File: duck_array_ops.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (914 lines) | stat: -rw-r--r-- 30,660 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
"""Compatibility module defining operations on duck numpy-arrays.

Currently, this means Dask or NumPy arrays. None of these functions should
accept or return xarray objects.
"""

from __future__ import annotations

import contextlib
import datetime
import inspect
import warnings
from collections.abc import Callable
from functools import partial
from importlib import import_module
from typing import Any

import numpy as np
import pandas as pd
from numpy import (
    isclose,
    isnat,
    take,
    unravel_index,  # noqa: F401
)

from xarray.compat import dask_array_compat, dask_array_ops
from xarray.compat.array_api_compat import get_array_namespace
from xarray.core import dtypes, nputils
from xarray.core.extension_array import PandasExtensionArray
from xarray.core.options import OPTIONS
from xarray.core.utils import is_duck_array, is_duck_dask_array, module_available
from xarray.namedarray.parallelcompat import get_chunked_array_type
from xarray.namedarray.pycompat import array_type, is_chunked_array

# remove once numpy 2.0 is the oldest supported version
if module_available("numpy", minversion="2.0.0.dev0"):
    from numpy.lib.array_utils import (  # type: ignore[import-not-found,unused-ignore]
        normalize_axis_index,
    )
else:
    from numpy.core.multiarray import (  # type: ignore[attr-defined,no-redef,unused-ignore]
        normalize_axis_index,
    )


dask_available = module_available("dask")


def einsum(*args, **kwargs):
    if OPTIONS["use_opt_einsum"] and module_available("opt_einsum"):
        import opt_einsum

        return opt_einsum.contract(*args, **kwargs)
    else:
        xp = get_array_namespace(*args)
        return xp.einsum(*args, **kwargs)


def tensordot(*args, **kwargs):
    xp = get_array_namespace(*args)
    return xp.tensordot(*args, **kwargs)


def cross(*args, **kwargs):
    xp = get_array_namespace(*args)
    return xp.cross(*args, **kwargs)


def gradient(f, *varargs, axis=None, edge_order=1):
    xp = get_array_namespace(f)
    return xp.gradient(f, *varargs, axis=axis, edge_order=edge_order)


def _dask_or_eager_func(
    name,
    eager_module=np,
    dask_module="dask.array",
    dask_only_kwargs=tuple(),
    numpy_only_kwargs=tuple(),
):
    """Create a function that dispatches to dask for dask array inputs."""

    def f(*args, **kwargs):
        if dask_available and any(is_duck_dask_array(a) for a in args):
            mod = (
                import_module(dask_module)
                if isinstance(dask_module, str)
                else dask_module
            )
            wrapped = getattr(mod, name)
            for kwarg in numpy_only_kwargs:
                kwargs.pop(kwarg, None)
        else:
            wrapped = getattr(eager_module, name)
            for kwarg in dask_only_kwargs:
                kwargs.pop(kwarg, None)
        return wrapped(*args, **kwargs)

    return f


def fail_on_dask_array_input(values, msg=None, func_name=None):
    if is_duck_dask_array(values):
        if msg is None:
            msg = "%r is not yet a valid method on dask arrays"
        if func_name is None:
            func_name = inspect.stack()[1][3]
        raise NotImplementedError(msg % func_name)


# Requires special-casing because pandas won't automatically dispatch to dask.isnull via NEP-18
pandas_isnull = _dask_or_eager_func("isnull", eager_module=pd, dask_module="dask.array")

# TODO replace with simply np.ma.masked_invalid once numpy/numpy#16022 is fixed
# TODO: replacing breaks iris + dask tests
masked_invalid = _dask_or_eager_func(
    "masked_invalid", eager_module=np.ma, dask_module="dask.array.ma"
)


def sliding_window_view(array, window_shape, axis=None, **kwargs):
    # TODO: some libraries (e.g. jax) don't have this, implement an alternative?
    xp = get_array_namespace(array)
    # sliding_window_view will not dispatch arbitrary kwargs (automatic_rechunk),
    # so we need to hand-code this.
    func = _dask_or_eager_func(
        "sliding_window_view",
        eager_module=xp.lib.stride_tricks,
        dask_module=dask_array_compat,
        dask_only_kwargs=("automatic_rechunk",),
        numpy_only_kwargs=("subok", "writeable"),
    )
    return func(array, window_shape, axis=axis, **kwargs)


def round(array):
    xp = get_array_namespace(array)
    return xp.round(array)


around: Callable = round


def isna(data: Any) -> bool:
    """Checks if data is literally np.nan or pd.NA.

    Parameters
    ----------
    data
        Any python object

    Returns
    -------
        Whether or not the data is np.nan or pd.NA
    """
    return data is pd.NA or data is np.nan  # noqa: PLW0177


def isnull(data):
    data = asarray(data)

    xp = get_array_namespace(data)
    scalar_type = data.dtype
    if dtypes.is_datetime_like(scalar_type):
        # datetime types use NaT for null
        # note: must check timedelta64 before integers, because currently
        # timedelta64 inherits from np.integer
        return isnat(data)
    elif dtypes.isdtype(scalar_type, ("real floating", "complex floating"), xp=xp):
        # float types use NaN for null
        xp = get_array_namespace(data)
        return xp.isnan(data)
    elif dtypes.isdtype(scalar_type, ("bool", "integral"), xp=xp) or (
        isinstance(scalar_type, np.dtype)
        and (
            np.issubdtype(scalar_type, np.character)
            or np.issubdtype(scalar_type, np.void)
        )
    ):
        # these types cannot represent missing values
        # bool_ is for backwards compat with numpy<2, and cupy
        dtype = xp.bool_ if hasattr(xp, "bool_") else xp.bool
        return full_like(data, dtype=dtype, fill_value=False)
    # at this point, array should have dtype=object
    elif isinstance(data, np.ndarray) or pd.api.types.is_extension_array_dtype(data):  # noqa: TID251
        return pandas_isnull(data)
    else:
        # Not reachable yet, but intended for use with other duck array
        # types. For full consistency with pandas, we should accept None as
        # a null value as well as NaN, but it isn't clear how to do this
        # with duck typing.
        return data != data  # noqa: PLR0124


def notnull(data):
    return ~isnull(data)


def trapz(y, x, axis):
    if axis < 0:
        axis = y.ndim + axis
    x_sl1 = (slice(1, None),) + (None,) * (y.ndim - axis - 1)
    x_sl2 = (slice(None, -1),) + (None,) * (y.ndim - axis - 1)
    slice1 = (slice(None),) * axis + (slice(1, None),)
    slice2 = (slice(None),) * axis + (slice(None, -1),)
    dx = x[x_sl1] - x[x_sl2]
    integrand = dx * 0.5 * (y[tuple(slice1)] + y[tuple(slice2)])
    return sum(integrand, axis=axis, skipna=False)


def cumulative_trapezoid(y, x, axis):
    if axis < 0:
        axis = y.ndim + axis
    x_sl1 = (slice(1, None),) + (None,) * (y.ndim - axis - 1)
    x_sl2 = (slice(None, -1),) + (None,) * (y.ndim - axis - 1)
    slice1 = (slice(None),) * axis + (slice(1, None),)
    slice2 = (slice(None),) * axis + (slice(None, -1),)
    dx = x[x_sl1] - x[x_sl2]
    integrand = dx * 0.5 * (y[tuple(slice1)] + y[tuple(slice2)])

    # Pad so that 'axis' has same length in result as it did in y
    pads = [(1, 0) if i == axis else (0, 0) for i in range(y.ndim)]

    xp = get_array_namespace(y, x)
    integrand = xp.pad(integrand, pads, mode="constant", constant_values=0.0)

    return cumsum(integrand, axis=axis, skipna=False)


def full_like(a, fill_value, **kwargs):
    xp = get_array_namespace(a)
    return xp.full_like(a, fill_value, **kwargs)


def empty_like(a, **kwargs):
    xp = get_array_namespace(a)
    return xp.empty_like(a, **kwargs)


def astype(data, dtype, *, xp=None, **kwargs):
    if not hasattr(data, "__array_namespace__") and xp is None:
        return data.astype(dtype, **kwargs)

    if xp is None:
        xp = get_array_namespace(data)

    if xp == np:
        # numpy currently doesn't have a astype:
        return data.astype(dtype, **kwargs)
    return xp.astype(data, dtype, **kwargs)


def asarray(data, xp=np, dtype=None):
    converted = data if is_duck_array(data) else xp.asarray(data)

    if dtype is None or converted.dtype == dtype:
        return converted

    if xp is np or not hasattr(xp, "astype"):
        return converted.astype(dtype)
    else:
        return xp.astype(converted, dtype)


def as_shared_dtype(scalars_or_arrays, xp=None):
    """Cast arrays to a shared dtype using xarray's type promotion rules."""
    extension_array_types = [
        x.dtype
        for x in scalars_or_arrays
        if pd.api.types.is_extension_array_dtype(x)  # noqa: TID251
    ]
    if len(extension_array_types) >= 1:
        non_nans = [x for x in scalars_or_arrays if not isna(x)]
        if len(extension_array_types) == len(non_nans) and all(
            isinstance(x, type(extension_array_types[0])) for x in extension_array_types
        ):
            return [
                x
                if not isna(x)
                else PandasExtensionArray(
                    type(non_nans[0].array)._from_sequence([x], dtype=non_nans[0].dtype)
                )
                for x in scalars_or_arrays
            ]
        raise ValueError(
            f"Cannot cast values to shared type, found values: {scalars_or_arrays}"
        )

    # Avoid calling array_type("cupy") repeatidely in the any check
    array_type_cupy = array_type("cupy")
    if any(isinstance(x, array_type_cupy) for x in scalars_or_arrays):
        import cupy as cp

        xp = cp
    elif xp is None:
        xp = get_array_namespace(scalars_or_arrays)

    # Pass arrays directly instead of dtypes to result_type so scalars
    # get handled properly.
    # Note that result_type() safely gets the dtype from dask arrays without
    # evaluating them.
    dtype = dtypes.result_type(*scalars_or_arrays, xp=xp)

    return [asarray(x, dtype=dtype, xp=xp) for x in scalars_or_arrays]


def broadcast_to(array, shape):
    xp = get_array_namespace(array)
    return xp.broadcast_to(array, shape)


def lazy_array_equiv(arr1, arr2):
    """Like array_equal, but doesn't actually compare values.
    Returns True when arr1, arr2 identical or their dask tokens are equal.
    Returns False when shapes are not equal.
    Returns None when equality cannot determined: one or both of arr1, arr2 are numpy arrays;
    or their dask tokens are not equal
    """
    if arr1 is arr2:
        return True
    arr1 = asarray(arr1)
    arr2 = asarray(arr2)
    if arr1.shape != arr2.shape:
        return False
    if dask_available and is_duck_dask_array(arr1) and is_duck_dask_array(arr2):
        from dask.base import tokenize

        # GH3068, GH4221
        if tokenize(arr1) == tokenize(arr2):
            return True
        else:
            return None
    return None


def allclose_or_equiv(arr1, arr2, rtol=1e-5, atol=1e-8):
    """Like np.allclose, but also allows values to be NaN in both arrays"""
    arr1 = asarray(arr1)
    arr2 = asarray(arr2)

    lazy_equiv = lazy_array_equiv(arr1, arr2)
    if lazy_equiv is None:
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", r"All-NaN (slice|axis) encountered")
            return bool(
                array_all(isclose(arr1, arr2, rtol=rtol, atol=atol, equal_nan=True))
            )
    else:
        return lazy_equiv


def array_equiv(arr1, arr2):
    """Like np.array_equal, but also allows values to be NaN in both arrays"""
    arr1 = asarray(arr1)
    arr2 = asarray(arr2)
    lazy_equiv = lazy_array_equiv(arr1, arr2)
    if lazy_equiv is None:
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "In the future, 'NAT == x'")
            flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2))
            return bool(array_all(flag_array))
    else:
        return lazy_equiv


def array_notnull_equiv(arr1, arr2):
    """Like np.array_equal, but also allows values to be NaN in either or both
    arrays
    """
    arr1 = asarray(arr1)
    arr2 = asarray(arr2)
    lazy_equiv = lazy_array_equiv(arr1, arr2)
    if lazy_equiv is None:
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "In the future, 'NAT == x'")
            flag_array = (arr1 == arr2) | isnull(arr1) | isnull(arr2)
            return bool(array_all(flag_array))
    else:
        return lazy_equiv


def count(data, axis=None):
    """Count the number of non-NA in this array along the given axis or axes"""
    xp = get_array_namespace(data)
    return xp.sum(xp.logical_not(isnull(data)), axis=axis)


def sum_where(data, axis=None, dtype=None, where=None):
    xp = get_array_namespace(data)
    if where is not None:
        a = where_method(xp.zeros_like(data), where, data)
    else:
        a = data
    result = xp.sum(a, axis=axis, dtype=dtype)
    return result


def where(condition, x, y):
    """Three argument where() with better dtype promotion rules."""
    xp = get_array_namespace(condition, x, y)

    dtype = xp.bool_ if hasattr(xp, "bool_") else xp.bool
    if not is_duck_array(condition):
        condition = asarray(condition, dtype=dtype, xp=xp)
    else:
        condition = astype(condition, dtype=dtype, xp=xp)

    return xp.where(condition, *as_shared_dtype([x, y], xp=xp))


def where_method(data, cond, other=dtypes.NA):
    if other is dtypes.NA:
        other = dtypes.get_fill_value(data.dtype)
    return where(cond, data, other)


def fillna(data, other):
    # we need to pass data first so pint has a chance of returning the
    # correct unit
    # TODO: revert after https://github.com/hgrecco/pint/issues/1019 is fixed
    return where(notnull(data), data, other)


def logical_not(data):
    xp = get_array_namespace(data)
    return xp.logical_not(data)


def clip(data, min=None, max=None):
    xp = get_array_namespace(data)
    return xp.clip(data, min, max)


def concatenate(arrays, axis=0):
    """concatenate() with better dtype promotion rules."""
    # TODO: `concat` is the xp compliant name, but fallback to concatenate for
    # older numpy and for cupy
    xp = get_array_namespace(*arrays)
    if hasattr(xp, "concat"):
        return xp.concat(as_shared_dtype(arrays, xp=xp), axis=axis)
    else:
        return xp.concatenate(as_shared_dtype(arrays, xp=xp), axis=axis)


def stack(arrays, axis=0):
    """stack() with better dtype promotion rules."""
    xp = get_array_namespace(arrays[0])
    return xp.stack(as_shared_dtype(arrays, xp=xp), axis=axis)


def reshape(array, shape):
    xp = get_array_namespace(array)
    return xp.reshape(array, shape)


def ravel(array):
    return reshape(array, (-1,))


def transpose(array, axes=None):
    xp = get_array_namespace(array)
    return xp.transpose(array, axes)


def moveaxis(array, source, destination):
    xp = get_array_namespace(array)
    return xp.moveaxis(array, source, destination)


def pad(array, pad_width, **kwargs):
    xp = get_array_namespace(array)
    return xp.pad(array, pad_width, **kwargs)


def quantile(array, q, axis=None, **kwargs):
    xp = get_array_namespace(array)
    return xp.quantile(array, q, axis=axis, **kwargs)


@contextlib.contextmanager
def _ignore_warnings_if(condition):
    if condition:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            yield
    else:
        yield


def _create_nan_agg_method(name, coerce_strings=False, invariant_0d=False):
    def f(values, axis=None, skipna=None, **kwargs):
        if kwargs.pop("out", None) is not None:
            raise TypeError(f"`out` is not valid for {name}")

        # The data is invariant in the case of 0d data, so do not
        # change the data (and dtype)
        # See https://github.com/pydata/xarray/issues/4885
        if invariant_0d and axis == ():
            return values

        xp = get_array_namespace(values)
        values = asarray(values, xp=xp)

        if coerce_strings and dtypes.is_string(values.dtype):
            values = astype(values, object)

        func = None
        if skipna or (
            skipna is None
            and (
                dtypes.isdtype(
                    values.dtype, ("complex floating", "real floating"), xp=xp
                )
                or dtypes.is_object(values.dtype)
            )
        ):
            from xarray.computation import nanops

            nanname = "nan" + name
            func = getattr(nanops, nanname)
        else:
            if name in ["sum", "prod"]:
                kwargs.pop("min_count", None)

            xp = get_array_namespace(values)
            func = getattr(xp, name)

        try:
            with warnings.catch_warnings():
                warnings.filterwarnings("ignore", "All-NaN slice encountered")
                return func(values, axis=axis, **kwargs)
        except AttributeError:
            if not is_duck_dask_array(values):
                raise
            try:  # dask/dask#3133 dask sometimes needs dtype argument
                # if func does not accept dtype, then raises TypeError
                return func(values, axis=axis, dtype=values.dtype, **kwargs)
            except (AttributeError, TypeError) as err:
                raise NotImplementedError(
                    f"{name} is not yet implemented on dask arrays"
                ) from err

    f.__name__ = name
    return f


# Attributes `numeric_only`, `available_min_count` is used for docs.
# See ops.inject_reduce_methods
argmax = _create_nan_agg_method("argmax", coerce_strings=True)
argmin = _create_nan_agg_method("argmin", coerce_strings=True)
max = _create_nan_agg_method("max", coerce_strings=True, invariant_0d=True)
min = _create_nan_agg_method("min", coerce_strings=True, invariant_0d=True)
sum = _create_nan_agg_method("sum", invariant_0d=True)
sum.numeric_only = True
sum.available_min_count = True
std = _create_nan_agg_method("std")
std.numeric_only = True
var = _create_nan_agg_method("var")
var.numeric_only = True
median = _create_nan_agg_method("median", invariant_0d=True)
median.numeric_only = True
prod = _create_nan_agg_method("prod", invariant_0d=True)
prod.numeric_only = True
prod.available_min_count = True
cumprod_1d = _create_nan_agg_method("cumprod", invariant_0d=True)
cumprod_1d.numeric_only = True
cumsum_1d = _create_nan_agg_method("cumsum", invariant_0d=True)
cumsum_1d.numeric_only = True


def array_all(array, axis=None, keepdims=False, **kwargs):
    xp = get_array_namespace(array)
    return xp.all(array, axis=axis, keepdims=keepdims, **kwargs)


def array_any(array, axis=None, keepdims=False, **kwargs):
    xp = get_array_namespace(array)
    return xp.any(array, axis=axis, keepdims=keepdims, **kwargs)


_mean = _create_nan_agg_method("mean", invariant_0d=True)


def _datetime_nanmin(array):
    return _datetime_nanreduce(array, min)


def _datetime_nanreduce(array, func):
    """nanreduce() function for datetime64.

    Caveats that this function deals with:

    - In numpy < 1.18, min() on datetime64 incorrectly ignores NaT
    - numpy nanmin() don't work on datetime64 (all versions at the moment of writing)
    - dask min() does not work on datetime64 (all versions at the moment of writing)
    """
    dtype = array.dtype
    assert dtypes.is_datetime_like(dtype)
    # (NaT).astype(float) does not produce NaN...
    array = where(pandas_isnull(array), np.nan, array.astype(float))
    array = func(array, skipna=True)
    if isinstance(array, float):
        array = np.array(array)
    # ...but (NaN).astype("M8") does produce NaT
    return array.astype(dtype)


def datetime_to_numeric(array, offset=None, datetime_unit=None, dtype=float):
    """Convert an array containing datetime-like data to numerical values.
    Convert the datetime array to a timedelta relative to an offset.
    Parameters
    ----------
    array : array-like
        Input data
    offset : None, datetime or cftime.datetime
        Datetime offset. If None, this is set by default to the array's minimum
        value to reduce round off errors.
    datetime_unit : {None, Y, M, W, D, h, m, s, ms, us, ns, ps, fs, as}
        If not None, convert output to a given datetime unit. Note that some
        conversions are not allowed due to non-linear relationships between units.
    dtype : dtype
        Output dtype.
    Returns
    -------
    array
        Numerical representation of datetime object relative to an offset.
    Notes
    -----
    Some datetime unit conversions won't work, for example from days to years, even
    though some calendars would allow for them (e.g. no_leap). This is because there
    is no `cftime.timedelta` object.
    """
    # Set offset to minimum if not given
    if offset is None:
        if dtypes.is_datetime_like(array.dtype):
            offset = _datetime_nanreduce(array, min)
        else:
            offset = min(array)

    # Compute timedelta object.
    # For np.datetime64, this can silently yield garbage due to overflow.
    # One option is to enforce 1970-01-01 as the universal offset.

    # This map_blocks call is for backwards compatibility.
    # dask == 2021.04.1 does not support subtracting object arrays
    # which is required for cftime
    if is_duck_dask_array(array) and dtypes.is_object(array.dtype):
        array = array.map_blocks(lambda a, b: a - b, offset, meta=array._meta)
    else:
        array = array - offset

    # Scalar is converted to 0d-array
    if not hasattr(array, "dtype"):
        array = np.array(array)

    # Convert timedelta objects to float by first converting to microseconds.
    if dtypes.is_object(array.dtype):
        return py_timedelta_to_float(array, datetime_unit or "ns").astype(dtype)

    # Convert np.NaT to np.nan
    elif dtypes.is_datetime_like(array.dtype):
        # Convert to specified timedelta units.
        if datetime_unit:
            array = array / np.timedelta64(1, datetime_unit)
        return np.where(isnull(array), np.nan, array.astype(dtype))


def timedelta_to_numeric(value, datetime_unit="ns", dtype=float):
    """Convert a timedelta-like object to numerical values.

    Parameters
    ----------
    value : datetime.timedelta, numpy.timedelta64, pandas.Timedelta, str
        Time delta representation.
    datetime_unit : {Y, M, W, D, h, m, s, ms, us, ns, ps, fs, as}
        The time units of the output values. Note that some conversions are not allowed due to
        non-linear relationships between units.
    dtype : type
        The output data type.

    """
    if isinstance(value, datetime.timedelta):
        out = py_timedelta_to_float(value, datetime_unit)
    elif isinstance(value, np.timedelta64):
        out = np_timedelta64_to_float(value, datetime_unit)
    elif isinstance(value, pd.Timedelta):
        out = pd_timedelta_to_float(value, datetime_unit)
    elif isinstance(value, str):
        try:
            a = pd.to_timedelta(value)
        except ValueError as err:
            raise ValueError(
                f"Could not convert {value!r} to timedelta64 using pandas.to_timedelta"
            ) from err
        return py_timedelta_to_float(a, datetime_unit)
    else:
        raise TypeError(
            f"Expected value of type str, pandas.Timedelta, datetime.timedelta "
            f"or numpy.timedelta64, but received {type(value).__name__}"
        )
    return out.astype(dtype)


def _to_pytimedelta(array, unit="us"):
    return array.astype(f"timedelta64[{unit}]").astype(datetime.timedelta)


def np_timedelta64_to_float(array, datetime_unit):
    """Convert numpy.timedelta64 to float, possibly at a loss of resolution."""
    unit, _ = np.datetime_data(array.dtype)
    conversion_factor = np.timedelta64(1, unit) / np.timedelta64(1, datetime_unit)
    return conversion_factor * array.astype(np.float64)


def pd_timedelta_to_float(value, datetime_unit):
    """Convert pandas.Timedelta to float.

    Notes
    -----
    Built on the assumption that pandas timedelta values are in nanoseconds,
    which is also the numpy default resolution.
    """
    value = value.to_timedelta64()
    return np_timedelta64_to_float(value, datetime_unit)


def _timedelta_to_seconds(array):
    if isinstance(array, datetime.timedelta):
        return array.total_seconds() * 1e6
    else:
        return np.reshape([a.total_seconds() for a in array.ravel()], array.shape) * 1e6


def py_timedelta_to_float(array, datetime_unit):
    """Convert a timedelta object to a float, possibly at a loss of resolution."""
    array = asarray(array)
    if is_duck_dask_array(array):
        array = array.map_blocks(
            _timedelta_to_seconds, meta=np.array([], dtype=np.float64)
        )
    else:
        array = _timedelta_to_seconds(array)
    conversion_factor = np.timedelta64(1, "us") / np.timedelta64(1, datetime_unit)
    return conversion_factor * array


def mean(array, axis=None, skipna=None, **kwargs):
    """inhouse mean that can handle np.datetime64 or cftime.datetime
    dtypes"""
    from xarray.core.common import _contains_cftime_datetimes

    array = asarray(array)
    if dtypes.is_datetime_like(array.dtype):
        dmin = _datetime_nanreduce(array, min).astype("datetime64[Y]").astype(int)
        dmax = _datetime_nanreduce(array, max).astype("datetime64[Y]").astype(int)
        offset = (
            np.array((dmin + dmax) // 2).astype("datetime64[Y]").astype(array.dtype)
        )
        # From version 2025.01.2 xarray uses np.datetime64[unit], where unit
        # is one of "s", "ms", "us", "ns".
        # To not have to worry about the resolution, we just convert the output
        # to "timedelta64" (without unit) and let the dtype of offset take precedence.
        # This is fully backwards compatible with datetime64[ns].
        return (
            _mean(
                datetime_to_numeric(array, offset), axis=axis, skipna=skipna, **kwargs
            ).astype("timedelta64")
            + offset
        )
    elif _contains_cftime_datetimes(array):
        offset = min(array)
        timedeltas = datetime_to_numeric(array, offset, datetime_unit="us")
        mean_timedeltas = _mean(timedeltas, axis=axis, skipna=skipna, **kwargs)
        return _to_pytimedelta(mean_timedeltas, unit="us") + offset
    else:
        return _mean(array, axis=axis, skipna=skipna, **kwargs)


mean.numeric_only = True  # type: ignore[attr-defined]


def _nd_cum_func(cum_func, array, axis, **kwargs):
    array = asarray(array)
    if axis is None:
        axis = tuple(range(array.ndim))
    if isinstance(axis, int):
        axis = (axis,)

    out = array
    for ax in axis:
        out = cum_func(out, axis=ax, **kwargs)
    return out


def ndim(array) -> int:
    # Required part of the duck array and the array-api, but we fall back in case
    # https://docs.xarray.dev/en/latest/internals/duck-arrays-integration.html#duck-array-requirements
    return array.ndim if hasattr(array, "ndim") else np.ndim(array)


def cumprod(array, axis=None, **kwargs):
    """N-dimensional version of cumprod."""
    return _nd_cum_func(cumprod_1d, array, axis, **kwargs)


def cumsum(array, axis=None, **kwargs):
    """N-dimensional version of cumsum."""
    return _nd_cum_func(cumsum_1d, array, axis, **kwargs)


def first(values, axis, skipna=None):
    """Return the first non-NA elements in this array along the given axis"""
    if (skipna or skipna is None) and not (
        dtypes.isdtype(values.dtype, "signed integer") or dtypes.is_string(values.dtype)
    ):
        # only bother for dtypes that can hold NaN
        if is_chunked_array(values):
            return chunked_nanfirst(values, axis)
        else:
            return nputils.nanfirst(values, axis)

    return take(values, 0, axis=axis)


def last(values, axis, skipna=None):
    """Return the last non-NA elements in this array along the given axis"""
    if (skipna or skipna is None) and not (
        dtypes.isdtype(values.dtype, "signed integer") or dtypes.is_string(values.dtype)
    ):
        # only bother for dtypes that can hold NaN
        if is_chunked_array(values):
            return chunked_nanlast(values, axis)
        else:
            return nputils.nanlast(values, axis)

    return take(values, -1, axis=axis)


def isin(element, test_elements, **kwargs):
    xp = get_array_namespace(element, test_elements)
    return xp.isin(element, test_elements, **kwargs)


def least_squares(lhs, rhs, rcond=None, skipna=False):
    """Return the coefficients and residuals of a least-squares fit."""
    if is_duck_dask_array(rhs):
        return dask_array_ops.least_squares(lhs, rhs, rcond=rcond, skipna=skipna)
    else:
        return nputils.least_squares(lhs, rhs, rcond=rcond, skipna=skipna)


def _push(array, n: int | None = None, axis: int = -1):
    """
    Use either bottleneck or numbagg depending on options & what's available
    """

    if not OPTIONS["use_bottleneck"] and not OPTIONS["use_numbagg"]:
        raise RuntimeError(
            "ffill & bfill requires bottleneck or numbagg to be enabled."
            " Call `xr.set_options(use_bottleneck=True)` or `xr.set_options(use_numbagg=True)` to enable one."
        )
    if OPTIONS["use_numbagg"] and module_available("numbagg"):
        import numbagg

        return numbagg.ffill(array, limit=n, axis=axis)

    # work around for bottleneck 178
    limit = n if n is not None else array.shape[axis]

    import bottleneck as bn

    return bn.push(array, limit, axis)


def push(array, n, axis, method="blelloch"):
    if not OPTIONS["use_bottleneck"] and not OPTIONS["use_numbagg"]:
        raise RuntimeError(
            "ffill & bfill requires bottleneck or numbagg to be enabled."
            " Call `xr.set_options(use_bottleneck=True)` or `xr.set_options(use_numbagg=True)` to enable one."
        )
    if is_duck_dask_array(array):
        return dask_array_ops.push(array, n, axis, method=method)
    else:
        return _push(array, n, axis)


def _first_last_wrapper(array, *, axis, op, keepdims):
    return op(array, axis, keepdims=keepdims)


def _chunked_first_or_last(darray, axis, op):
    chunkmanager = get_chunked_array_type(darray)

    # This will raise the same error message seen for numpy
    axis = normalize_axis_index(axis, darray.ndim)

    wrapped_op = partial(_first_last_wrapper, op=op)
    return chunkmanager.reduction(
        darray,
        func=wrapped_op,
        aggregate_func=wrapped_op,
        axis=axis,
        dtype=darray.dtype,
        keepdims=False,  # match numpy version
    )


def chunked_nanfirst(darray, axis):
    return _chunked_first_or_last(darray, axis, op=nputils.nanfirst)


def chunked_nanlast(darray, axis):
    return _chunked_first_or_last(darray, axis, op=nputils.nanlast)