1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
|
"""String formatting routines for __repr__."""
from __future__ import annotations
import contextlib
import functools
import math
from collections import ChainMap, defaultdict
from collections.abc import Collection, Hashable, Mapping, Sequence
from datetime import datetime, timedelta
from itertools import chain, zip_longest
from reprlib import recursive_repr
from textwrap import indent
from typing import TYPE_CHECKING, Any
import numpy as np
import pandas as pd
from pandas.errors import OutOfBoundsDatetime
from xarray.core.datatree_render import RenderDataTree
from xarray.core.duck_array_ops import array_all, array_any, array_equiv, astype, ravel
from xarray.core.extension_array import PandasExtensionArray
from xarray.core.indexing import (
BasicIndexer,
ExplicitlyIndexed,
MemoryCachedArray,
)
from xarray.core.options import OPTIONS, _get_boolean_with_default
from xarray.core.treenode import group_subtrees
from xarray.core.utils import is_duck_array
from xarray.namedarray.pycompat import array_type, to_duck_array
if TYPE_CHECKING:
from xarray.core.coordinates import AbstractCoordinates
from xarray.core.datatree import DataTree
from xarray.core.variable import Variable
UNITS = ("B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
def pretty_print(x, numchars: int):
"""Given an object `x`, call `str(x)` and format the returned string so
that it is numchars long, padding with trailing spaces or truncating with
ellipses as necessary
"""
s = maybe_truncate(x, numchars)
return s + " " * max(numchars - len(s), 0)
def maybe_truncate(obj, maxlen=500):
s = str(obj)
if len(s) > maxlen:
s = s[: (maxlen - 3)] + "..."
return s
def wrap_indent(text, start="", length=None):
if length is None:
length = len(start)
indent = "\n" + " " * length
return start + indent.join(x for x in text.splitlines())
def _get_indexer_at_least_n_items(shape, n_desired, from_end):
assert 0 < n_desired <= math.prod(shape)
cum_items = np.cumprod(shape[::-1])
n_steps = np.argmax(cum_items >= n_desired)
stop = math.ceil(float(n_desired) / np.r_[1, cum_items][n_steps])
indexer = (
((-1 if from_end else 0),) * (len(shape) - 1 - n_steps)
+ ((slice(-stop, None) if from_end else slice(stop)),)
+ (slice(None),) * n_steps
)
return indexer
def first_n_items(array, n_desired):
"""Returns the first n_desired items of an array"""
# Unfortunately, we can't just do array.flat[:n_desired] here because it
# might not be a numpy.ndarray. Moreover, access to elements of the array
# could be very expensive (e.g. if it's only available over DAP), so go out
# of our way to get them in a single call to __getitem__ using only slices.
from xarray.core.variable import Variable
if n_desired < 1:
raise ValueError("must request at least one item")
if array.size == 0:
# work around for https://github.com/numpy/numpy/issues/5195
return []
if n_desired < array.size:
indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=False)
if isinstance(array, ExplicitlyIndexed):
indexer = BasicIndexer(indexer)
array = array[indexer]
# We pass variable objects in to handle indexing
# with indexer above. It would not work with our
# lazy indexing classes at the moment, so we cannot
# pass Variable._data
if isinstance(array, Variable):
array = array._data
return ravel(to_duck_array(array))[:n_desired]
def last_n_items(array, n_desired):
"""Returns the last n_desired items of an array"""
# Unfortunately, we can't just do array.flat[-n_desired:] here because it
# might not be a numpy.ndarray. Moreover, access to elements of the array
# could be very expensive (e.g. if it's only available over DAP), so go out
# of our way to get them in a single call to __getitem__ using only slices.
from xarray.core.variable import Variable
if (n_desired == 0) or (array.size == 0):
return []
if n_desired < array.size:
indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=True)
if isinstance(array, ExplicitlyIndexed):
indexer = BasicIndexer(indexer)
array = array[indexer]
# We pass variable objects in to handle indexing
# with indexer above. It would not work with our
# lazy indexing classes at the moment, so we cannot
# pass Variable._data
if isinstance(array, Variable):
array = array._data
return ravel(to_duck_array(array))[-n_desired:]
def last_item(array):
"""Returns the last item of an array."""
indexer = (slice(-1, None),) * array.ndim
return ravel(to_duck_array(array[indexer]))
def calc_max_rows_first(max_rows: int) -> int:
"""Calculate the first rows to maintain the max number of rows."""
return max_rows // 2 + max_rows % 2
def calc_max_rows_last(max_rows: int) -> int:
"""Calculate the last rows to maintain the max number of rows."""
return max_rows // 2
def format_timestamp(t):
"""Cast given object to a Timestamp and return a nicely formatted string"""
try:
timestamp = pd.Timestamp(t)
datetime_str = timestamp.isoformat(sep=" ")
except OutOfBoundsDatetime:
datetime_str = str(t)
try:
date_str, time_str = datetime_str.split()
except ValueError:
# catch NaT and others that don't split nicely
return datetime_str
else:
if time_str == "00:00:00":
return date_str
else:
return f"{date_str}T{time_str}"
def format_timedelta(t, timedelta_format=None):
"""Cast given object to a Timestamp and return a nicely formatted string"""
timedelta_str = str(pd.Timedelta(t))
try:
days_str, time_str = timedelta_str.split(" days ")
except ValueError:
# catch NaT and others that don't split nicely
return timedelta_str
else:
if timedelta_format == "date":
return days_str + " days"
elif timedelta_format == "time":
return time_str
else:
return timedelta_str
def format_item(x, timedelta_format=None, quote_strings=True):
"""Returns a succinct summary of an object as a string"""
if isinstance(x, PandasExtensionArray):
# We want to bypass PandasExtensionArray's repr here
# because its __repr__ is PandasExtensionArray(array=[...])
# and this function is only for single elements.
return str(x.array[0])
if isinstance(x, np.datetime64 | datetime):
return format_timestamp(x)
if isinstance(x, np.timedelta64 | timedelta):
return format_timedelta(x, timedelta_format=timedelta_format)
elif isinstance(x, str | bytes):
if hasattr(x, "dtype"):
x = x.item()
return repr(x) if quote_strings else x
elif hasattr(x, "dtype") and np.issubdtype(x.dtype, np.floating) and x.shape == ():
return f"{x.item():.4}"
else:
return str(x)
def format_items(x):
"""Returns a succinct summaries of all items in a sequence as strings"""
x = to_duck_array(x)
timedelta_format = "datetime"
if not isinstance(x, PandasExtensionArray) and np.issubdtype(
x.dtype, np.timedelta64
):
x = astype(x, dtype="timedelta64[ns]")
day_part = x[~pd.isnull(x)].astype("timedelta64[D]").astype("timedelta64[ns]")
time_needed = x[~pd.isnull(x)] != day_part
day_needed = day_part != np.timedelta64(0, "ns")
if array_all(np.logical_not(day_needed)):
timedelta_format = "time"
elif array_all(np.logical_not(time_needed)):
timedelta_format = "date"
formatted = [format_item(xi, timedelta_format) for xi in x]
return formatted
def format_array_flat(array, max_width: int):
"""Return a formatted string for as many items in the flattened version of
array that will fit within max_width characters.
"""
# every item will take up at least two characters, but we always want to
# print at least first and last items
max_possibly_relevant = min(max(array.size, 1), max(math.ceil(max_width / 2.0), 2))
relevant_front_items = format_items(
first_n_items(array, (max_possibly_relevant + 1) // 2)
)
relevant_back_items = format_items(last_n_items(array, max_possibly_relevant // 2))
# interleave relevant front and back items:
# [a, b, c] and [y, z] -> [a, z, b, y, c]
relevant_items = sum(
zip_longest(relevant_front_items, reversed(relevant_back_items)), ()
)[:max_possibly_relevant]
cum_len = np.cumsum([len(s) + 1 for s in relevant_items]) - 1
if (array.size > 2) and (
(max_possibly_relevant < array.size) or array_any(cum_len > max_width)
):
padding = " ... "
max_len = max(int(np.argmax(cum_len + len(padding) - 1 > max_width)), 2)
count = min(array.size, max_len)
else:
count = array.size
padding = "" if (count <= 1) else " "
num_front = (count + 1) // 2
num_back = count - num_front
# note that num_back is 0 <--> array.size is 0 or 1
# <--> relevant_back_items is []
pprint_str = "".join(
[
" ".join(relevant_front_items[:num_front]),
padding,
" ".join(relevant_back_items[-num_back:]),
]
)
# As a final check, if it's still too long even with the limit in values,
# replace the end with an ellipsis
# NB: this will still returns a full 3-character ellipsis when max_width < 3
if len(pprint_str) > max_width:
pprint_str = pprint_str[: max(max_width - 3, 0)] + "..."
return pprint_str
# mapping of tuple[modulename, classname] to repr
_KNOWN_TYPE_REPRS = {
("numpy", "ndarray"): "np.ndarray",
("sparse._coo.core", "COO"): "sparse.COO",
}
def inline_dask_repr(array):
"""Similar to dask.array.DataArray.__repr__, but without
redundant information that's already printed by the repr
function of the xarray wrapper.
"""
assert isinstance(array, array_type("dask")), array
chunksize = tuple(c[0] for c in array.chunks)
if hasattr(array, "_meta"):
meta = array._meta
identifier = (type(meta).__module__, type(meta).__name__)
meta_repr = _KNOWN_TYPE_REPRS.get(identifier, ".".join(identifier))
meta_string = f", meta={meta_repr}"
else:
meta_string = ""
return f"dask.array<chunksize={chunksize}{meta_string}>"
def inline_sparse_repr(array):
"""Similar to sparse.COO.__repr__, but without the redundant shape/dtype."""
sparse_array_type = array_type("sparse")
assert isinstance(array, sparse_array_type), array
return f"<{type(array).__name__}: nnz={array.nnz:d}, fill_value={array.fill_value}>"
def inline_variable_array_repr(var, max_width):
"""Build a one-line summary of a variable's data."""
if hasattr(var._data, "_repr_inline_"):
return var._data._repr_inline_(max_width)
if getattr(var, "_in_memory", False):
return format_array_flat(var, max_width)
dask_array_type = array_type("dask")
if isinstance(var._data, dask_array_type):
return inline_dask_repr(var.data)
sparse_array_type = array_type("sparse")
if isinstance(var._data, sparse_array_type):
return inline_sparse_repr(var.data)
if hasattr(var._data, "__array_function__"):
return maybe_truncate(repr(var._data).replace("\n", " "), max_width)
# internal xarray array type
return "..."
def summarize_variable(
name: Hashable,
var: Variable,
col_width: int | None = None,
max_width: int | None = None,
is_index: bool = False,
):
"""Summarize a variable in one line, e.g., for the Dataset.__repr__."""
variable = getattr(var, "variable", var)
if max_width is None:
max_width_options = OPTIONS["display_width"]
if not isinstance(max_width_options, int):
raise TypeError(f"`max_width` value of `{max_width}` is not a valid int")
else:
max_width = max_width_options
marker = "*" if is_index else " "
first_col = f" {marker} {name} "
if col_width is not None:
first_col = pretty_print(first_col, col_width)
if variable.dims:
dims_str = ", ".join(map(str, variable.dims))
dims_str = f"({dims_str}) "
else:
dims_str = ""
front_str = f"{first_col}{dims_str}{variable.dtype} {render_human_readable_nbytes(variable.nbytes)} "
values_width = max_width - len(front_str)
values_str = inline_variable_array_repr(variable, values_width)
return f"{front_str}{values_str}"
def summarize_attr(key, value, col_width=None):
"""Summary for __repr__ - use ``X.attrs[key]`` for full value."""
# Indent key and add ':', then right-pad if col_width is not None
k_str = f" {key}:"
if col_width is not None:
k_str = pretty_print(k_str, col_width)
# Replace tabs and newlines, so we print on one line in known width
v_str = str(value).replace("\t", "\\t").replace("\n", "\\n")
# Finally, truncate to the desired display width
return maybe_truncate(f"{k_str} {v_str}", OPTIONS["display_width"])
EMPTY_REPR = " *empty*"
def _calculate_col_width(col_items):
max_name_length = max((len(str(s)) for s in col_items), default=0)
col_width = max(max_name_length, 7) + 6
return col_width
def _mapping_repr(
mapping,
title,
summarizer,
expand_option_name,
col_width=None,
max_rows=None,
indexes=None,
):
if col_width is None:
col_width = _calculate_col_width(mapping)
summarizer_kwargs = defaultdict(dict)
if indexes is not None:
summarizer_kwargs = {k: {"is_index": k in indexes} for k in mapping}
summary = [f"{title}:"]
if mapping:
len_mapping = len(mapping)
if not _get_boolean_with_default(expand_option_name, default=True):
summary = [f"{summary[0]} ({len_mapping})"]
elif max_rows is not None and len_mapping > max_rows:
summary = [f"{summary[0]} ({max_rows}/{len_mapping})"]
first_rows = calc_max_rows_first(max_rows)
keys = list(mapping.keys())
summary += [
summarizer(k, mapping[k], col_width, **summarizer_kwargs[k])
for k in keys[:first_rows]
]
if max_rows > 1:
last_rows = calc_max_rows_last(max_rows)
summary += [pretty_print(" ...", col_width) + " ..."]
summary += [
summarizer(k, mapping[k], col_width, **summarizer_kwargs[k])
for k in keys[-last_rows:]
]
else:
summary += [
summarizer(k, v, col_width, **summarizer_kwargs[k])
for k, v in mapping.items()
]
else:
summary += [EMPTY_REPR]
return "\n".join(summary)
data_vars_repr = functools.partial(
_mapping_repr,
title="Data variables",
summarizer=summarize_variable,
expand_option_name="display_expand_data_vars",
)
attrs_repr = functools.partial(
_mapping_repr,
title="Attributes",
summarizer=summarize_attr,
expand_option_name="display_expand_attrs",
)
def coords_repr(coords: AbstractCoordinates, col_width=None, max_rows=None):
if col_width is None:
col_width = _calculate_col_width(coords)
return _mapping_repr(
coords,
title="Coordinates",
summarizer=summarize_variable,
expand_option_name="display_expand_coords",
col_width=col_width,
indexes=coords.xindexes,
max_rows=max_rows,
)
def inherited_coords_repr(node: DataTree, col_width=None, max_rows=None):
coords = inherited_vars(node._coord_variables)
if col_width is None:
col_width = _calculate_col_width(coords)
return _mapping_repr(
coords,
title="Inherited coordinates",
summarizer=summarize_variable,
expand_option_name="display_expand_coords",
col_width=col_width,
indexes=node._indexes,
max_rows=max_rows,
)
def inline_index_repr(index: pd.Index, max_width: int) -> str:
if hasattr(index, "_repr_inline_"):
repr_ = index._repr_inline_(max_width=max_width)
else:
# fallback for the `pandas.Index` subclasses from
# `Indexes.get_pandas_indexes` / `xr_obj.indexes`
repr_ = repr(index)
return repr_
def summarize_index(
names: tuple[Hashable, ...],
index,
col_width: int,
max_width: int | None = None,
) -> str:
if max_width is None:
max_width = OPTIONS["display_width"]
def prefixes(length: int) -> list[str]:
if length in (0, 1):
return [" "]
return ["┌"] + ["│"] * max(length - 2, 0) + ["└"]
preformatted = [
pretty_print(f" {prefix} {name}", col_width)
for prefix, name in zip(prefixes(len(names)), names, strict=True)
]
head, *tail = preformatted
index_width = max_width - len(head)
repr_ = inline_index_repr(index, max_width=index_width)
return "\n".join([head + repr_] + [line.rstrip() for line in tail])
def filter_nondefault_indexes(indexes, filter_indexes: bool):
from xarray.core.indexes import PandasIndex, PandasMultiIndex
if not filter_indexes:
return indexes
default_indexes = (PandasIndex, PandasMultiIndex)
return {
key: index
for key, index in indexes.items()
if not isinstance(index, default_indexes)
}
def indexes_repr(indexes, max_rows: int | None = None, title: str = "Indexes") -> str:
col_width = _calculate_col_width(chain.from_iterable(indexes))
return _mapping_repr(
indexes,
title,
summarize_index,
"display_expand_indexes",
col_width=col_width,
max_rows=max_rows,
)
def dim_summary(obj):
elements = [f"{k}: {v}" for k, v in obj.sizes.items()]
return ", ".join(elements)
def _element_formatter(
elements: Collection[Hashable],
col_width: int,
max_rows: int | None = None,
delimiter: str = ", ",
) -> str:
"""
Formats elements for better readability.
Once it becomes wider than the display width it will create a newline and
continue indented to col_width.
Once there are more rows than the maximum displayed rows it will start
removing rows.
Parameters
----------
elements : Collection of hashable
Elements to join together.
col_width : int
The width to indent to if a newline has been made.
max_rows : int, optional
The maximum number of allowed rows. The default is None.
delimiter : str, optional
Delimiter to use between each element. The default is ", ".
"""
elements_len = len(elements)
out = [""]
length_row = 0
for i, v in enumerate(elements):
delim = delimiter if i < elements_len - 1 else ""
v_delim = f"{v}{delim}"
length_element = len(v_delim)
length_row += length_element
# Create a new row if the next elements makes the print wider than
# the maximum display width:
if col_width + length_row > OPTIONS["display_width"]:
out[-1] = out[-1].rstrip() # Remove trailing whitespace.
out.append("\n" + pretty_print("", col_width) + v_delim)
length_row = length_element
else:
out[-1] += v_delim
# If there are too many rows of dimensions trim some away:
if max_rows and (len(out) > max_rows):
first_rows = calc_max_rows_first(max_rows)
last_rows = calc_max_rows_last(max_rows)
out = (
out[:first_rows]
+ ["\n" + pretty_print("", col_width) + "..."]
+ (out[-last_rows:] if max_rows > 1 else [])
)
return "".join(out)
def dim_summary_limited(
sizes: Mapping[Any, int], col_width: int, max_rows: int | None = None
) -> str:
elements = [f"{k}: {v}" for k, v in sizes.items()]
return _element_formatter(elements, col_width, max_rows)
def unindexed_dims_repr(dims, coords, max_rows: int | None = None):
unindexed_dims = [d for d in dims if d not in coords]
if unindexed_dims:
dims_start = "Dimensions without coordinates: "
dims_str = _element_formatter(
unindexed_dims, col_width=len(dims_start), max_rows=max_rows
)
return dims_start + dims_str
else:
return None
@contextlib.contextmanager
def set_numpy_options(*args, **kwargs):
original = np.get_printoptions()
np.set_printoptions(*args, **kwargs)
try:
yield
finally:
np.set_printoptions(**original)
def limit_lines(string: str, *, limit: int):
"""
If the string is more lines than the limit,
this returns the middle lines replaced by an ellipsis
"""
lines = string.splitlines()
if len(lines) > limit:
string = "\n".join(chain(lines[: limit // 2], ["..."], lines[-limit // 2 :]))
return string
def short_array_repr(array):
from xarray.core.common import AbstractArray
if isinstance(array, AbstractArray):
array = array.data
if isinstance(array, pd.api.extensions.ExtensionArray):
return repr(array)
array = to_duck_array(array)
# default to lower precision so a full (abbreviated) line can fit on
# one line with the default display_width
options = {
"precision": 6,
"linewidth": OPTIONS["display_width"],
"threshold": OPTIONS["display_values_threshold"],
}
if array.ndim < 3:
edgeitems = 3
elif array.ndim == 3:
edgeitems = 2
else:
edgeitems = 1
options["edgeitems"] = edgeitems
with set_numpy_options(**options):
return repr(array)
def short_data_repr(array):
"""Format "data" for DataArray and Variable."""
internal_data = getattr(array, "variable", array)._data
if isinstance(array, np.ndarray):
return short_array_repr(array)
elif is_duck_array(internal_data):
return limit_lines(repr(array.data), limit=40)
elif getattr(array, "_in_memory", None):
return short_array_repr(array)
else:
# internal xarray array type
return f"[{array.size} values with dtype={array.dtype}]"
def _get_indexes_dict(indexes):
return {
tuple(index_vars.keys()): idx for idx, index_vars in indexes.group_by_index()
}
@recursive_repr("<recursive array>")
def array_repr(arr):
from xarray.core.variable import Variable
max_rows = OPTIONS["display_max_rows"]
# used for DataArray, Variable and IndexVariable
if hasattr(arr, "name") and arr.name is not None:
name_str = f"{arr.name!r} "
else:
name_str = ""
if (
isinstance(arr, Variable)
or _get_boolean_with_default("display_expand_data", default=True)
or isinstance(arr.variable._data, MemoryCachedArray)
):
data_repr = short_data_repr(arr)
else:
data_repr = inline_variable_array_repr(arr.variable, OPTIONS["display_width"])
start = f"<xarray.{type(arr).__name__} {name_str}"
dims = dim_summary_limited(arr.sizes, col_width=len(start) + 1, max_rows=max_rows)
nbytes_str = render_human_readable_nbytes(arr.nbytes)
summary = [
f"{start}({dims})> Size: {nbytes_str}",
data_repr,
]
if hasattr(arr, "coords"):
if arr.coords:
col_width = _calculate_col_width(arr.coords)
summary.append(
coords_repr(arr.coords, col_width=col_width, max_rows=max_rows)
)
unindexed_dims_str = unindexed_dims_repr(
arr.dims, arr.coords, max_rows=max_rows
)
if unindexed_dims_str:
summary.append(unindexed_dims_str)
display_default_indexes = _get_boolean_with_default(
"display_default_indexes", False
)
xindexes = filter_nondefault_indexes(
_get_indexes_dict(arr.xindexes), not display_default_indexes
)
if xindexes:
summary.append(indexes_repr(xindexes, max_rows=max_rows))
if arr.attrs:
summary.append(attrs_repr(arr.attrs, max_rows=max_rows))
return "\n".join(summary)
@recursive_repr("<recursive Dataset>")
def dataset_repr(ds):
nbytes_str = render_human_readable_nbytes(ds.nbytes)
summary = [f"<xarray.{type(ds).__name__}> Size: {nbytes_str}"]
col_width = _calculate_col_width(ds.variables)
max_rows = OPTIONS["display_max_rows"]
dims_start = pretty_print("Dimensions:", col_width)
dims_values = dim_summary_limited(
ds.sizes, col_width=col_width + 1, max_rows=max_rows
)
summary.append(f"{dims_start}({dims_values})")
if ds.coords:
summary.append(coords_repr(ds.coords, col_width=col_width, max_rows=max_rows))
unindexed_dims_str = unindexed_dims_repr(ds.dims, ds.coords, max_rows=max_rows)
if unindexed_dims_str:
summary.append(unindexed_dims_str)
summary.append(data_vars_repr(ds.data_vars, col_width=col_width, max_rows=max_rows))
display_default_indexes = _get_boolean_with_default(
"display_default_indexes", False
)
xindexes = filter_nondefault_indexes(
_get_indexes_dict(ds.xindexes), not display_default_indexes
)
if xindexes:
summary.append(indexes_repr(xindexes, max_rows=max_rows))
if ds.attrs:
summary.append(attrs_repr(ds.attrs, max_rows=max_rows))
return "\n".join(summary)
def dims_and_coords_repr(ds) -> str:
"""Partial Dataset repr for use inside DataTree inheritance errors."""
summary = []
col_width = _calculate_col_width(ds.coords)
max_rows = OPTIONS["display_max_rows"]
dims_start = pretty_print("Dimensions:", col_width)
dims_values = dim_summary_limited(
ds.sizes, col_width=col_width + 1, max_rows=max_rows
)
summary.append(f"{dims_start}({dims_values})")
if ds.coords:
summary.append(coords_repr(ds.coords, col_width=col_width, max_rows=max_rows))
unindexed_dims_str = unindexed_dims_repr(ds.dims, ds.coords, max_rows=max_rows)
if unindexed_dims_str:
summary.append(unindexed_dims_str)
return "\n".join(summary)
def diff_name_summary(a, b) -> str:
if a.name != b.name:
return f"Differing names:\n {a.name!r} != {b.name!r}"
else:
return ""
def diff_dim_summary(a, b) -> str:
if a.sizes != b.sizes:
return f"Differing dimensions:\n ({dim_summary(a)}) != ({dim_summary(b)})"
else:
return ""
def _diff_mapping_repr(
a_mapping,
b_mapping,
compat,
title,
summarizer,
col_width=None,
a_indexes=None,
b_indexes=None,
):
def compare_attr(a, b):
if is_duck_array(a) or is_duck_array(b):
return array_equiv(a, b)
else:
return a == b
def extra_items_repr(extra_keys, mapping, ab_side, kwargs):
extra_repr = [
summarizer(k, mapping[k], col_width, **kwargs[k]) for k in extra_keys
]
if extra_repr:
header = f"{title} only on the {ab_side} object:"
return [header] + extra_repr
else:
return []
a_keys = set(a_mapping)
b_keys = set(b_mapping)
summary = []
diff_items = []
a_summarizer_kwargs = defaultdict(dict)
if a_indexes is not None:
a_summarizer_kwargs = {k: {"is_index": k in a_indexes} for k in a_mapping}
b_summarizer_kwargs = defaultdict(dict)
if b_indexes is not None:
b_summarizer_kwargs = {k: {"is_index": k in b_indexes} for k in b_mapping}
for k in a_keys & b_keys:
try:
# compare xarray variable
if not callable(compat):
compatible = getattr(a_mapping[k].variable, compat)(
b_mapping[k].variable
)
else:
compatible = compat(a_mapping[k].variable, b_mapping[k].variable)
is_variable = True
except AttributeError:
# compare attribute value
compatible = compare_attr(a_mapping[k], b_mapping[k])
is_variable = False
if not compatible:
temp = [
summarizer(k, a_mapping[k], col_width, **a_summarizer_kwargs[k]),
summarizer(k, b_mapping[k], col_width, **b_summarizer_kwargs[k]),
]
if compat == "identical" and is_variable:
attrs_summary = []
a_attrs = a_mapping[k].attrs
b_attrs = b_mapping[k].attrs
attrs_to_print = set(a_attrs) ^ set(b_attrs)
attrs_to_print.update(
{
k
for k in set(a_attrs) & set(b_attrs)
if not compare_attr(a_attrs[k], b_attrs[k])
}
)
for m in (a_mapping, b_mapping):
attr_s = "\n".join(
" " + summarize_attr(ak, av)
for ak, av in m[k].attrs.items()
if ak in attrs_to_print
)
if attr_s:
attr_s = " Differing variable attributes:\n" + attr_s
attrs_summary.append(attr_s)
temp = [
f"{var_s}\n{attr_s}" if attr_s else var_s
for var_s, attr_s in zip(temp, attrs_summary, strict=True)
]
# TODO: It should be possible recursively use _diff_mapping_repr
# instead of explicitly handling variable attrs specially.
# That would require some refactoring.
# newdiff = _diff_mapping_repr(
# {k: v for k,v in a_attrs.items() if k in attrs_to_print},
# {k: v for k,v in b_attrs.items() if k in attrs_to_print},
# compat=compat,
# summarizer=summarize_attr,
# title="Variable Attributes"
# )
# temp += [newdiff]
diff_items += [
ab_side + s[1:] for ab_side, s in zip(("L", "R"), temp, strict=True)
]
if diff_items:
summary += [f"Differing {title.lower()}:"] + diff_items
summary += extra_items_repr(a_keys - b_keys, a_mapping, "left", a_summarizer_kwargs)
summary += extra_items_repr(
b_keys - a_keys, b_mapping, "right", b_summarizer_kwargs
)
return "\n".join(summary)
def diff_coords_repr(a, b, compat, col_width=None):
return _diff_mapping_repr(
a,
b,
compat,
"Coordinates",
summarize_variable,
col_width=col_width,
a_indexes=a.xindexes,
b_indexes=b.xindexes,
)
diff_data_vars_repr = functools.partial(
_diff_mapping_repr, title="Data variables", summarizer=summarize_variable
)
diff_attrs_repr = functools.partial(
_diff_mapping_repr, title="Attributes", summarizer=summarize_attr
)
def _compat_to_str(compat):
if callable(compat):
compat = compat.__name__
if compat == "equals":
return "equal"
elif compat == "allclose":
return "close"
else:
return compat
def diff_array_repr(a, b, compat):
# used for DataArray, Variable and IndexVariable
summary = [
f"Left and right {type(a).__name__} objects are not {_compat_to_str(compat)}"
]
if dims_diff := diff_dim_summary(a, b):
summary.append(dims_diff)
if callable(compat):
equiv = compat
else:
equiv = array_equiv
if not equiv(a.data, b.data):
temp = [wrap_indent(short_array_repr(obj), start=" ") for obj in (a, b)]
diff_data_repr = [
ab_side + "\n" + ab_data_repr
for ab_side, ab_data_repr in zip(("L", "R"), temp, strict=True)
]
summary += ["Differing values:"] + diff_data_repr
if hasattr(a, "coords"):
col_width = _calculate_col_width(set(a.coords) | set(b.coords))
if coords_diff := diff_coords_repr(
a.coords, b.coords, compat, col_width=col_width
):
summary.append(coords_diff)
if compat == "identical" and (
attrs_diff := diff_attrs_repr(a.attrs, b.attrs, compat)
):
summary.append(attrs_diff)
return "\n".join(summary)
def diff_treestructure(a: DataTree, b: DataTree) -> str | None:
"""
Return a summary of why two trees are not isomorphic.
If they are isomorphic return None.
"""
# .group_subtrees walks nodes in breadth-first-order, in order to produce as
# shallow of a diff as possible
for path, (node_a, node_b) in group_subtrees(a, b):
if node_a.children.keys() != node_b.children.keys():
path_str = "root node" if path == "." else f"node {path!r}"
child_summary = f"{list(node_a.children)} vs {list(node_b.children)}"
diff = f"Children at {path_str} do not match: {child_summary}"
return diff
return None
def diff_dataset_repr(a, b, compat):
summary = [
f"Left and right {type(a).__name__} objects are not {_compat_to_str(compat)}"
]
col_width = _calculate_col_width(set(list(a.variables) + list(b.variables)))
if dims_diff := diff_dim_summary(a, b):
summary.append(dims_diff)
if coords_diff := diff_coords_repr(a.coords, b.coords, compat, col_width=col_width):
summary.append(coords_diff)
if data_diff := diff_data_vars_repr(
a.data_vars, b.data_vars, compat, col_width=col_width
):
summary.append(data_diff)
if compat == "identical" and (
attrs_diff := diff_attrs_repr(a.attrs, b.attrs, compat)
):
summary.append(attrs_diff)
return "\n".join(summary)
def diff_nodewise_summary(a: DataTree, b: DataTree, compat):
"""Iterates over all corresponding nodes, recording differences between data at each location."""
summary = []
for path, (node_a, node_b) in group_subtrees(a, b):
a_ds, b_ds = node_a.dataset, node_b.dataset
if not a_ds._all_compat(b_ds, compat):
path_str = "root node" if path == "." else f"node {path!r}"
dataset_diff = diff_dataset_repr(a_ds, b_ds, compat)
data_diff = indent(
"\n".join(dataset_diff.split("\n", 1)[1:]), prefix=" "
)
nodediff = f"Data at {path_str} does not match:\n{data_diff}"
summary.append(nodediff)
return "\n\n".join(summary)
def diff_datatree_repr(a: DataTree, b: DataTree, compat):
summary = [
f"Left and right {type(a).__name__} objects are not {_compat_to_str(compat)}"
]
if compat == "identical" and (diff_name := diff_name_summary(a, b)):
summary.append(diff_name)
treestructure_diff = diff_treestructure(a, b)
# If the trees structures are different there is no point comparing each node,
# and doing so would raise an error.
# TODO we could show any differences in nodes up to the first place that structure differs?
if treestructure_diff is not None:
summary.append(treestructure_diff)
elif compat != "isomorphic":
nodewise_diff = diff_nodewise_summary(a, b, compat)
summary.append(nodewise_diff)
return "\n\n".join(summary)
def inherited_vars(mapping: ChainMap) -> dict:
return {k: v for k, v in mapping.parents.items() if k not in mapping.maps[0]}
def _datatree_node_repr(node: DataTree, show_inherited: bool) -> str:
summary = [f"Group: {node.path}"]
col_width = _calculate_col_width(node.variables)
max_rows = OPTIONS["display_max_rows"]
inherited_coords = inherited_vars(node._coord_variables)
# Only show dimensions if also showing a variable or coordinates section.
show_dims = (
node._node_coord_variables
or (show_inherited and inherited_coords)
or node._data_variables
)
dim_sizes = node.sizes if show_inherited else node._node_dims
if show_dims:
# Includes inherited dimensions.
dims_start = pretty_print("Dimensions:", col_width)
dims_values = dim_summary_limited(
dim_sizes, col_width=col_width + 1, max_rows=max_rows
)
summary.append(f"{dims_start}({dims_values})")
if node._node_coord_variables:
node_coords = node.to_dataset(inherit=False).coords
summary.append(coords_repr(node_coords, col_width=col_width, max_rows=max_rows))
if show_inherited and inherited_coords:
summary.append(
inherited_coords_repr(node, col_width=col_width, max_rows=max_rows)
)
if show_dims:
unindexed_dims_str = unindexed_dims_repr(
dim_sizes, node.coords, max_rows=max_rows
)
if unindexed_dims_str:
summary.append(unindexed_dims_str)
if node._data_variables:
summary.append(
data_vars_repr(node._data_variables, col_width=col_width, max_rows=max_rows)
)
# TODO: only show indexes defined at this node, with a separate section for
# inherited indexes (if show_inherited=True)
display_default_indexes = _get_boolean_with_default(
"display_default_indexes", False
)
xindexes = filter_nondefault_indexes(
_get_indexes_dict(node.xindexes), not display_default_indexes
)
if xindexes:
summary.append(indexes_repr(xindexes, max_rows=max_rows))
if node.attrs:
summary.append(attrs_repr(node.attrs, max_rows=max_rows))
return "\n".join(summary)
def datatree_repr(dt: DataTree) -> str:
"""A printable representation of the structure of this entire tree."""
max_children = OPTIONS["display_max_children"]
renderer = RenderDataTree(dt, maxchildren=max_children)
name_info = "" if dt.name is None else f" {dt.name!r}"
header = f"<xarray.DataTree{name_info}>"
lines = [header]
show_inherited = True
for pre, fill, node in renderer:
if isinstance(node, str):
lines.append(f"{fill}{node}")
continue
node_repr = _datatree_node_repr(node, show_inherited=show_inherited)
show_inherited = False # only show inherited coords on the root
raw_repr_lines = node_repr.splitlines()
node_line = f"{pre}{raw_repr_lines[0]}"
lines.append(node_line)
for line in raw_repr_lines[1:]:
if len(node.children) > 0:
lines.append(f"{fill}{renderer.style.vertical}{line}")
else:
lines.append(f"{fill}{' ' * len(renderer.style.vertical)}{line}")
return "\n".join(lines)
def shorten_list_repr(items: Sequence, max_items: int) -> str:
if len(items) <= max_items:
return repr(items)
else:
first_half = repr(items[: max_items // 2])[
1:-1
] # Convert to string and remove brackets
second_half = repr(items[-max_items // 2 :])[
1:-1
] # Convert to string and remove brackets
return f"[{first_half}, ..., {second_half}]"
def render_human_readable_nbytes(
nbytes: int,
/,
*,
attempt_constant_width: bool = False,
) -> str:
"""Renders simple human-readable byte count representation
This is only a quick representation that should not be relied upon for precise needs.
To get the exact byte count, please use the ``nbytes`` attribute directly.
Parameters
----------
nbytes
Byte count
attempt_constant_width
For reasonable nbytes sizes, tries to render a fixed-width representation.
Returns
-------
Human-readable representation of the byte count
"""
dividend = float(nbytes)
divisor = 1000.0
last_unit_available = UNITS[-1]
for unit in UNITS:
if dividend < divisor or unit == last_unit_available:
break
dividend /= divisor
dividend_str = f"{dividend:.0f}"
unit_str = f"{unit}"
if attempt_constant_width:
dividend_str = dividend_str.rjust(3)
unit_str = unit_str.ljust(2)
string = f"{dividend_str}{unit_str}"
return string
|