1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
|
from __future__ import annotations
import copy
import functools
import itertools
import warnings
from collections.abc import Callable, Hashable, Iterator, Mapping, Sequence
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Generic, Literal, Union, cast
import numpy as np
import pandas as pd
from packaging.version import Version
from xarray.computation import ops
from xarray.computation.arithmetic import (
DataArrayGroupbyArithmetic,
DatasetGroupbyArithmetic,
)
from xarray.core import dtypes, duck_array_ops, nputils
from xarray.core._aggregations import (
DataArrayGroupByAggregations,
DatasetGroupByAggregations,
)
from xarray.core.common import ImplementsArrayReduce, ImplementsDatasetReduce
from xarray.core.coordinates import Coordinates, coordinates_from_variable
from xarray.core.duck_array_ops import where
from xarray.core.formatting import format_array_flat
from xarray.core.indexes import (
PandasMultiIndex,
filter_indexes_from_coords,
)
from xarray.core.options import OPTIONS, _get_keep_attrs
from xarray.core.types import (
Dims,
QuantileMethods,
T_DataArray,
T_DataWithCoords,
T_Xarray,
)
from xarray.core.utils import (
FrozenMappingWarningOnValuesAccess,
contains_only_chunked_or_numpy,
either_dict_or_kwargs,
emit_user_level_warning,
hashable,
is_scalar,
maybe_wrap_array,
module_available,
peek_at,
)
from xarray.core.variable import IndexVariable, Variable
from xarray.namedarray.pycompat import is_chunked_array
from xarray.structure.alignment import align, broadcast
from xarray.structure.concat import concat
from xarray.structure.merge import merge_coords
if TYPE_CHECKING:
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import (
GroupIndex,
GroupIndices,
GroupInput,
GroupKey,
T_Chunks,
)
from xarray.core.utils import Frozen
from xarray.groupers import EncodedGroups, Grouper
def check_reduce_dims(reduce_dims, dimensions):
if reduce_dims is not ...:
if is_scalar(reduce_dims):
reduce_dims = [reduce_dims]
if any(dim not in dimensions for dim in reduce_dims):
raise ValueError(
f"cannot reduce over dimensions {reduce_dims!r}. expected either '...' "
f"to reduce over all dimensions or one or more of {dimensions!r}. "
f"Alternatively, install the `flox` package. "
)
def _codes_to_group_indices(codes: np.ndarray, N: int) -> GroupIndices:
"""Converts integer codes for groups to group indices."""
assert codes.ndim == 1
groups: GroupIndices = tuple([] for _ in range(N))
for n, g in enumerate(codes):
if g >= 0:
groups[g].append(n)
return groups
def _dummy_copy(xarray_obj):
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
if isinstance(xarray_obj, Dataset):
res = Dataset(
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.data_vars.items()
},
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.coords.items()
if k not in xarray_obj.dims
},
xarray_obj.attrs,
)
elif isinstance(xarray_obj, DataArray):
res = DataArray(
dtypes.get_fill_value(xarray_obj.dtype),
{
k: dtypes.get_fill_value(v.dtype)
for k, v in xarray_obj.coords.items()
if k not in xarray_obj.dims
},
dims=[],
name=xarray_obj.name,
attrs=xarray_obj.attrs,
)
else: # pragma: no cover
raise AssertionError
return res
def _is_one_or_none(obj) -> bool:
return obj == 1 or obj is None
def _consolidate_slices(slices: list[slice]) -> list[slice]:
"""Consolidate adjacent slices in a list of slices."""
result: list[slice] = []
last_slice = slice(None)
for slice_ in slices:
if not isinstance(slice_, slice):
raise ValueError(f"list element is not a slice: {slice_!r}")
if (
result
and last_slice.stop == slice_.start
and _is_one_or_none(last_slice.step)
and _is_one_or_none(slice_.step)
):
last_slice = slice(last_slice.start, slice_.stop, slice_.step)
result[-1] = last_slice
else:
result.append(slice_)
last_slice = slice_
return result
def _inverse_permutation_indices(positions, N: int | None = None) -> np.ndarray | None:
"""Like inverse_permutation, but also handles slices.
Parameters
----------
positions : list of ndarray or slice
If slice objects, all are assumed to be slices.
Returns
-------
np.ndarray of indices or None, if no permutation is necessary.
"""
if not positions:
return None
if isinstance(positions[0], slice):
positions = _consolidate_slices(positions)
if positions == slice(None):
return None
positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions]
newpositions = nputils.inverse_permutation(np.concatenate(positions), N)
return newpositions[newpositions != -1]
class _DummyGroup(Generic[T_Xarray]):
"""Class for keeping track of grouped dimensions without coordinates.
Should not be user visible.
"""
__slots__ = ("coords", "dataarray", "name", "size")
def __init__(self, obj: T_Xarray, name: Hashable, coords) -> None:
self.name = name
self.coords = coords
self.size = obj.sizes[name]
@property
def dims(self) -> tuple[Hashable]:
return (self.name,)
@property
def ndim(self) -> Literal[1]:
return 1
@property
def values(self) -> range:
return range(self.size)
@property
def data(self) -> np.ndarray:
return np.arange(self.size, dtype=int)
def __array__(
self, dtype: np.typing.DTypeLike = None, /, *, copy: bool | None = None
) -> np.ndarray:
if copy is False:
raise NotImplementedError(f"An array copy is necessary, got {copy = }.")
return np.arange(self.size)
@property
def shape(self) -> tuple[int, ...]:
return (self.size,)
@property
def attrs(self) -> dict:
return {}
def __getitem__(self, key):
if isinstance(key, tuple):
(key,) = key
return self.values[key]
def to_index(self) -> pd.Index:
# could be pd.RangeIndex?
return pd.Index(np.arange(self.size))
def copy(self, deep: bool = True, data: Any = None):
raise NotImplementedError
def to_dataarray(self) -> DataArray:
from xarray.core.dataarray import DataArray
return DataArray(
data=self.data, dims=(self.name,), coords=self.coords, name=self.name
)
def to_array(self) -> DataArray:
"""Deprecated version of to_dataarray."""
return self.to_dataarray()
T_Group = Union["T_DataArray", _DummyGroup]
def _ensure_1d(
group: T_Group, obj: T_DataWithCoords
) -> tuple[
T_Group,
T_DataWithCoords,
Hashable | None,
list[Hashable],
]:
# 1D cases: do nothing
if isinstance(group, _DummyGroup) or group.ndim == 1:
return group, obj, None, []
from xarray.core.dataarray import DataArray
if isinstance(group, DataArray):
for dim in set(group.dims) - set(obj.dims):
obj = obj.expand_dims(dim)
# try to stack the dims of the group into a single dim
orig_dims = group.dims
stacked_dim = "stacked_" + "_".join(map(str, orig_dims))
# these dimensions get created by the stack operation
inserted_dims = [dim for dim in group.dims if dim not in group.coords]
# `newgroup` construction is optimized so we don't create an index unnecessarily,
# or stack any non-dim coords unnecessarily
newgroup = DataArray(group.variable.stack({stacked_dim: orig_dims}))
newobj = obj.stack({stacked_dim: orig_dims})
return newgroup, newobj, stacked_dim, inserted_dims
raise TypeError(f"group must be DataArray or _DummyGroup, got {type(group)!r}.")
@dataclass
class ResolvedGrouper(Generic[T_DataWithCoords]):
"""
Wrapper around a Grouper object.
The Grouper object represents an abstract instruction to group an object.
The ResolvedGrouper object is a concrete version that contains all the common
logic necessary for a GroupBy problem including the intermediates necessary for
executing a GroupBy calculation. Specialization to the grouping problem at hand,
is accomplished by calling the `factorize` method on the encapsulated Grouper
object.
This class is private API, while Groupers are public.
"""
grouper: Grouper
group: T_Group
obj: T_DataWithCoords
eagerly_compute_group: Literal[False] | None = field(repr=False, default=None)
# returned by factorize:
encoded: EncodedGroups = field(init=False, repr=False)
@property
def full_index(self) -> pd.Index:
return self.encoded.full_index
@property
def codes(self) -> DataArray:
return self.encoded.codes
@property
def unique_coord(self) -> Variable | _DummyGroup:
return self.encoded.unique_coord
def __post_init__(self) -> None:
# This copy allows the BinGrouper.factorize() method
# to update BinGrouper.bins when provided as int, using the output
# of pd.cut
# We do not want to modify the original object, since the same grouper
# might be used multiple times.
from xarray.groupers import BinGrouper, UniqueGrouper
self.grouper = copy.deepcopy(self.grouper)
self.group = _resolve_group(self.obj, self.group)
if self.eagerly_compute_group:
raise ValueError(
f""""Eagerly computing the DataArray you're grouping by ({self.group.name!r}) "
has been removed.
Please load this array's data manually using `.compute` or `.load`.
To intentionally avoid eager loading, either (1) specify
`.groupby({self.group.name}=UniqueGrouper(labels=...))`
or (2) pass explicit bin edges using ``bins`` or
`.groupby({self.group.name}=BinGrouper(bins=...))`; as appropriate."""
)
if self.eagerly_compute_group is not None:
emit_user_level_warning(
"Passing `eagerly_compute_group` is now deprecated. It has no effect.",
DeprecationWarning,
)
if not isinstance(self.group, _DummyGroup) and is_chunked_array(
self.group.variable._data
):
# This requires a pass to discover the groups present
if isinstance(self.grouper, UniqueGrouper) and self.grouper.labels is None:
raise ValueError(
"Please pass `labels` to UniqueGrouper when grouping by a chunked array."
)
# this requires a pass to compute the bin edges
if isinstance(self.grouper, BinGrouper) and isinstance(
self.grouper.bins, int
):
raise ValueError(
"Please pass explicit bin edges to BinGrouper using the ``bins`` kwarg"
"when grouping by a chunked array."
)
self.encoded = self.grouper.factorize(self.group)
@property
def name(self) -> Hashable:
"""Name for the grouped coordinate after reduction."""
# the name has to come from unique_coord because we need `_bins` suffix for BinGrouper
(name,) = self.encoded.unique_coord.dims
return name
@property
def size(self) -> int:
"""Number of groups."""
return len(self)
def __len__(self) -> int:
"""Number of groups."""
return len(self.encoded.full_index)
def _parse_group_and_groupers(
obj: T_Xarray,
group: GroupInput,
groupers: dict[str, Grouper],
*,
eagerly_compute_group: Literal[False] | None,
) -> tuple[ResolvedGrouper, ...]:
from xarray.core.dataarray import DataArray
from xarray.core.variable import Variable
from xarray.groupers import Grouper, UniqueGrouper
if group is not None and groupers:
raise ValueError(
"Providing a combination of `group` and **groupers is not supported."
)
if group is None and not groupers:
raise ValueError("Either `group` or `**groupers` must be provided.")
if isinstance(group, np.ndarray | pd.Index):
raise TypeError(
f"`group` must be a DataArray. Received {type(group).__name__!r} instead"
)
if isinstance(group, Grouper):
raise TypeError(
"Cannot group by a Grouper object. "
f"Instead use `.groupby(var_name={type(group).__name__}(...))`. "
"You may need to assign the variable you're grouping by as a coordinate using `assign_coords`."
)
if isinstance(group, Mapping):
grouper_mapping = either_dict_or_kwargs(group, groupers, "groupby")
group = None
rgroupers: tuple[ResolvedGrouper, ...]
if isinstance(group, DataArray | Variable):
rgroupers = (
ResolvedGrouper(
UniqueGrouper(), group, obj, eagerly_compute_group=eagerly_compute_group
),
)
else:
if group is not None:
if TYPE_CHECKING:
assert isinstance(group, str | Sequence)
group_iter: Sequence[Hashable] = (
(group,) if isinstance(group, str) else group
)
grouper_mapping = {g: UniqueGrouper() for g in group_iter}
elif groupers:
grouper_mapping = cast("Mapping[Hashable, Grouper]", groupers)
rgroupers = tuple(
ResolvedGrouper(
grouper, group, obj, eagerly_compute_group=eagerly_compute_group
)
for group, grouper in grouper_mapping.items()
)
return rgroupers
def _validate_groupby_squeeze(squeeze: Literal[False]) -> None:
# While we don't generally check the type of every arg, passing
# multiple dimensions as multiple arguments is common enough, and the
# consequences hidden enough (strings evaluate as true) to warrant
# checking here.
# A future version could make squeeze kwarg only, but would face
# backward-compat issues.
if squeeze is not False:
raise TypeError(f"`squeeze` must be False, but {squeeze!r} was supplied.")
def _resolve_group(
obj: T_DataWithCoords, group: T_Group | Hashable | IndexVariable
) -> T_Group:
from xarray.core.dataarray import DataArray
error_msg = (
"the group variable's length does not "
"match the length of this variable along its "
"dimensions"
)
newgroup: T_Group
if isinstance(group, DataArray):
try:
align(obj, group, join="exact", copy=False)
except ValueError as err:
raise ValueError(error_msg) from err
newgroup = group.copy(deep=False)
newgroup.name = group.name or "group"
elif isinstance(group, IndexVariable):
# This assumption is built in to _ensure_1d.
if group.ndim != 1:
raise ValueError(
"Grouping by multi-dimensional IndexVariables is not allowed."
"Convert to and pass a DataArray instead."
)
(group_dim,) = group.dims
if len(group) != obj.sizes[group_dim]:
raise ValueError(error_msg)
newgroup = DataArray(group)
else:
if not hashable(group):
raise TypeError(
"`group` must be an xarray.DataArray or the "
"name of an xarray variable or dimension. "
f"Received {group!r} instead."
)
group_da: DataArray = obj[group]
if group_da.name not in obj._indexes and group_da.name in obj.dims:
# DummyGroups should not appear on groupby results
newgroup = _DummyGroup(obj, group_da.name, group_da.coords)
else:
newgroup = group_da
if newgroup.size == 0:
raise ValueError(f"{newgroup.name} must not be empty")
return newgroup
@dataclass
class ComposedGrouper:
"""
Helper class for multi-variable GroupBy.
This satisfies the Grouper interface, but is awkward to wrap in ResolvedGrouper.
For one, it simply re-infers a new EncodedGroups using known information
in existing ResolvedGroupers. So passing in a `group` (hard to define),
and `obj` (pointless) is not useful.
"""
groupers: tuple[ResolvedGrouper, ...]
def factorize(self) -> EncodedGroups:
from xarray.groupers import EncodedGroups
groupers = self.groupers
# At this point all arrays have been factorized.
codes = tuple(grouper.codes for grouper in groupers)
shape = tuple(grouper.size for grouper in groupers)
masks = tuple((code == -1) for code in codes)
# We broadcast the codes against each other
broadcasted_codes = broadcast(*codes)
# This fully broadcasted DataArray is used as a template later
first_codes = broadcasted_codes[0]
# Now we convert to a single variable GroupBy problem
_flatcodes = np.ravel_multi_index(
tuple(codes.data for codes in broadcasted_codes), shape, mode="wrap"
)
# NaNs; as well as values outside the bins are coded by -1
# Restore these after the raveling
broadcasted_masks = broadcast(*masks)
mask = functools.reduce(np.logical_or, broadcasted_masks) # type: ignore[arg-type]
_flatcodes = where(mask.data, -1, _flatcodes)
full_index = pd.MultiIndex.from_product(
[grouper.full_index.values for grouper in groupers],
names=tuple(grouper.name for grouper in groupers),
)
if not full_index.is_unique:
raise ValueError(
"The output index for the GroupBy is non-unique. "
"This is a bug in the Grouper provided."
)
# This will be unused when grouping by dask arrays, so skip..
if not is_chunked_array(_flatcodes):
# Constructing an index from the product is wrong when there are missing groups
# (e.g. binning, resampling). Account for that now.
midx = full_index[np.sort(pd.unique(_flatcodes[~mask]))]
group_indices = _codes_to_group_indices(_flatcodes.ravel(), len(full_index))
else:
midx = full_index
group_indices = None
dim_name = "stacked_" + "_".join(str(grouper.name) for grouper in groupers)
coords = Coordinates.from_pandas_multiindex(midx, dim=dim_name)
for grouper in groupers:
coords.variables[grouper.name].attrs = grouper.group.attrs
return EncodedGroups(
codes=first_codes.copy(data=_flatcodes),
full_index=full_index,
group_indices=group_indices,
unique_coord=Variable(dims=(dim_name,), data=midx.values),
coords=coords,
)
class GroupBy(Generic[T_Xarray]):
"""A object that implements the split-apply-combine pattern.
Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over
(unique_value, grouped_array) pairs, but the main way to interact with a
groupby object are with the `apply` or `reduce` methods. You can also
directly call numpy methods like `mean` or `std`.
You should create a GroupBy object by using the `DataArray.groupby` or
`Dataset.groupby` methods.
See Also
--------
Dataset.groupby
DataArray.groupby
"""
__slots__ = (
"_by_chunked",
"_codes",
"_dims",
"_group_dim",
# cached properties
"_groups",
"_inserted_dims",
"_len",
"_obj",
# Save unstacked object for flox
"_original_obj",
"_restore_coord_dims",
"_sizes",
"_stacked_dim",
"encoded",
# stack nD vars
"group1d",
"groupers",
)
_obj: T_Xarray
groupers: tuple[ResolvedGrouper, ...]
_restore_coord_dims: bool
_original_obj: T_Xarray
_group_indices: GroupIndices
_codes: tuple[DataArray, ...]
_group_dim: Hashable
_by_chunked: bool
_groups: dict[GroupKey, GroupIndex] | None
_dims: tuple[Hashable, ...] | Frozen[Hashable, int] | None
_sizes: Mapping[Hashable, int] | None
_len: int
# _ensure_1d:
group1d: T_Group
_stacked_dim: Hashable | None
_inserted_dims: list[Hashable]
encoded: EncodedGroups
def __init__(
self,
obj: T_Xarray,
groupers: tuple[ResolvedGrouper, ...],
restore_coord_dims: bool = True,
) -> None:
"""Create a GroupBy object
Parameters
----------
obj : Dataset or DataArray
Object to group.
grouper : Grouper
Grouper object
restore_coord_dims : bool, default: True
If True, also restore the dimension order of multi-dimensional
coordinates.
"""
self._original_obj = obj
self._restore_coord_dims = restore_coord_dims
self.groupers = groupers
if len(groupers) == 1:
(grouper,) = groupers
self.encoded = grouper.encoded
else:
if any(
isinstance(obj._indexes.get(grouper.name, None), PandasMultiIndex)
for grouper in groupers
):
raise NotImplementedError(
"Grouping by multiple variables, one of which "
"wraps a Pandas MultiIndex, is not supported yet."
)
self.encoded = ComposedGrouper(groupers).factorize()
# specification for the groupby operation
# TODO: handle obj having variables that are not present on any of the groupers
# simple broadcasting fails for ExtensionArrays.
codes = self.encoded.codes
self._by_chunked = is_chunked_array(codes._variable._data)
if not self._by_chunked:
(self.group1d, self._obj, self._stacked_dim, self._inserted_dims) = (
_ensure_1d(group=codes, obj=obj)
)
(self._group_dim,) = self.group1d.dims
else:
self.group1d = None
# This transpose preserves dim order behaviour
self._obj = obj.transpose(..., *codes.dims)
self._stacked_dim = None
self._inserted_dims = []
self._group_dim = None
# cached attributes
self._groups = None
self._dims = None
self._sizes = None
self._len = len(self.encoded.full_index)
@property
def sizes(self) -> Mapping[Hashable, int]:
"""Ordered mapping from dimension names to lengths.
Immutable.
See Also
--------
DataArray.sizes
Dataset.sizes
"""
if self._sizes is None:
index = self.encoded.group_indices[0]
self._sizes = self._obj.isel({self._group_dim: index}).sizes
return self._sizes
def shuffle_to_chunks(self, chunks: T_Chunks = None) -> T_Xarray:
"""
Sort or "shuffle" the underlying object.
"Shuffle" means the object is sorted so that all group members occur sequentially,
in the same chunk. Multiple groups may occur in the same chunk.
This method is particularly useful for chunked arrays (e.g. dask, cubed).
particularly when you need to map a function that requires all members of a group
to be present in a single chunk. For chunked array types, the order of appearance
is not guaranteed, but will depend on the input chunking.
Parameters
----------
chunks : int, tuple of int, "auto" or mapping of hashable to int or tuple of int, optional
How to adjust chunks along dimensions not present in the array being grouped by.
Returns
-------
DataArrayGroupBy or DatasetGroupBy
Examples
--------
>>> import dask.array
>>> da = xr.DataArray(
... dims="x",
... data=dask.array.arange(10, chunks=3),
... coords={"x": [1, 2, 3, 1, 2, 3, 1, 2, 3, 0]},
... name="a",
... )
>>> shuffled = da.groupby("x").shuffle_to_chunks()
>>> shuffled
<xarray.DataArray 'a' (x: 10)> Size: 80B
dask.array<shuffle, shape=(10,), dtype=int64, chunksize=(3,), chunktype=numpy.ndarray>
Coordinates:
* x (x) int64 80B 0 1 1 1 2 2 2 3 3 3
>>> shuffled.groupby("x").quantile(q=0.5).compute()
<xarray.DataArray 'a' (x: 4)> Size: 32B
array([9., 3., 4., 5.])
Coordinates:
quantile float64 8B 0.5
* x (x) int64 32B 0 1 2 3
See Also
--------
dask.dataframe.DataFrame.shuffle
dask.array.shuffle
"""
self._raise_if_by_is_chunked()
return self._shuffle_obj(chunks)
def _shuffle_obj(self, chunks: T_Chunks) -> T_Xarray:
from xarray.core.dataarray import DataArray
was_array = isinstance(self._obj, DataArray)
as_dataset = self._obj._to_temp_dataset() if was_array else self._obj
for grouper in self.groupers:
if grouper.name not in as_dataset._variables:
as_dataset.coords[grouper.name] = grouper.group
shuffled = as_dataset._shuffle(
dim=self._group_dim, indices=self.encoded.group_indices, chunks=chunks
)
unstacked: Dataset = self._maybe_unstack(shuffled)
if was_array:
return self._obj._from_temp_dataset(unstacked)
else:
return unstacked # type: ignore[return-value]
def map(
self,
func: Callable,
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> T_Xarray:
raise NotImplementedError()
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> T_Xarray:
raise NotImplementedError()
def _raise_if_by_is_chunked(self):
if self._by_chunked:
raise ValueError(
"This method is not supported when lazily grouping by a chunked array. "
"Either load the array in to memory prior to grouping using .load or .compute, "
" or explore another way of applying your function, "
"potentially using the `flox` package."
)
def _raise_if_not_single_group(self):
if len(self.groupers) != 1:
raise NotImplementedError(
"This method is not supported for grouping by multiple variables yet."
)
@property
def groups(self) -> dict[GroupKey, GroupIndex]:
"""
Mapping from group labels to indices. The indices can be used to index the underlying object.
"""
# provided to mimic pandas.groupby
if self._groups is None:
self._groups = dict(
zip(
self.encoded.unique_coord.data,
self.encoded.group_indices,
strict=True,
)
)
return self._groups
def __getitem__(self, key: GroupKey) -> T_Xarray:
"""
Get DataArray or Dataset corresponding to a particular group label.
"""
self._raise_if_by_is_chunked()
return self._obj.isel({self._group_dim: self.groups[key]})
def __len__(self) -> int:
return self._len
def __iter__(self) -> Iterator[tuple[GroupKey, T_Xarray]]:
return zip(self.encoded.unique_coord.data, self._iter_grouped(), strict=True)
def __repr__(self) -> str:
text = (
f"<{self.__class__.__name__}, "
f"grouped over {len(self.groupers)} grouper(s),"
f" {self._len} groups in total:"
)
for grouper in self.groupers:
coord = grouper.unique_coord
labels = ", ".join(format_array_flat(coord, 30).split())
text += (
f"\n {grouper.name!r}: {type(grouper.grouper).__name__}({grouper.group.name!r}), "
f"{coord.size}/{grouper.full_index.size} groups with labels {labels}"
)
return text + ">"
def _iter_grouped(self) -> Iterator[T_Xarray]:
"""Iterate over each element in this group"""
self._raise_if_by_is_chunked()
for indices in self.encoded.group_indices:
if indices:
yield self._obj.isel({self._group_dim: indices})
def _infer_concat_args(self, applied_example):
if self._group_dim in applied_example.dims:
coord = self.group1d
positions = self.encoded.group_indices
else:
coord = self.encoded.unique_coord
positions = None
(dim,) = coord.dims
return dim, positions
def _binary_op(self, other, f, reflexive=False):
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
g = f if not reflexive else lambda x, y: f(y, x)
self._raise_if_not_single_group()
(grouper,) = self.groupers
obj = self._original_obj
name = grouper.name
group = grouper.group
codes = self.encoded.codes
dims = group.dims
if isinstance(group, _DummyGroup):
group = coord = group.to_dataarray()
else:
coord = grouper.unique_coord
if isinstance(coord, Variable):
assert coord.ndim == 1
(coord_dim,) = coord.dims
# TODO: explicitly create Index here
coord = DataArray(coord, coords={coord_dim: coord.data})
if not isinstance(other, Dataset | DataArray):
raise TypeError(
"GroupBy objects only support binary ops "
"when the other argument is a Dataset or "
"DataArray"
)
if name not in other.dims:
raise ValueError(
"incompatible dimensions for a grouped "
f"binary operation: the group variable {name!r} "
"is not a dimension on the other argument "
f"with dimensions {other.dims!r}"
)
# Broadcast out scalars for backwards compatibility
# TODO: get rid of this when fixing GH2145
for var in other.coords:
if other[var].ndim == 0:
other[var] = (
other[var].drop_vars(var).expand_dims({name: other.sizes[name]})
)
# need to handle NaNs in group or elements that don't belong to any bins
mask = codes == -1
if mask.any():
obj = obj.where(~mask, drop=True)
group = group.where(~mask, drop=True)
codes = codes.where(~mask, drop=True).astype(int)
# if other is dask-backed, that's a hint that the
# "expanded" dataset is too big to hold in memory.
# this can be the case when `other` was read from disk
# and contains our lazy indexing classes
# We need to check for dask-backed Datasets
# so utils.is_duck_dask_array does not work for this check
if obj.chunks and not other.chunks:
# TODO: What about datasets with some dask vars, and others not?
# This handles dims other than `name``
chunks = {k: v for k, v in obj.chunksizes.items() if k in other.dims}
# a chunk size of 1 seems reasonable since we expect individual elements of
# other to be repeated multiple times across the reduced dimension(s)
chunks[name] = 1
other = other.chunk(chunks)
# codes are defined for coord, so we align `other` with `coord`
# before indexing
other, _ = align(other, coord, join="right", copy=False)
expanded = other.isel({name: codes})
result = g(obj, expanded)
if group.ndim > 1:
# backcompat:
# TODO: get rid of this when fixing GH2145
for var in set(obj.coords) - set(obj.xindexes):
if set(obj[var].dims) < set(group.dims):
result[var] = obj[var].reset_coords(drop=True).broadcast_like(group)
if isinstance(result, Dataset) and isinstance(obj, Dataset):
for var in set(result):
for d in dims:
if d not in obj[var].dims:
result[var] = result[var].transpose(d, ...)
return result
def _restore_dim_order(self, stacked):
raise NotImplementedError
def _maybe_reindex(self, combined):
"""Reindexing is needed in two cases:
1. Our index contained empty groups (e.g., from a resampling or binning). If we
reduced on that dimension, we want to restore the full index.
2. We use a MultiIndex for multi-variable GroupBy.
The MultiIndex stores each level's labels in sorted order
which are then assigned on unstacking. So we need to restore
the correct order here.
"""
has_missing_groups = (
self.encoded.unique_coord.size != self.encoded.full_index.size
)
indexers = {}
for grouper in self.groupers:
index = combined._indexes.get(grouper.name, None)
if (has_missing_groups and index is not None) or (
len(self.groupers) > 1
and not isinstance(grouper.full_index, pd.RangeIndex)
and not index.index.equals(grouper.full_index)
):
indexers[grouper.name] = grouper.full_index
if indexers:
combined = combined.reindex(**indexers)
return combined
def _maybe_unstack(self, obj):
"""This gets called if we are applying on an array with a
multidimensional group."""
from xarray.groupers import UniqueGrouper
stacked_dim = self._stacked_dim
if stacked_dim is not None and stacked_dim in obj.dims:
inserted_dims = self._inserted_dims
obj = obj.unstack(stacked_dim)
for dim in inserted_dims:
if dim in obj.coords:
del obj.coords[dim]
obj._indexes = filter_indexes_from_coords(obj._indexes, set(obj.coords))
elif len(self.groupers) > 1:
# TODO: we could clean this up by setting the appropriate `stacked_dim`
# and `inserted_dims`
# if multiple groupers all share the same single dimension, then
# we don't stack/unstack. Do that manually now.
dims_to_unstack = self.encoded.unique_coord.dims
if all(dim in obj.dims for dim in dims_to_unstack):
obj = obj.unstack(*dims_to_unstack)
to_drop = [
grouper.name
for grouper in self.groupers
if isinstance(grouper.group, _DummyGroup)
and isinstance(grouper.grouper, UniqueGrouper)
]
obj = obj.drop_vars(to_drop)
return obj
def _flox_reduce(
self,
dim: Dims,
keep_attrs: bool | None = None,
**kwargs: Any,
) -> T_Xarray:
"""Adaptor function that translates our groupby API to that of flox."""
import flox
from flox.xarray import xarray_reduce
from xarray.core.dataset import Dataset
obj = self._original_obj
variables = (
{k: v.variable for k, v in obj.data_vars.items()}
if isinstance(obj, Dataset) # type: ignore[redundant-expr] # seems to be a mypy bug
else obj._coords
)
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
if Version(flox.__version__) < Version("0.9") and not self._by_chunked:
# preserve current strategy (approximately) for dask groupby
# on older flox versions to prevent surprises.
# flox >=0.9 will choose this on its own.
kwargs.setdefault("method", "cohorts")
midx_grouping_vars: tuple[Hashable, ...] = ()
for grouper in self.groupers:
name = grouper.name
maybe_midx = obj._indexes.get(name, None)
if isinstance(maybe_midx, PandasMultiIndex):
midx_grouping_vars += tuple(maybe_midx.index.names) + (name,)
# For datasets, running a numeric-only reduction on non-numeric
# variable will just drop it.
non_numeric: dict[Hashable, Variable]
if kwargs.pop("numeric_only", None):
non_numeric = {
name: var
for name, var in variables.items()
if (
not (np.issubdtype(var.dtype, np.number) or (var.dtype == np.bool_))
# this avoids dropping any levels of a MultiIndex, which raises
# a warning
and name not in midx_grouping_vars
and name not in obj.dims
)
}
else:
non_numeric = {}
if "min_count" in kwargs:
if kwargs["func"] not in ["sum", "prod"]:
raise TypeError("Received an unexpected keyword argument 'min_count'")
elif kwargs["min_count"] is None:
# set explicitly to avoid unnecessarily accumulating count
kwargs["min_count"] = 0
parsed_dim: tuple[Hashable, ...]
if isinstance(dim, str):
parsed_dim = (dim,)
elif dim is None:
parsed_dim_list = list()
# preserve order
for dim_ in itertools.chain(
*(grouper.codes.dims for grouper in self.groupers)
):
if dim_ not in parsed_dim_list:
parsed_dim_list.append(dim_)
parsed_dim = tuple(parsed_dim_list)
elif dim is ...:
parsed_dim = tuple(obj.dims)
else:
parsed_dim = tuple(dim)
# Do this so we raise the same error message whether flox is present or not.
# Better to control it here than in flox.
for grouper in self.groupers:
if any(
d not in grouper.codes.dims and d not in obj.dims for d in parsed_dim
):
raise ValueError(f"cannot reduce over dimensions {dim}.")
has_missing_groups = (
self.encoded.unique_coord.size != self.encoded.full_index.size
)
if self._by_chunked or has_missing_groups or kwargs.get("min_count", 0) > 0:
# Xarray *always* returns np.nan when there are no observations in a group,
# We can fake that here by forcing min_count=1 when it is not set.
# This handles boolean reductions, and count
# See GH8090, GH9398
# Note that `has_missing_groups=False` when `self._by_chunked is True`.
# We *choose* to always do the masking, so that behaviour is predictable
# in some way. The real solution is to expose fill_value as a kwarg,
# and set appropriate defaults :/.
kwargs.setdefault("fill_value", np.nan)
kwargs.setdefault("min_count", 1)
# pass RangeIndex as a hint to flox that `by` is already factorized
expected_groups = tuple(
pd.RangeIndex(len(grouper)) for grouper in self.groupers
)
codes = tuple(g.codes for g in self.groupers)
result = xarray_reduce(
obj.drop_vars(non_numeric.keys()),
*codes,
dim=parsed_dim,
expected_groups=expected_groups,
isbin=False,
keep_attrs=keep_attrs,
**kwargs,
)
# we did end up reducing over dimension(s) that are
# in the grouped variable
group_dims = set(grouper.group.dims)
new_coords = []
to_drop = []
if group_dims & set(parsed_dim):
for grouper in self.groupers:
output_index = grouper.full_index
if isinstance(output_index, pd.RangeIndex):
# flox always assigns an index so we must drop it here if we don't need it.
to_drop.append(grouper.name)
continue
# TODO: We can't simply use `self.encoded.coords` here because it corresponds to `unique_coord`,
# NOT `full_index`. We would need to construct a new Coordinates object, that corresponds to `full_index`.
new_coords.append(
# Using IndexVariable here ensures we reconstruct PandasMultiIndex with
# all associated levels properly.
coordinates_from_variable(
IndexVariable(
dims=grouper.name,
data=output_index,
attrs=grouper.codes.attrs,
)
)
)
result = result.assign_coords(
Coordinates._construct_direct(*merge_coords(new_coords))
).drop_vars(to_drop)
# broadcast any non-dim coord variables that don't
# share all dimensions with the grouper
result_variables = (
result._variables if isinstance(result, Dataset) else result._coords
)
to_broadcast: dict[Hashable, Variable] = {}
for name, var in variables.items():
dims_set = set(var.dims)
if (
dims_set <= set(parsed_dim)
and (dims_set & set(result.dims))
and name not in result_variables
):
to_broadcast[name] = var
for name, var in to_broadcast.items():
if new_dims := tuple(d for d in parsed_dim if d not in var.dims):
new_sizes = tuple(
result.sizes.get(dim, obj.sizes.get(dim)) for dim in new_dims
)
result[name] = var.set_dims(
new_dims + var.dims, new_sizes + var.shape
).transpose(..., *result.dims)
if not isinstance(result, Dataset):
# only restore dimension order for arrays
result = self._restore_dim_order(result)
return result
def fillna(self, value: Any) -> T_Xarray:
"""Fill missing values in this object by group.
This operation follows the normal broadcasting and alignment rules that
xarray uses for binary arithmetic, except the result is aligned to this
object (``join='left'``) instead of aligned to the intersection of
index coordinates (``join='inner'``).
Parameters
----------
value
Used to fill all matching missing values by group. Needs
to be of a valid type for the wrapped object's fillna
method.
Returns
-------
same type as the grouped object
See Also
--------
Dataset.fillna
DataArray.fillna
"""
return ops.fillna(self, value)
def quantile(
self,
q: ArrayLike,
dim: Dims = None,
*,
method: QuantileMethods = "linear",
keep_attrs: bool | None = None,
skipna: bool | None = None,
interpolation: QuantileMethods | None = None,
) -> T_Xarray:
"""Compute the qth quantile over each array in the groups and
concatenate them together into a new array.
Parameters
----------
q : float or sequence of float
Quantile to compute, which must be between 0 and 1
inclusive.
dim : str or Iterable of Hashable, optional
Dimension(s) over which to apply quantile.
Defaults to the grouped dimension.
method : str, default: "linear"
This optional parameter specifies the interpolation method to use when the
desired quantile lies between two data points. The options sorted by their R
type as summarized in the H&F paper [1]_ are:
1. "inverted_cdf"
2. "averaged_inverted_cdf"
3. "closest_observation"
4. "interpolated_inverted_cdf"
5. "hazen"
6. "weibull"
7. "linear" (default)
8. "median_unbiased"
9. "normal_unbiased"
The first three methods are discontiuous. The following discontinuous
variations of the default "linear" (7.) option are also available:
* "lower"
* "higher"
* "midpoint"
* "nearest"
See :py:func:`numpy.quantile` or [1]_ for details. The "method" argument
was previously called "interpolation", renamed in accordance with numpy
version 1.22.0.
keep_attrs : bool or None, default: None
If True, the dataarray's attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
skipna : bool or None, default: None
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
quantiles : Variable
If `q` is a single quantile, then the result is a
scalar. If multiple percentiles are given, first axis of
the result corresponds to the quantile. In either case a
quantile dimension is added to the return array. The other
dimensions are the dimensions that remain after the
reduction of the array.
See Also
--------
numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile
DataArray.quantile
Examples
--------
>>> da = xr.DataArray(
... [[1.3, 8.4, 0.7, 6.9], [0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]],
... coords={"x": [0, 0, 1], "y": [1, 1, 2, 2]},
... dims=("x", "y"),
... )
>>> ds = xr.Dataset({"a": da})
>>> da.groupby("x").quantile(0)
<xarray.DataArray (x: 2, y: 4)> Size: 64B
array([[0.7, 4.2, 0.7, 1.5],
[6.5, 7.3, 2.6, 1.9]])
Coordinates:
* y (y) int64 32B 1 1 2 2
quantile float64 8B 0.0
* x (x) int64 16B 0 1
>>> ds.groupby("y").quantile(0, dim=...)
<xarray.Dataset> Size: 40B
Dimensions: (y: 2)
Coordinates:
quantile float64 8B 0.0
* y (y) int64 16B 1 2
Data variables:
a (y) float64 16B 0.7 0.7
>>> da.groupby("x").quantile([0, 0.5, 1])
<xarray.DataArray (x: 2, y: 4, quantile: 3)> Size: 192B
array([[[0.7 , 1. , 1.3 ],
[4.2 , 6.3 , 8.4 ],
[0.7 , 5.05, 9.4 ],
[1.5 , 4.2 , 6.9 ]],
<BLANKLINE>
[[6.5 , 6.5 , 6.5 ],
[7.3 , 7.3 , 7.3 ],
[2.6 , 2.6 , 2.6 ],
[1.9 , 1.9 , 1.9 ]]])
Coordinates:
* y (y) int64 32B 1 1 2 2
* quantile (quantile) float64 24B 0.0 0.5 1.0
* x (x) int64 16B 0 1
>>> ds.groupby("y").quantile([0, 0.5, 1], dim=...)
<xarray.Dataset> Size: 88B
Dimensions: (y: 2, quantile: 3)
Coordinates:
* quantile (quantile) float64 24B 0.0 0.5 1.0
* y (y) int64 16B 1 2
Data variables:
a (y, quantile) float64 48B 0.7 5.35 8.4 0.7 2.25 9.4
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
"""
# Dataset.quantile does this, do it for flox to ensure same output.
q = np.asarray(q, dtype=np.float64)
if (
method == "linear"
and OPTIONS["use_flox"]
and contains_only_chunked_or_numpy(self._obj)
and module_available("flox", minversion="0.9.4")
):
result = self._flox_reduce(
func="quantile", q=q, dim=dim, keep_attrs=keep_attrs, skipna=skipna
)
return result
else:
if dim is None:
dim = (self._group_dim,)
return self.map(
self._obj.__class__.quantile,
shortcut=False,
q=q,
dim=dim or self._group_dim,
method=method,
keep_attrs=keep_attrs,
skipna=skipna,
interpolation=interpolation,
)
def where(self, cond, other=dtypes.NA) -> T_Xarray:
"""Return elements from `self` or `other` depending on `cond`.
Parameters
----------
cond : DataArray or Dataset
Locations at which to preserve this objects values. dtypes have to be `bool`
other : scalar, DataArray or Dataset, optional
Value to use for locations in this object where ``cond`` is False.
By default, inserts missing values.
Returns
-------
same type as the grouped object
See Also
--------
Dataset.where
"""
return ops.where_method(self, cond, other)
def _first_or_last(
self,
op: Literal["first" | "last"],
skipna: bool | None,
keep_attrs: bool | None,
):
if all(
isinstance(maybe_slice, slice)
and (maybe_slice.stop == maybe_slice.start + 1)
for maybe_slice in self.encoded.group_indices
):
# NB. this is currently only used for reductions along an existing
# dimension
return self._obj
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
if (
module_available("flox", minversion="0.10.0")
and OPTIONS["use_flox"]
and contains_only_chunked_or_numpy(self._obj)
):
import flox.xrdtypes
result = self._flox_reduce(
dim=None,
func=op,
skipna=skipna,
keep_attrs=keep_attrs,
fill_value=flox.xrdtypes.NA,
)
else:
result = self.reduce(
getattr(duck_array_ops, op),
dim=[self._group_dim],
skipna=skipna,
keep_attrs=keep_attrs,
)
return result
def first(
self, skipna: bool | None = None, keep_attrs: bool | None = None
) -> T_Xarray:
"""
Return the first element of each group along the group dimension
Parameters
----------
skipna : bool or None, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or ``skipna=True`` has not been
implemented (object, datetime64 or timedelta64).
keep_attrs : bool or None, optional
If True, ``attrs`` will be copied from the original
object to the new one. If False, the new object will be
returned without attributes.
"""
return self._first_or_last("first", skipna, keep_attrs)
def last(
self, skipna: bool | None = None, keep_attrs: bool | None = None
) -> T_Xarray:
"""
Return the last element of each group along the group dimension
Parameters
----------
skipna : bool or None, optional
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or ``skipna=True`` has not been
implemented (object, datetime64 or timedelta64).
keep_attrs : bool or None, optional
If True, ``attrs`` will be copied from the original
object to the new one. If False, the new object will be
returned without attributes.
"""
return self._first_or_last("last", skipna, keep_attrs)
def assign_coords(self, coords=None, **coords_kwargs):
"""Assign coordinates by group.
See Also
--------
Dataset.assign_coords
Dataset.swap_dims
"""
coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords")
return self.map(lambda ds: ds.assign_coords(**coords_kwargs))
def _maybe_reorder(xarray_obj, dim, positions, N: int | None):
order = _inverse_permutation_indices(positions, N)
if order is None or len(order) != xarray_obj.sizes[dim]:
return xarray_obj
else:
return xarray_obj[{dim: order}]
class DataArrayGroupByBase(GroupBy["DataArray"], DataArrayGroupbyArithmetic):
"""GroupBy object specialized to grouping DataArray objects"""
__slots__ = ()
_dims: tuple[Hashable, ...] | None
@property
def dims(self) -> tuple[Hashable, ...]:
self._raise_if_by_is_chunked()
if self._dims is None:
index = self.encoded.group_indices[0]
self._dims = self._obj.isel({self._group_dim: index}).dims
return self._dims
def _iter_grouped_shortcut(self):
"""Fast version of `_iter_grouped` that yields Variables without
metadata
"""
self._raise_if_by_is_chunked()
var = self._obj.variable
for _idx, indices in enumerate(self.encoded.group_indices):
if indices:
yield var[{self._group_dim: indices}]
def _concat_shortcut(self, applied, dim, positions=None):
# nb. don't worry too much about maintaining this method -- it does
# speed things up, but it's not very interpretable and there are much
# faster alternatives (e.g., doing the grouped aggregation in a
# compiled language)
# TODO: benbovy - explicit indexes: this fast implementation doesn't
# create an explicit index for the stacked dim coordinate
stacked = Variable.concat(applied, dim, shortcut=True)
reordered = _maybe_reorder(stacked, dim, positions, N=self.group1d.size)
return self._obj._replace_maybe_drop_dims(reordered)
def _restore_dim_order(self, stacked: DataArray) -> DataArray:
def lookup_order(dimension):
for grouper in self.groupers:
if dimension == grouper.name and grouper.group.ndim == 1:
(dimension,) = grouper.group.dims
if dimension in self._obj.dims:
axis = self._obj.get_axis_num(dimension)
else:
axis = 1e6 # some arbitrarily high value
return axis
new_order = sorted(stacked.dims, key=lookup_order)
stacked = stacked.transpose(
*new_order, transpose_coords=self._restore_coord_dims
)
return stacked
def map(
self,
func: Callable[..., DataArray],
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> DataArray:
"""Apply a function to each array in the group and concatenate them
together into a new array.
`func` is called like `func(ar, *args, **kwargs)` for each array `ar`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the array. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped array after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : callable
Callable to apply to each array.
shortcut : bool, optional
Whether or not to shortcut evaluation under the assumptions that:
(1) The action of `func` does not depend on any of the array
metadata (attributes or coordinates) but only on the data and
dimensions.
(2) The action of `func` creates arrays with homogeneous metadata,
that is, with the same dimensions and attributes.
If these conditions are satisfied `shortcut` provides significant
speedup. This should be the case for many common groupby operations
(e.g., applying numpy ufuncs).
*args : tuple, optional
Positional arguments passed to `func`.
**kwargs
Used to call `func(ar, **kwargs)` for each array `ar`.
Returns
-------
applied : DataArray
The result of splitting, applying and combining this array.
"""
grouped = self._iter_grouped_shortcut() if shortcut else self._iter_grouped()
applied = (maybe_wrap_array(arr, func(arr, *args, **kwargs)) for arr in grouped)
return self._combine(applied, shortcut=shortcut)
def apply(self, func, shortcut=False, args=(), **kwargs):
"""
Backward compatible implementation of ``map``
See Also
--------
DataArrayGroupBy.map
"""
warnings.warn(
"GroupBy.apply may be deprecated in the future. Using GroupBy.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func, shortcut=shortcut, args=args, **kwargs)
def _combine(self, applied, shortcut=False):
"""Recombine the applied objects like the original."""
applied_example, applied = peek_at(applied)
dim, positions = self._infer_concat_args(applied_example)
if shortcut:
combined = self._concat_shortcut(applied, dim, positions)
else:
combined = concat(
applied,
dim,
data_vars="all",
coords="different",
compat="equals",
join="outer",
)
combined = _maybe_reorder(combined, dim, positions, N=self.group1d.size)
if isinstance(combined, type(self._obj)):
# only restore dimension order for arrays
combined = self._restore_dim_order(combined)
# assign coord and index when the applied function does not return that coord
if dim not in applied_example.dims:
combined = combined.assign_coords(self.encoded.coords)
combined = self._maybe_unstack(combined)
combined = self._maybe_reindex(combined)
return combined
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> DataArray:
"""Reduce the items in this group by applying `func` along some
dimension(s).
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : "...", str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`. If None, apply over the
groupby dimension, if "..." apply over all dimensions.
axis : int or sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dimension'
and 'axis' arguments can be supplied. If neither are supplied, then
`func` is calculated over all dimension for each group item.
keep_attrs : bool, optional
If True, the datasets's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : Array
Array with summarized data and the indicated dimension(s)
removed.
"""
if self._by_chunked:
raise ValueError(
"This method is not supported when lazily grouping by a chunked array. "
"Try installing the `flox` package if you are using one of the standard "
"reductions (e.g. `mean`). "
)
if dim is None:
dim = [self._group_dim]
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
def reduce_array(ar: DataArray) -> DataArray:
return ar.reduce(
func=func,
dim=dim,
axis=axis,
keep_attrs=keep_attrs,
keepdims=keepdims,
**kwargs,
)
check_reduce_dims(dim, self.dims)
return self.map(reduce_array, shortcut=shortcut)
class DataArrayGroupBy(
DataArrayGroupByBase,
DataArrayGroupByAggregations,
ImplementsArrayReduce,
):
__slots__ = ()
class DatasetGroupByBase(GroupBy["Dataset"], DatasetGroupbyArithmetic):
__slots__ = ()
_dims: Frozen[Hashable, int] | None
@property
def dims(self) -> Frozen[Hashable, int]:
self._raise_if_by_is_chunked()
if self._dims is None:
index = self.encoded.group_indices[0]
self._dims = self._obj.isel({self._group_dim: index}).dims
return FrozenMappingWarningOnValuesAccess(self._dims)
def map(
self,
func: Callable[..., Dataset],
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> Dataset:
"""Apply a function to each Dataset in the group and concatenate them
together into a new Dataset.
`func` is called like `func(ds, *args, **kwargs)` for each dataset `ds`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the datasets. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped item after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : callable
Callable to apply to each sub-dataset.
args : tuple, optional
Positional arguments to pass to `func`.
**kwargs
Used to call `func(ds, **kwargs)` for each sub-dataset `ar`.
Returns
-------
applied : Dataset
The result of splitting, applying and combining this dataset.
"""
# ignore shortcut if set (for now)
applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped())
return self._combine(applied)
def apply(self, func, args=(), shortcut=None, **kwargs):
"""
Backward compatible implementation of ``map``
See Also
--------
DatasetGroupBy.map
"""
warnings.warn(
"GroupBy.apply may be deprecated in the future. Using GroupBy.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func, shortcut=shortcut, args=args, **kwargs)
def _combine(self, applied):
"""Recombine the applied objects like the original."""
applied_example, applied = peek_at(applied)
dim, positions = self._infer_concat_args(applied_example)
combined = concat(
applied,
dim,
data_vars="all",
coords="different",
compat="equals",
join="outer",
)
combined = _maybe_reorder(combined, dim, positions, N=self.group1d.size)
# assign coord when the applied function does not return that coord
if dim not in applied_example.dims:
combined = combined.assign_coords(self.encoded.coords)
combined = self._maybe_unstack(combined)
combined = self._maybe_reindex(combined)
return combined
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> Dataset:
"""Reduce the items in this group by applying `func` along some
dimension(s).
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : ..., str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`. By default apply over the
groupby dimension, with "..." apply over all dimensions.
axis : int or sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dimension'
and 'axis' arguments can be supplied. If neither are supplied, then
`func` is calculated over all dimension for each group item.
keep_attrs : bool, optional
If True, the datasets's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : Dataset
Array with summarized data and the indicated dimension(s)
removed.
"""
if self._by_chunked:
raise ValueError(
"This method is not supported when lazily grouping by a chunked array. "
"Try installing the `flox` package if you are using one of the standard "
"reductions (e.g. `mean`). "
)
if dim is None:
dim = [self._group_dim]
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=True)
def reduce_dataset(ds: Dataset) -> Dataset:
return ds.reduce(
func=func,
dim=dim,
axis=axis,
keep_attrs=keep_attrs,
keepdims=keepdims,
**kwargs,
)
check_reduce_dims(dim, self.dims)
return self.map(reduce_dataset)
def assign(self, **kwargs: Any) -> Dataset:
"""Assign data variables by group.
See Also
--------
Dataset.assign
"""
return self.map(lambda ds: ds.assign(**kwargs))
class DatasetGroupBy(
DatasetGroupByBase,
DatasetGroupByAggregations,
ImplementsDatasetReduce,
):
__slots__ = ()
|