) float64 48B 1.764 0.4002 0.9787 2.241 1.868 0.9773
            bar      (x) float64 16B 1.0 2.0
        """

        # Copied from xarray.Dataset so as not to call type(self), which causes problems (see https://github.com/xarray-contrib/datatree/issues/188).
        # TODO Refactor xarray upstream to avoid needing to overwrite this.
        if keep_attrs is None:
            keep_attrs = _get_keep_attrs(default=False)
        variables = {
            k: maybe_wrap_array(v, func(v, *args, **kwargs))
            for k, v in self.data_vars.items()
        }
        if keep_attrs:
            for k, v in variables.items():
                v._copy_attrs_from(self.data_vars[k])
        attrs = self.attrs if keep_attrs else None
        # return type(self)(variables, attrs=attrs)
        return Dataset(variables, attrs=attrs)


class DataTree(
    NamedNode["DataTree"],
    DataTreeAggregations,
    DataTreeOpsMixin,
    TreeAttrAccessMixin,
    Mapping[str, "DataArray | DataTree"],
):
    """
    A tree-like hierarchical collection of xarray objects.

    Attempts to present an API like that of xarray.Dataset, but methods are wrapped to also update all the tree's child nodes.
    """

    # TODO Some way of sorting children by depth

    # TODO do we need a watch out for if methods intended only for root nodes are called on non-root nodes?

    # TODO dataset methods which should not or cannot act over the whole tree, such as .to_array

    # TODO .loc method

    # TODO a lot of properties like .variables could be defined in a DataMapping class which both Dataset and DataTree inherit from

    # TODO all groupby classes

    # TODO a lot of properties like .variables could be defined in a DataMapping class which both Dataset and DataTree inherit from

    # TODO all groupby classes

    _name: str | None
    _parent: DataTree | None
    _children: dict[str, DataTree]
    _cache: dict[str, Any]  # used by _CachedAccessor
    _data_variables: dict[Hashable, Variable]
    _node_coord_variables: dict[Hashable, Variable]
    _node_dims: dict[Hashable, int]
    _node_indexes: dict[Hashable, Index]
    _attrs: dict[Hashable, Any] | None
    _encoding: dict[Hashable, Any] | None
    _close: Callable[[], None] | None

    __slots__ = (
        "_attrs",
        "_cache",  # used by _CachedAccessor
        "_children",
        "_close",
        "_data_variables",
        "_encoding",
        "_name",
        "_node_coord_variables",
        "_node_dims",
        "_node_indexes",
        "_parent",
    )

    def __init__(
        self,
        dataset: Dataset | Coordinates | None = None,
        children: Mapping[str, DataTree] | None = None,
        name: str | None = None,
    ):
        """
        Create a single node of a DataTree.

        The node may optionally contain data in the form of data and coordinate
        variables, stored in the same way as data is stored in an
        xarray.Dataset.

        Parameters
        ----------
        dataset : Dataset, optional
            Data to store directly at this node.
        children : Mapping[str, DataTree], optional
            Any child nodes of this node.
        name : str, optional
            Name for this node of the tree.

        Returns
        -------
        DataTree

        See Also
        --------
        DataTree.from_dict
        """
        self._set_node_data(_to_new_dataset(dataset))

        # comes after setting node data as this will check for clashes between child names and existing variable names
        super().__init__(name=name, children=children)

    def _set_node_data(self, dataset: Dataset):
        _check_for_slashes_in_names(dataset.variables)
        data_vars, coord_vars = _collect_data_and_coord_variables(dataset)
        self._data_variables = data_vars
        self._node_coord_variables = coord_vars
        self._node_dims = dataset._dims
        self._node_indexes = dataset._indexes
        self._encoding = dataset._encoding
        self._attrs = dataset._attrs
        self._close = dataset._close

    def _pre_attach(self: DataTree, parent: DataTree, name: str) -> None:
        super()._pre_attach(parent, name)
        if name in parent.dataset.variables:
            raise KeyError(
                f"parent {parent.name} already contains a variable named {name}"
            )
        path = str(NodePath(parent.path) / name)
        node_ds = self.to_dataset(inherit=False)
        parent_ds = parent._to_dataset_view(rebuild_dims=False, inherit=True)
        check_alignment(path, node_ds, parent_ds, self.children)
        _deduplicate_inherited_coordinates(self, parent)

    @property
    def _node_coord_variables_with_index(self) -> Mapping[Hashable, Variable]:
        return FilteredMapping(
            keys=self._node_indexes, mapping=self._node_coord_variables
        )

    @property
    def _coord_variables(self) -> ChainMap[Hashable, Variable]:
        return ChainMap(
            self._node_coord_variables,
            *(p._node_coord_variables_with_index for p in self.parents),
        )

    @property
    def _dims(self) -> ChainMap[Hashable, int]:
        return ChainMap(self._node_dims, *(p._node_dims for p in self.parents))

    @property
    def _indexes(self) -> ChainMap[Hashable, Index]:
        return ChainMap(self._node_indexes, *(p._node_indexes for p in self.parents))

    def _to_dataset_view(self, rebuild_dims: bool, inherit: bool) -> DatasetView:
        coord_vars = self._coord_variables if inherit else self._node_coord_variables
        variables = dict(self._data_variables)
        variables |= coord_vars
        if rebuild_dims:
            dims = calculate_dimensions(variables)
        elif inherit:
            # Note: rebuild_dims=False with inherit=True can create
            # technically invalid Dataset objects because it still includes
            # dimensions that are only defined on parent data variables
            # (i.e. not present on any parent coordinate variables).
            #
            # For example:
            #     >>> tree = DataTree.from_dict(
            #     ...     {
            #     ...         "/": xr.Dataset({"foo": ("x", [1, 2])}),  # x has size 2
            #     ...         "/b": xr.Dataset(),
            #     ...     }
            #     ... )
            #     >>> ds = tree["b"]._to_dataset_view(rebuild_dims=False, inherit=True)
            #     >>> ds
            #     <xarray.DatasetView> Size: 0B
            #     Dimensions:  (x: 2)
            #     Dimensions without coordinates: x
            #     Data variables:
            #         *empty*
            #
            # Notice the "x" dimension is still defined, even though there are no variables
            # or coordinates.
            #
            # Normally this is not supposed to be possible in xarray's data model,
            # but here it is useful internally for use cases where we
            # want to inherit everything from parents nodes, e.g., for align() and repr().
            #
            # The user should never be able to see this dimension via public API.
            dims = dict(self._dims)
        else:
            dims = dict(self._node_dims)
        return DatasetView._constructor(
            variables=variables,
            coord_names=set(self._coord_variables),
            dims=dims,
            attrs=self._attrs,
            indexes=dict(self._indexes if inherit else self._node_indexes),
            encoding=self._encoding,
            close=None,
        )

    @property
    def dataset(self) -> DatasetView:
        """
        An immutable Dataset-like view onto the data in this node.

        Includes inherited coordinates and indexes from parent nodes.

        For a mutable Dataset containing the same data as in this node, use
        `.to_dataset()` instead.

        See Also
        --------
        DataTree.to_dataset
        """
        return self._to_dataset_view(rebuild_dims=True, inherit=True)

    @dataset.setter
    def dataset(self, data: Dataset | None = None) -> None:
        ds = _to_new_dataset(data)
        self._replace_node(ds)

    # soft-deprecated alias, to facilitate the transition from
    # xarray-contrib/datatree
    ds = dataset

    def to_dataset(self, inherit: bool = True) -> Dataset:
        """
        Return the data in this node as a new xarray.Dataset object.

        Parameters
        ----------
        inherit : bool, optional
            If False, only include coordinates and indexes defined at the level
            of this DataTree node, excluding any inherited coordinates and indexes.

        See Also
        --------
        DataTree.dataset
        """
        coord_vars = self._coord_variables if inherit else self._node_coord_variables
        variables = dict(self._data_variables)
        variables |= coord_vars
        dims = calculate_dimensions(variables) if inherit else dict(self._node_dims)
        return Dataset._construct_direct(
            variables,
            set(coord_vars),
            dims,
            None if self._attrs is None else dict(self._attrs),
            dict(self._indexes if inherit else self._node_indexes),
            None if self._encoding is None else dict(self._encoding),
            None,
        )

    @property
    def has_data(self) -> bool:
        """Whether or not there are any variables in this node."""
        return bool(self._data_variables or self._node_coord_variables)

    @property
    def has_attrs(self) -> bool:
        """Whether or not there are any metadata attributes in this node."""
        return len(self.attrs.keys()) > 0

    @property
    def is_empty(self) -> bool:
        """False if node contains any data or attrs. Does not look at children."""
        return not (self.has_data or self.has_attrs)

    @property
    def is_hollow(self) -> bool:
        """True if only leaf nodes contain data."""
        return not any(node.has_data for node in self.subtree if not node.is_leaf)

    @property
    def variables(self) -> Mapping[Hashable, Variable]:
        """Low level interface to node contents as dict of Variable objects.

        This dictionary is frozen to prevent mutation that could violate
        Dataset invariants. It contains all variable objects constituting this
        DataTree node, including both data variables and coordinates.
        """
        return Frozen(self._data_variables | self._coord_variables)

    @property
    def attrs(self) -> dict[Hashable, Any]:
        """Dictionary of global attributes on this node object."""
        if self._attrs is None:
            self._attrs = {}
        return self._attrs

    @attrs.setter
    def attrs(self, value: Mapping[Any, Any]) -> None:
        self._attrs = dict(value)

    @property
    def encoding(self) -> dict:
        """Dictionary of global encoding attributes on this node object."""
        if self._encoding is None:
            self._encoding = {}
        return self._encoding

    @encoding.setter
    def encoding(self, value: Mapping) -> None:
        self._encoding = dict(value)

    @property
    def dims(self) -> Mapping[Hashable, int]:
        """Mapping from dimension names to lengths.

        Cannot be modified directly, but is updated when adding new variables.

        Note that type of this object differs from `DataArray.dims`.
        See `DataTree.sizes`, `Dataset.sizes`, and `DataArray.sizes` for consistently named
        properties.
        """
        return Frozen(self._dims)

    @property
    def sizes(self) -> Mapping[Hashable, int]:
        """Mapping from dimension names to lengths.

        Cannot be modified directly, but is updated when adding new variables.

        This is an alias for `DataTree.dims` provided for the benefit of
        consistency with `DataArray.sizes`.

        See Also
        --------
        DataArray.sizes
        """
        return self.dims

    @property
    def _attr_sources(self) -> Iterable[Mapping[Hashable, Any]]:
        """Places to look-up items for attribute-style access"""
        yield from self._item_sources
        yield self.attrs

    @property
    def _item_sources(self) -> Iterable[Mapping[Any, Any]]:
        """Places to look-up items for key-completion"""
        yield self.data_vars
        yield FilteredMapping(keys=self._coord_variables, mapping=self.coords)

        # virtual coordinates
        yield FilteredMapping(keys=self.dims, mapping=self)

        # immediate child nodes
        yield self.children

    def _ipython_key_completions_(self) -> list[str]:
        """Provide method for the key-autocompletions in IPython.
        See https://ipython.readthedocs.io/en/stable/config/integrating.html#tab-completion
        For the details.
        """

        # TODO allow auto-completing relative string paths, e.g. `dt['path/to/../ <tab> node'`
        # Would require changes to ipython's autocompleter, see https://github.com/ipython/ipython/issues/12420
        # Instead for now we only list direct paths to all node in subtree explicitly

        items_on_this_node = self._item_sources
        paths_to_all_nodes_in_subtree = {
            path: node
            for path, node in self.subtree_with_keys
            if path != "."  # exclude the root node
        }

        all_item_sources = itertools.chain(
            items_on_this_node, [paths_to_all_nodes_in_subtree]
        )

        items = {
            item
            for source in all_item_sources
            for item in source
            if isinstance(item, str)
        }
        return list(items)

    def __contains__(self, key: object) -> bool:
        """The 'in' operator will return true or false depending on whether
        'key' is either an array stored in the datatree or a child node, or neither.
        """
        return key in self.variables or key in self.children

    def __bool__(self) -> bool:
        return bool(self._data_variables) or bool(self._children)

    def __iter__(self) -> Iterator[str]:
        return itertools.chain(self._data_variables, self._children)  # type: ignore[arg-type]

    def __array__(
        self, dtype: np.typing.DTypeLike = None, /, *, copy: bool | None = None
    ) -> np.ndarray:
        raise TypeError(
            "cannot directly convert a DataTree into a "
            "numpy array. Instead, create an xarray.DataArray "
            "first, either with indexing on the DataTree or by "
            "invoking the `to_array()` method."
        )

    def __repr__(self) -> str:  # type: ignore[override]
        return datatree_repr(self)

    def __str__(self) -> str:
        return datatree_repr(self)

    def _repr_html_(self):
        """Make html representation of datatree object"""
        if XR_OPTS["display_style"] == "text":
            return f"<pre>{escape(repr(self))}</pre>"
        return datatree_repr_html(self)

    def __enter__(self) -> Self:
        return self

    def __exit__(self, exc_type, exc_value, traceback) -> None:
        self.close()

    # DatasetView does not support close() or set_close(), so we reimplement
    # these methods on DataTree.

    def _close_node(self) -> None:
        if self._close is not None:
            self._close()
        self._close = None

    def close(self) -> None:
        """Close any files associated with this tree."""
        for node in self.subtree:
            node._close_node()

    def set_close(self, close: Callable[[], None] | None) -> None:
        """Set the closer for this node."""
        self._close = close

    def _replace_node(
        self: DataTree,
        data: Dataset | Default = _default,
        children: dict[str, DataTree] | Default = _default,
    ) -> None:
        ds = self.to_dataset(inherit=False) if data is _default else data

        if children is _default:
            children = self._children

        for child_name in children:
            if child_name in ds.variables:
                raise ValueError(f"node already contains a variable named {child_name}")

        parent_ds = (
            self.parent._to_dataset_view(rebuild_dims=False, inherit=True)
            if self.parent is not None
            else None
        )
        check_alignment(self.path, ds, parent_ds, children)

        if data is not _default:
            self._set_node_data(ds)

        if self.parent is not None:
            _deduplicate_inherited_coordinates(self, self.parent)

        self.children = children

    def _copy_node(
        self, inherit: bool, deep: bool = False, memo: dict[int, Any] | None = None
    ) -> Self:
        """Copy just one node of a tree."""
        new_node = super()._copy_node(inherit=inherit, deep=deep, memo=memo)
        data = self._to_dataset_view(rebuild_dims=False, inherit=inherit)._copy(
            deep=deep, memo=memo
        )
        new_node._set_node_data(data)
        return new_node

    def get(  # type: ignore[override]
        self: DataTree, key: str, default: DataTree | DataArray | None = None
    ) -> DataTree | DataArray | None:
        """
        Access child nodes, variables, or coordinates stored in this node.

        Returned object will be either a DataTree or DataArray object depending on whether the key given points to a
        child or variable.

        Parameters
        ----------
        key : str
            Name of variable / child within this node. Must lie in this immediate node (not elsewhere in the tree).
        default : DataTree | DataArray | None, optional
            A value to return if the specified key does not exist. Default return value is None.
        """
        if key in self.children:
            return self.children[key]
        elif key in self.dataset:
            return self.dataset[key]
        else:
            return default

    def __getitem__(self: DataTree, key: str) -> DataTree | DataArray:
        """
        Access child nodes, variables, or coordinates stored anywhere in this tree.

        Returned object will be either a DataTree or DataArray object depending on whether the key given points to a
        child or variable.

        Parameters
        ----------
        key : str
            Name of variable / child within this node, or unix-like path to variable / child within another node.

        Returns
        -------
        DataTree | DataArray
        """

        # Either:
        if utils.is_dict_like(key):
            # dict-like indexing
            raise NotImplementedError("Should this index over whole tree?")
        elif isinstance(key, str):
            # TODO should possibly deal with hashables in general?
            # path-like: a name of a node/variable, or path to a node/variable
            path = NodePath(key)
            return self._get_item(path)
        elif utils.is_list_like(key):
            # iterable of variable names
            raise NotImplementedError(
                "Selecting via tags is deprecated, and selecting multiple items should be "
                "implemented via .subset"
            )
        else:
            raise ValueError(f"Invalid format for key: {key}")

    def _set(self, key: str, val: DataTree | CoercibleValue) -> None:
        """
        Set the child node or variable with the specified key to value.

        Counterpart to the public .get method, and also only works on the immediate node, not other nodes in the tree.
        """
        if isinstance(val, DataTree):
            # create and assign a shallow copy here so as not to alter original name of node in grafted tree
            new_node = val.copy(deep=False)
            new_node.name = key
            new_node._set_parent(new_parent=self, child_name=key)
        else:
            if not isinstance(val, DataArray | Variable):
                # accommodate other types that can be coerced into Variables
                val = DataArray(val)

            self.update({key: val})

    def __setitem__(
        self,
        key: str,
        value: Any,
    ) -> None:
        """
        Add either a child node or an array to the tree, at any position.

        Data can be added anywhere, and new nodes will be created to cross the path to the new location if necessary.

        If there is already a node at the given location, then if value is a Node class or Dataset it will overwrite the
        data already present at that node, and if value is a single array, it will be merged with it.
        """
        # TODO xarray.Dataset accepts other possibilities, how do we exactly replicate all the behaviour?
        if utils.is_dict_like(key):
            raise NotImplementedError
        elif isinstance(key, str):
            # TODO should possibly deal with hashables in general?
            # path-like: a name of a node/variable, or path to a node/variable
            path = NodePath(key)
            if isinstance(value, Dataset):
                value = DataTree(dataset=value)
            return self._set_item(path, value, new_nodes_along_path=True)
        else:
            raise ValueError("Invalid format for key")

    def __delitem__(self, key: str) -> None:
        """Remove a variable or child node from this datatree node."""
        if key in self.children:
            super().__delitem__(key)

        elif key in self._node_coord_variables:
            if key in self._node_indexes:
                del self._node_indexes[key]
            del self._node_coord_variables[key]
            self._node_dims = calculate_dimensions(self.variables)

        elif key in self._data_variables:
            del self._data_variables[key]
            self._node_dims = calculate_dimensions(self.variables)

        else:
            raise KeyError(key)

    @overload
    def update(self, other: Dataset) -> None: ...

    @overload
    def update(self, other: Mapping[Hashable, DataArray | Variable]) -> None: ...

    @overload
    def update(self, other: Mapping[str, DataTree | DataArray | Variable]) -> None: ...

    def update(
        self,
        other: (
            Dataset
            | Mapping[Hashable, DataArray | Variable]
            | Mapping[str, DataTree | DataArray | Variable]
        ),
    ) -> None:
        """
        Update this node's children and / or variables.

        Just like `dict.update` this is an in-place operation.
        """
        new_children: dict[str, DataTree] = {}
        new_variables: CoercibleMapping

        if isinstance(other, Dataset):
            new_variables = other
        else:
            new_variables = {}
            for k, v in other.items():
                if isinstance(v, DataTree):
                    # avoid named node being stored under inconsistent key
                    new_child: DataTree = v.copy()
                    # Datatree's name is always a string until we fix that (#8836)
                    new_child.name = str(k)
                    new_children[str(k)] = new_child
                elif isinstance(v, DataArray | Variable):
                    # TODO this should also accommodate other types that can be coerced into Variables
                    new_variables[k] = v
                else:
                    raise TypeError(f"Type {type(v)} cannot be assigned to a DataTree")

        vars_merge_result = dataset_update_method(
            self.to_dataset(inherit=False), new_variables
        )
        data = Dataset._construct_direct(**vars_merge_result._asdict())

        # TODO are there any subtleties with preserving order of children like this?
        merged_children = {**self.children, **new_children}

        self._replace_node(data, children=merged_children)

    def assign(
        self, items: Mapping[Any, Any] | None = None, **items_kwargs: Any
    ) -> DataTree:
        """
        Assign new data variables or child nodes to a DataTree, returning a new object
        with all the original items in addition to the new ones.

        Parameters
        ----------
        items : mapping of hashable to Any
            Mapping from variable or child node names to the new values. If the new values
            are callable, they are computed on the Dataset and assigned to new
            data variables. If the values are not callable, (e.g. a DataTree, DataArray,
            scalar, or array), they are simply assigned.
        **items_kwargs
            The keyword arguments form of ``variables``.
            One of variables or variables_kwargs must be provided.

        Returns
        -------
        dt : DataTree
            A new DataTree with the new variables or children in addition to all the
            existing items.

        Notes
        -----
        Since ``kwargs`` is a dictionary, the order of your arguments may not
        be preserved, and so the order of the new variables is not well-defined.
        Assigning multiple items within the same ``assign`` is
        possible, but you cannot reference other variables created within the
        same ``assign`` call.

        See Also
        --------
        xarray.Dataset.assign
        pandas.DataFrame.assign
        """
        items = either_dict_or_kwargs(items, items_kwargs, "assign")
        dt = self.copy()
        dt.update(items)
        return dt

    def drop_nodes(
        self: DataTree, names: str | Iterable[str], *, errors: ErrorOptions = "raise"
    ) -> DataTree:
        """
        Drop child nodes from this node.

        Parameters
        ----------
        names : str or iterable of str
            Name(s) of nodes to drop.
        errors : {"raise", "ignore"}, default: "raise"
            If 'raise', raises a KeyError if any of the node names
            passed are not present as children of this node. If 'ignore',
            any given names that are present are dropped and no error is raised.

        Returns
        -------
        dropped : DataTree
            A copy of the node with the specified children dropped.
        """
        # the Iterable check is required for mypy
        if isinstance(names, str) or not isinstance(names, Iterable):
            names = {names}
        else:
            names = set(names)

        if errors == "raise":
            extra = names - set(self.children)
            if extra:
                raise KeyError(f"Cannot drop all nodes - nodes {extra} not present")

        result = self.copy()
        children_to_keep = {
            name: child for name, child in result.children.items() if name not in names
        }
        result._replace_node(children=children_to_keep)
        return result

    @classmethod
    def from_dict(
        cls,
        d: Mapping[str, Dataset | DataTree | None],
        /,
        name: str | None = None,
    ) -> Self:
        """
        Create a datatree from a dictionary of data objects, organised by paths into the tree.

        Parameters
        ----------
        d : dict-like
            A mapping from path names to xarray.Dataset or DataTree objects.

            Path names are to be given as unix-like path. If path names
            containing more than one part are given, new tree nodes will be
            constructed as necessary.

            To assign data to the root node of the tree use "", ".", "/" or "./"
            as the path.
        name : Hashable | None, optional
            Name for the root node of the tree. Default is None.

        Returns
        -------
        DataTree

        Notes
        -----
        If your dictionary is nested you will need to flatten it before using this method.
        """
        # Find any values corresponding to the root
        d_cast = dict(d)
        root_data = None
        for key in ("", ".", "/", "./"):
            if key in d_cast:
                if root_data is not None:
                    raise ValueError(
                        "multiple entries found corresponding to the root node"
                    )
                root_data = d_cast.pop(key)

        # Create the root node
        if isinstance(root_data, DataTree):
            obj = root_data.copy()
            obj.name = name
        elif root_data is None or isinstance(root_data, Dataset):
            obj = cls(name=name, dataset=root_data, children=None)
        else:
            raise TypeError(
                f'root node data (at "", ".", "/" or "./") must be a Dataset '
                f"or DataTree, got {type(root_data)}"
            )

        def depth(item) -> int:
            pathstr, _ = item
            return len(NodePath(pathstr).parts)

        if d_cast:
            # Populate tree with children determined from data_objects mapping
            # Sort keys by depth so as to insert nodes from root first (see GH issue #9276)
            for path, data in sorted(d_cast.items(), key=depth):
                # Create and set new node
                if isinstance(data, DataTree):
                    new_node = data.copy()
                elif isinstance(data, Dataset) or data is None:
                    new_node = cls(dataset=data)
                else:
                    raise TypeError(f"invalid values: {data}")
                obj._set_item(
                    path,
                    new_node,
                    allow_overwrite=False,
                    new_nodes_along_path=True,
                )

        # TODO: figure out why mypy is raising an error here, likely something
        # to do with the return type of Dataset.copy()
        return obj  # type: ignore[return-value]

    def to_dict(self, relative: bool = False) -> dict[str, Dataset]:
        """
        Create a dictionary mapping of paths to the data contained in those nodes.

        Parameters
        ----------
        relative : bool
            If True, return relative instead of absolute paths.

        Returns
        -------
        dict[str, Dataset]

        See also
        --------
        DataTree.subtree_with_keys
        """
        return {
            node.relative_to(self) if relative else node.path: node.to_dataset()
            for node in self.subtree
        }

    @property
    def nbytes(self) -> int:
        return sum(node.to_dataset().nbytes for node in self.subtree)

    def __len__(self) -> int:
        return len(self.children) + len(self.data_vars)

    @property
    def indexes(self) -> Indexes[pd.Index]:
        """Mapping of pandas.Index objects used for label based indexing.

        Raises an error if this DataTree node has indexes that cannot be coerced
        to pandas.Index objects.

        See Also
        --------
        DataTree.xindexes
        """
        return self.xindexes.to_pandas_indexes()

    @property
    def xindexes(self) -> Indexes[Index]:
        """Mapping of xarray Index objects used for label based indexing."""
        return Indexes(
            self._indexes, {k: self._coord_variables[k] for k in self._indexes}
        )

    @property
    def coords(self) -> DataTreeCoordinates:
        """Dictionary of xarray.DataArray objects corresponding to coordinate
        variables
        """
        return DataTreeCoordinates(self)

    @property
    def data_vars(self) -> DataVariables:
        """Dictionary of DataArray objects corresponding to data variables"""
        return DataVariables(self.to_dataset())

    def isomorphic(self, other: DataTree) -> bool:
        """
        Two DataTrees are considered isomorphic if the set of paths to their
        descendent nodes are the same.

        Nothing about the data in each node is checked.

        Isomorphism is a necessary condition for two trees to be used in a nodewise binary operation,
        such as ``tree1 + tree2``.

        Parameters
        ----------
        other : DataTree
            The other tree object to compare to.

        See Also
        --------
        DataTree.equals
        DataTree.identical
        """
        return diff_treestructure(self, other) is None

    def equals(self, other: DataTree) -> bool:
        """
        Two DataTrees are equal if they have isomorphic node structures, with
        matching node names, and if they have matching variables and
        coordinates, all of which are equal.

        Parameters
        ----------
        other : DataTree
            The other tree object to compare to.

        See Also
        --------
        Dataset.equals
        DataTree.isomorphic
        DataTree.identical
        """
        if not self.isomorphic(other):
            return False

        # Note: by using .dataset, this intentionally does not check that
        # coordinates are defined at the same levels.
        return all(
            node.dataset.equals(other_node.dataset)
            for node, other_node in zip_subtrees(self, other)
        )

    def _inherited_coords_set(self) -> set[str]:
        return set(self.parent.coords if self.parent else [])

    def identical(self, other: DataTree) -> bool:
        """
        Like equals, but also checks attributes on all datasets, variables and
        coordinates, and requires that any inherited coordinates at the tree
        root are also inherited on the other tree.

        Parameters
        ----------
        other : DataTree
            The other tree object to compare to.

        See Also
        --------
        Dataset.identical
        DataTree.isomorphic
        DataTree.equals
        """
        if not self.isomorphic(other):
            return False

        if self.name != other.name:
            return False

        if self._inherited_coords_set() != other._inherited_coords_set():
            return False

        return all(
            node.dataset.identical(other_node.dataset)
            for node, other_node in zip_subtrees(self, other)
        )

    def filter(self: DataTree, filterfunc: Callable[[DataTree], bool]) -> DataTree:
        """
        Filter nodes according to a specified condition.

        Returns a new tree containing only the nodes in the original tree for which `fitlerfunc(node)` is True.
        Will also contain empty nodes at intermediate positions if required to support leaves.

        Parameters
        ----------
        filterfunc: function
            A function which accepts only one DataTree - the node on which filterfunc will be called.

        Returns
        -------
        DataTree

        See Also
        --------
        match
        pipe
        map_over_datasets
        """
        filtered_nodes = {
            path: node.dataset
            for path, node in self.subtree_with_keys
            if filterfunc(node)
        }
        return DataTree.from_dict(filtered_nodes, name=self.name)

    def filter_like(self, other: DataTree) -> DataTree:
        """
        Filter a datatree like another datatree.

        Returns a new tree containing only the nodes in the original tree which are also present in the other tree.

        Parameters
        ----------
        other : DataTree
            The tree to filter this tree by.

        Returns
        -------
        DataTree

        See Also
        --------
        filter
        isomorphic

        Examples
        --------

        >>> dt = DataTree.from_dict(
        ...     {
        ...         "/a/A": None,
        ...         "/a/B": None,
        ...         "/b/A": None,
        ...         "/b/B": None,
        ...     }
        ... )
        >>> other = DataTree.from_dict(
        ...     {
        ...         "/a/A": None,
        ...         "/b/A": None,
        ...     }
        ... )
        >>> dt.filter_like(other)
        <xarray.DataTree>
        Group: /
        ├── Group: /a
        │   └── Group: /a/A
        └── Group: /b
            └── Group: /b/A
        """
        other_keys = {key for key, _ in other.subtree_with_keys}
        return self.filter(lambda node: node.relative_to(self) in other_keys)

    def prune(self, drop_size_zero_vars: bool = False) -> DataTree:
        """
        Remove empty nodes from the tree.

        Returns a new tree containing only nodes that contain data variables with actual data.
        Intermediate nodes are kept if they are required to support non-empty children.

        Parameters
        ----------
        drop_size_zero_vars : bool, default False
            If True, also considers variables with zero size as empty.
            If False, keeps nodes with data variables even if they have zero size.

        Returns
        -------
        DataTree
            A new tree with empty nodes removed.

        See Also
        --------
        filter

        Examples
        --------
        >>> dt = xr.DataTree.from_dict(
        ...     {
        ...         "/a": xr.Dataset({"foo": ("x", [1, 2])}),
        ...         "/b": xr.Dataset({"bar": ("x", [])}),
        ...         "/c": xr.Dataset(),
        ...     }
        ... )
        >>> dt.prune()  # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE
        <xarray.DataTree>
        Group: /
        ├── Group: /a
        │       Dimensions:  (x: 2)
        │       Dimensions without coordinates: x
        │       Data variables:
        │           foo      (x) int64 16B 1 2
        └── Group: /b
                Dimensions:  (x: 0)
                Dimensions without coordinates: x
                Data variables:
                    bar      (x) float64 0B...

        The ``drop_size_zero_vars`` parameter controls whether variables
        with zero size are considered empty:

        >>> dt.prune(drop_size_zero_vars=True)
        <xarray.DataTree>
        Group: /
        └── Group: /a
                Dimensions:  (x: 2)
                Dimensions without coordinates: x
                Data variables:
                    foo      (x) int64 16B 1 2
        """
        non_empty_cond: Callable[[DataTree], bool]
        if drop_size_zero_vars:
            non_empty_cond = lambda node: len(node.data_vars) > 0 and any(
                var.size > 0 for var in node.data_vars.values()
            )
        else:
            non_empty_cond = lambda node: len(node.data_vars) > 0

        return self.filter(non_empty_cond)

    def match(self, pattern: str) -> DataTree:
        """
        Return nodes with paths matching pattern.

        Uses unix glob-like syntax for pattern-matching.

        Parameters
        ----------
        pattern: str
            A pattern to match each node path against.

        Returns
        -------
        DataTree

        See Also
        --------
        filter
        pipe
        map_over_datasets

        Examples
        --------
        >>> dt = DataTree.from_dict(
        ...     {
        ...         "/a/A": None,
        ...         "/a/B": None,
        ...         "/b/A": None,
        ...         "/b/B": None,
        ...     }
        ... )
        >>> dt.match("*/B")
        <xarray.DataTree>
        Group: /
        ├── Group: /a
        │   └── Group: /a/B
        └── Group: /b
            └── Group: /b/B
        """
        matching_nodes = {
            path: node.dataset
            for path, node in self.subtree_with_keys
            if NodePath(node.path).match(pattern)
        }
        return DataTree.from_dict(matching_nodes, name=self.name)

    def map_over_datasets(
        self,
        func: Callable,
        *args: Any,
        kwargs: Mapping[str, Any] | None = None,
    ) -> DataTree | tuple[DataTree, ...]:
        """
        Apply a function to every dataset in this subtree, returning a new tree which stores the results.

        The function will be applied to any dataset stored in this node, as well as any dataset stored in any of the
        descendant nodes. The returned tree will have the same structure as the original subtree.

        func needs to return a Dataset in order to rebuild the subtree.

        Parameters
        ----------
        func : callable
            Function to apply to datasets with signature:
            `func(node.dataset, *args, **kwargs) -> Dataset`.

            Function will not be applied to any nodes without datasets.
        *args : tuple, optional
            Positional arguments passed on to `func`. Any DataTree arguments will be
            converted to Dataset objects via `.dataset`.
        kwargs : dict, optional
            Optional keyword arguments passed directly to ``func``.

        Returns
        -------
        subtrees : DataTree, tuple of DataTrees
            One or more subtrees containing results from applying ``func`` to the data at each node.

        See also
        --------
        map_over_datasets
        """
        # TODO this signature means that func has no way to know which node it is being called upon - change?
        # TODO fix this typing error
        return map_over_datasets(func, self, *args, kwargs=kwargs)

    @overload
    def pipe(
        self,
        func: Callable[Concatenate[Self, P], T],
        *args: P.args,
        **kwargs: P.kwargs,
    ) -> T: ...

    @overload
    def pipe(
        self,
        func: tuple[Callable[..., T], str],
        *args: Any,
        **kwargs: Any,
    ) -> T: ...

    def pipe(
        self,
        func: Callable[Concatenate[Self, P], T] | tuple[Callable[..., T], str],
        *args: Any,
        **kwargs: Any,
    ) -> T:
        """Apply ``func(self, *args, **kwargs)``

        This method replicates the pandas method of the same name.

        Parameters
        ----------
        func : callable
            function to apply to this xarray object (Dataset/DataArray).
            ``args``, and ``kwargs`` are passed into ``func``.
            Alternatively a ``(callable, data_keyword)`` tuple where
            ``data_keyword`` is a string indicating the keyword of
            ``callable`` that expects the xarray object.
        *args
            positional arguments passed into ``func``.
        **kwargs
            a dictionary of keyword arguments passed into ``func``.

        Returns
        -------
        object : T
            the return type of ``func``.

        Notes
        -----
        Use ``.pipe`` when chaining together functions that expect
        xarray or pandas objects, e.g., instead of writing

        .. code:: python

            f(g(h(dt), arg1=a), arg2=b, arg3=c)

        You can write

        .. code:: python

            (dt.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c))

        If you have a function that takes the data as (say) the second
        argument, pass a tuple indicating which keyword expects the
        data. For example, suppose ``f`` takes its data as ``arg2``:

        .. code:: python

            (dt.pipe(h).pipe(g, arg1=a).pipe((f, "arg2"), arg1=a, arg3=c))

        """
        if isinstance(func, tuple):
            # Use different var when unpacking function from tuple because the type
            # signature of the unpacked function differs from the expected type
            # signature in the case where only a function is given, rather than a tuple.
            # This makes type checkers happy at both call sites below.
            f, target = func
            if target in kwargs:
                raise ValueError(
                    f"{target} is both the pipe target and a keyword argument"
                )
            kwargs[target] = self
            return f(*args, **kwargs)

        return func(self, *args, **kwargs)

    # TODO some kind of .collapse() or .flatten() method to merge a subtree

    @property
    def groups(self):
        """Return all groups in the tree, given as a tuple of path-like strings."""
        return tuple(node.path for node in self.subtree)

    def _unary_op(self, f, *args, **kwargs) -> DataTree:
        # TODO do we need to any additional work to avoid duplication etc.? (Similar to aggregations)
        return self.map_over_datasets(functools.partial(f, **kwargs), *args)  # type: ignore[return-value]

    def _binary_op(self, other, f, reflexive=False, join=None) -> DataTree:
        from xarray.core.groupby import GroupBy

        if isinstance(other, GroupBy):
            return NotImplemented

        ds_binop = functools.partial(
            Dataset._binary_op,
            f=f,
            reflexive=reflexive,
            join=join,
        )
        return map_over_datasets(ds_binop, self, other)

    def _inplace_binary_op(self, other, f) -> Self:
        from xarray.core.groupby import GroupBy

        if isinstance(other, GroupBy):
            raise TypeError(
                "in-place operations between a DataTree and "
                "a grouped object are not permitted"
            )

        # TODO see GH issue #9629 for required implementation
        raise NotImplementedError()

    # TODO: dirty workaround for mypy 1.5 error with inherited DatasetOpsMixin vs. Mapping
    # related to https://github.com/python/mypy/issues/9319?
    def __eq__(self, other: DtCompatible) -> Self:  # type: ignore[override]
        return super().__eq__(other)

    # filepath=None writes to a memoryview
    @overload
    def to_netcdf(
        self,
        filepath: None = None,
        mode: NetcdfWriteModes = "w",
        encoding=None,
        unlimited_dims=None,
        format: T_DataTreeNetcdfTypes | None = None,
        engine: T_DataTreeNetcdfEngine | None = None,
        group: str | None = None,
        write_inherited_coords: bool = False,
        compute: bool = True,
        **kwargs,
    ) -> memoryview: ...

    @overload
    def to_netcdf(
        self,
        filepath: str | PathLike | io.IOBase,
        mode: NetcdfWriteModes = "w",
        encoding=None,
        unlimited_dims=None,
        format: T_DataTreeNetcdfTypes | None = None,
        engine: T_DataTreeNetcdfEngine | None = None,
        group: str | None = None,
        write_inherited_coords: bool = False,
        compute: bool = True,
        **kwargs,
    ) -> None: ...

    def to_netcdf(
        self,
        filepath: str | PathLike | io.IOBase | None = None,
        mode: NetcdfWriteModes = "w",
        encoding=None,
        unlimited_dims=None,
        format: T_DataTreeNetcdfTypes | None = None,
        engine: T_DataTreeNetcdfEngine | None = None,
        group: str | None = None,
        write_inherited_coords: bool = False,
        compute: bool = True,
        **kwargs,
    ) -> None | memoryview:
        """
        Write datatree contents to a netCDF file.

        Parameters
        ----------
        filepath : str or PathLike or file-like object or None
            Path to which to save this datatree, or a file-like object to write
            it to (which must support read and write and be seekable) or None
            to return in-memory bytes as a memoryview.
        mode : {"w", "a"}, default: "w"
            Write ('w') or append ('a') mode. If mode='w', any existing file at
            this location will be overwritten. If mode='a', existing variables
            will be overwritten. Only applies to the root group.
        encoding : dict, optional
            Nested dictionary with variable names as keys and dictionaries of
            variable specific encodings as values, e.g.,
            ``{"root/set1": {"my_variable": {"dtype": "int16", "scale_factor": 0.1,
            "zlib": True}, ...}, ...}``. See ``xarray.Dataset.to_netcdf`` for available
            options.
        unlimited_dims : dict, optional
            Mapping of unlimited dimensions per group that that should be serialized as unlimited dimensions.
            By default, no dimensions are treated as unlimited dimensions.
            Note that unlimited_dims may also be set via
            ``dataset.encoding["unlimited_dims"]``.
        format : {"NETCDF4", }, optional
            File format for the resulting netCDF file:

            * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features.
        engine : {"netcdf4", "h5netcdf"}, optional
            Engine to use when writing netCDF files. If not provided, the
            default engine is chosen based on available dependencies, with a
            preference for "netcdf4" if writing to a file on disk.
        group : str, optional
            Path to the netCDF4 group in the given file to open as the root group
            of the ``DataTree``. Currently, specifying a group is not supported.
        write_inherited_coords : bool, default: False
            If true, replicate inherited coordinates on all descendant nodes.
            Otherwise, only write coordinates at the level at which they are
            originally defined. This saves disk space, but requires opening the
            full tree to load inherited coordinates.
        compute : bool, default: True
            If true compute immediately, otherwise return a
            ``dask.delayed.Delayed`` object that can be computed later.
            Currently, ``compute=False`` is not supported.
        kwargs :
            Additional keyword arguments to be passed to ``xarray.Dataset.to_netcdf``

        Returns
        -------
            * ``memoryview`` if path is None
            * ``None`` otherwise

        Note
        ----
            Due to file format specifications the on-disk root group name
            is always ``"/"`` overriding any given ``DataTree`` root node name.
        """
        from xarray.core.datatree_io import _datatree_to_netcdf

        return _datatree_to_netcdf(
            self,
            filepath,
            mode=mode,
            encoding=encoding,
            unlimited_dims=unlimited_dims,
            format=format,
            engine=engine,
            group=group,
            write_inherited_coords=write_inherited_coords,
            compute=compute,
            **kwargs,
        )

    def to_zarr(
        self,
        store,
        mode: ZarrWriteModes = "w-",
        encoding=None,
        consolidated: bool = True,
        group: str | None = None,
        write_inherited_coords: bool = False,
        compute: bool = True,
        **kwargs,
    ):
        """
        Write datatree contents to a Zarr store.

        Parameters
        ----------
        store : MutableMapping, str or Path, optional
            Store or path to directory in file system
        mode : {{"w", "w-", "a", "r+", None}, default: "w-"
            Persistence mode: “w” means create (overwrite if exists); “w-” means create (fail if exists);
            “a” means override existing variables (create if does not exist); “r+” means modify existing
            array values only (raise an error if any metadata or shapes would change). The default mode
            is “w-”.
        encoding : dict, optional
            Nested dictionary with variable names as keys and dictionaries of
            variable specific encodings as values, e.g.,
            ``{"root/set1": {"my_variable": {"dtype": "int16", "scale_factor": 0.1}, ...}, ...}``.
            See ``xarray.Dataset.to_zarr`` for available options.
        consolidated : bool
            If True, apply zarr's `consolidate_metadata` function to the store
            after writing metadata for all groups.
        group : str, optional
            Group path. (a.k.a. `path` in zarr terminology.)
        write_inherited_coords : bool, default: False
            If true, replicate inherited coordinates on all descendant nodes.
            Otherwise, only write coordinates at the level at which they are
            originally defined. This saves disk space, but requires opening the
            full tree to load inherited coordinates.
        compute : bool, default: True
            If true compute immediately, otherwise return a
            ``dask.delayed.Delayed`` object that can be computed later. Metadata
            is always updated eagerly. Currently, ``compute=False`` is not
            supported.
        kwargs :
            Additional keyword arguments to be passed to ``xarray.Dataset.to_zarr``

        Note
        ----
            Due to file format specifications the on-disk root group name
            is always ``"/"`` overriding any given ``DataTree`` root node name.
        """
        from xarray.core.datatree_io import _datatree_to_zarr

        _datatree_to_zarr(
            self,
            store,
            mode=mode,
            encoding=encoding,
            consolidated=consolidated,
            group=group,
            write_inherited_coords=write_inherited_coords,
            compute=compute,
            **kwargs,
        )

    def _get_all_dims(self) -> set:
        all_dims = set()
        for node in self.subtree:
            all_dims.update(node._node_dims)
        return all_dims

    def reduce(
        self,
        func: Callable,
        dim: Dims = None,
        *,
        keep_attrs: bool | None = None,
        keepdims: bool = False,
        numeric_only: bool = False,
        **kwargs: Any,
    ) -> Self:
        """Reduce this tree by applying `func` along some dimension(s)."""
        dims = parse_dims_as_set(dim, self._get_all_dims())
        result = {}
        for path, node in self.subtree_with_keys:
            reduce_dims = [d for d in node._node_dims if d in dims]
            node_result = node.dataset.reduce(
                func,
                reduce_dims,
                keep_attrs=keep_attrs,
                keepdims=keepdims,
                numeric_only=numeric_only,
                **kwargs,
            )
            result[path] = node_result
        return type(self).from_dict(result, name=self.name)

    def _selective_indexing(
        self,
        func: Callable[[Dataset, Mapping[Any, Any]], Dataset],
        indexers: Mapping[Any, Any],
        missing_dims: ErrorOptionsWithWarn = "raise",
    ) -> Self:
        """Apply an indexing operation over the subtree, handling missing
        dimensions and inherited coordinates gracefully by only applying
        indexing at each node selectively.
        """
        all_dims = self._get_all_dims()
        indexers = drop_dims_from_indexers(indexers, all_dims, missing_dims)

        result = {}
        for path, node in self.subtree_with_keys:
            node_indexers = {k: v for k, v in indexers.items() if k in node.dims}
            func_with_error_context = _handle_errors_with_path_context(path)(func)
            node_result = func_with_error_context(node.dataset, node_indexers)
            # Indexing datasets corresponding to each node results in redundant
            # coordinates when indexes from a parent node are inherited.
            # Ideally, we would avoid creating such coordinates in the first
            # place, but that would require implementing indexing operations at
            # the Variable instead of the Dataset level.
            if node is not self:
                for k in node_indexers:
                    if k not in node._node_coord_variables and k in node_result.coords:
                        # We remove all inherited coordinates. Coordinates
                        # corresponding to an index would be de-duplicated by
                        # _deduplicate_inherited_coordinates(), but indexing (e.g.,
                        # with a scalar) can also create scalar coordinates, which
                        # need to be explicitly removed.
                        del node_result.coords[k]
            result[path] = node_result
        return type(self).from_dict(result, name=self.name)

    def isel(
        self,
        indexers: Mapping[Any, Any] | None = None,
        drop: bool = False,
        missing_dims: ErrorOptionsWithWarn = "raise",
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new data tree with each array indexed along the specified
        dimension(s).

        This method selects values from each array using its `__getitem__`
        method, except this method does not require knowing the order of
        each array's dimensions.

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given
            by integers, slice objects or arrays.
            indexer can be a integer, slice, array-like or DataArray.
            If DataArrays are passed as indexers, xarray-style indexing will be
            carried out. See :ref:`indexing` for the details.
            One of indexers or indexers_kwargs must be provided.
        drop : bool, default: False
            If ``drop=True``, drop coordinates variables indexed by integers
            instead of making them scalar.
        missing_dims : {"raise", "warn", "ignore"}, default: "raise"
            What to do if dimensions that should be selected from are not present in the
            Dataset:
            - "raise": raise an exception
            - "warn": raise a warning, and ignore the missing dimensions
            - "ignore": ignore the missing dimensions

        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        obj : DataTree
            A new DataTree with the same contents as this data tree, except each
            array and dimension is indexed by the appropriate indexers.
            If indexer DataArrays have coordinates that do not conflict with
            this object, then these coordinates will be attached.
            In general, each array's data will be a view of the array's data
            in this dataset, unless vectorized indexing was triggered by using
            an array indexer, in which case the data will be a copy.

        See Also
        --------
        DataTree.sel
        Dataset.isel
        """

        def apply_indexers(dataset, node_indexers):
            return dataset.isel(node_indexers, drop=drop)

        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel")
        return self._selective_indexing(
            apply_indexers, indexers, missing_dims=missing_dims
        )

    def sel(
        self,
        indexers: Mapping[Any, Any] | None = None,
        method: str | None = None,
        tolerance: int | float | Iterable[int | float] | None = None,
        drop: bool = False,
        **indexers_kwargs: Any,
    ) -> Self:
        """Returns a new data tree with each array indexed by tick labels
        along the specified dimension(s).

        In contrast to `DataTree.isel`, indexers for this method should use
        labels instead of integers.

        Under the hood, this method is powered by using pandas's powerful Index
        objects. This makes label based indexing essentially just as fast as
        using integer indexing.

        It also means this method uses pandas's (well documented) logic for
        indexing. This means you can use string shortcuts for datetime indexes
        (e.g., '2000-01' to select all values in January 2000). It also means
        that slices are treated as inclusive of both the start and stop values,
        unlike normal Python indexing.

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given
            by scalars, slices or arrays of tick labels. For dimensions with
            multi-index, the indexer may also be a dict-like object with keys
            matching index level names.
            If DataArrays are passed as indexers, xarray-style indexing will be
            carried out. See :ref:`indexing` for the details.
            One of indexers or indexers_kwargs must be provided.
        method : {None, "nearest", "pad", "ffill", "backfill", "bfill"}, optional
            Method to use for inexact matches:

            * None (default): only exact matches
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        drop : bool, optional
            If ``drop=True``, drop coordinates variables in `indexers` instead
            of making them scalar.
        **indexers_kwargs : {dim: indexer, ...}, optional
            The keyword arguments form of ``indexers``.
            One of indexers or indexers_kwargs must be provided.

        Returns
        -------
        obj : DataTree
            A new DataTree with the same contents as this data tree, except each
            variable and dimension is indexed by the appropriate indexers.
            If indexer DataArrays have coordinates that do not conflict with
            this object, then these coordinates will be attached.
            In general, each array's data will be a view of the array's data
            in this dataset, unless vectorized indexing was triggered by using
            an array indexer, in which case the data will be a copy.

        See Also
        --------
        DataTree.isel
        Dataset.sel
        """

        def apply_indexers(dataset, node_indexers):
            # TODO: reimplement in terms of map_index_queries(), to avoid
            # redundant look-ups of integer positions from labels (via indexes)
            # on child nodes.
            return dataset.sel(
                node_indexers, method=method, tolerance=tolerance, drop=drop
            )

        indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel")
        return self._selective_indexing(apply_indexers, indexers)

    def load(self, **kwargs) -> Self:
        """Manually trigger loading and/or computation of this datatree's data
        from disk or a remote source into memory and return this datatree.
        Unlike compute, the original datatree is modified and returned.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.compute``.

        See Also
        --------
        Dataset.load
        dask.compute
        """
        # access .data to coerce everything to numpy or dask arrays
        lazy_data = {
            path: {
                k: v._data
                for k, v in node.variables.items()
                if is_chunked_array(v._data)
            }
            for path, node in self.subtree_with_keys
        }
        flat_lazy_data = {
            (path, var_name): array
            for path, node in lazy_data.items()
            for var_name, array in node.items()
        }
        if flat_lazy_data:
            chunkmanager = get_chunked_array_type(*flat_lazy_data.values())

            # evaluate all the chunked arrays simultaneously
            evaluated_data: tuple[np.ndarray[Any, Any], ...] = chunkmanager.compute(
                *flat_lazy_data.values(), **kwargs
            )

            for (path, var_name), data in zip(
                flat_lazy_data, evaluated_data, strict=False
            ):
                self[path].variables[var_name].data = data

        # load everything else sequentially
        for node in self.subtree:
            for k, v in node.variables.items():
                if k not in lazy_data:
                    v.load()

        return self

    def compute(self, **kwargs) -> Self:
        """Manually trigger loading and/or computation of this datatree's data
        from disk or a remote source into memory and return a new datatree.
        Unlike load, the original datatree is left unaltered.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.compute``.

        Returns
        -------
        object : DataTree
            New object with lazy data variables and coordinates as in-memory arrays.

        See Also
        --------
        dask.compute
        """
        new = self.copy(deep=False)
        return new.load(**kwargs)

    def _persist_inplace(self, **kwargs) -> Self:
        """Persist all chunked arrays in memory"""
        # access .data to coerce everything to numpy or dask arrays
        lazy_data = {
            path: {
                k: v._data
                for k, v in node.variables.items()
                if is_chunked_array(v._data)
            }
            for path, node in self.subtree_with_keys
        }
        flat_lazy_data = {
            (path, var_name): array
            for path, node in lazy_data.items()
            for var_name, array in node.items()
        }
        if flat_lazy_data:
            chunkmanager = get_chunked_array_type(*flat_lazy_data.values())

            # evaluate all the dask arrays simultaneously
            evaluated_data = chunkmanager.persist(*flat_lazy_data.values(), **kwargs)

            for (path, var_name), data in zip(
                flat_lazy_data, evaluated_data, strict=False
            ):
                self[path].variables[var_name].data = data

        return self

    def persist(self, **kwargs) -> Self:
        """Trigger computation, keeping data as chunked arrays.

        This operation can be used to trigger computation on underlying dask
        arrays, similar to ``.compute()`` or ``.load()``.  However this
        operation keeps the data as dask arrays. This is particularly useful
        when using the dask.distributed scheduler and you want to load a large
        amount of data into distributed memory.
        Like compute (but unlike load), the original dataset is left unaltered.


        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.persist``.

        Returns
        -------
        object : DataTree
            New object with all dask-backed coordinates and data variables as persisted dask arrays.

        See Also
        --------
        dask.persist
        """
        new = self.copy(deep=False)
        return new._persist_inplace(**kwargs)

    @property
    def chunksizes(self) -> Mapping[str, Mapping[Hashable, tuple[int, ...]]]:
        """
        Mapping from group paths to a mapping of chunksizes.

        If there's no chunked data in a group, the corresponding mapping of chunksizes will be empty.

        Cannot be modified directly, but can be modified by calling .chunk().

        See Also
        --------
        DataTree.chunk
        Dataset.chunksizes
        """
        return Frozen(
            {
                node.path: get_chunksizes(node.variables.values())
                for node in self.subtree
            }
        )

    def chunk(
        self,
        chunks: T_ChunksFreq = {},  # noqa: B006  # {} even though it's technically unsafe, is being used intentionally here (#4667)
        name_prefix: str = "xarray-",
        token: str | None = None,
        lock: bool = False,
        inline_array: bool = False,
        chunked_array_type: str | ChunkManagerEntrypoint | None = None,
        from_array_kwargs=None,
        **chunks_kwargs: T_ChunkDimFreq,
    ) -> Self:
        """Coerce all arrays in all groups in this tree into dask arrays with the given
        chunks.

        Non-dask arrays in this tree will be converted to dask arrays. Dask
        arrays will be rechunked to the given chunk sizes.

        If neither chunks is not provided for one or more dimensions, chunk
        sizes along that dimension will not be updated; non-dask arrays will be
        converted into dask arrays with a single block.

        Along datetime-like dimensions, a :py:class:`groupers.TimeResampler` object is also accepted.

        Parameters
        ----------
        chunks : int, tuple of int, "auto" or mapping of hashable to int or a TimeResampler, optional
            Chunk sizes along each dimension, e.g., ``5``, ``"auto"``, or
            ``{"x": 5, "y": 5}`` or ``{"x": 5, "time": TimeResampler(freq="YE")}``.
        name_prefix : str, default: "xarray-"
            Prefix for the name of any new dask arrays.
        token : str, optional
            Token uniquely identifying this datatree.
        lock : bool, default: False
            Passed on to :py:func:`dask.array.from_array`, if the array is not
            already as dask array.
        inline_array: bool, default: False
            Passed on to :py:func:`dask.array.from_array`, if the array is not
            already as dask array.
        chunked_array_type: str, optional
            Which chunked array type to coerce this datatree's arrays to.
            Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system.
            Experimental API that should not be relied upon.
        from_array_kwargs: dict, optional
            Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
            chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
            For example, with dask as the default chunked array type, this method would pass additional kwargs
            to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
        **chunks_kwargs : {dim: chunks, ...}, optional
            The keyword arguments form of ``chunks``.
            One of chunks or chunks_kwargs must be provided

        Returns
        -------
        chunked : xarray.DataTree

        See Also
        --------
        Dataset.chunk
        Dataset.chunksizes
        xarray.unify_chunks
        dask.array.from_array
        """
        # don't support deprecated ways of passing chunks
        if not isinstance(chunks, Mapping):
            raise TypeError(
                f"invalid type for chunks: {type(chunks)}. Only mappings are supported."
            )
        combined_chunks = either_dict_or_kwargs(chunks, chunks_kwargs, "chunk")

        all_dims = self._get_all_dims()

        bad_dims = combined_chunks.keys() - all_dims
        if bad_dims:
            raise ValueError(
                f"chunks keys {tuple(bad_dims)} not found in data dimensions {tuple(all_dims)}"
            )

        rechunked_groups = {
            path: node.dataset.chunk(
                {
                    dim: size
                    for dim, size in combined_chunks.items()
                    if dim in node._node_dims
                },
                name_prefix=name_prefix,
                token=token,
                lock=lock,
                inline_array=inline_array,
                chunked_array_type=chunked_array_type,
                from_array_kwargs=from_array_kwargs,
            )
            for path, node in self.subtree_with_keys
        }

        return self.from_dict(rechunked_groups, name=self.name)