1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
from __future__ import annotations
import warnings
from collections.abc import Callable, Hashable, Iterable, Sequence
from typing import TYPE_CHECKING, Any, Literal
from xarray.core._aggregations import (
DataArrayResampleAggregations,
DatasetResampleAggregations,
)
from xarray.core.groupby import DataArrayGroupByBase, DatasetGroupByBase, GroupBy
from xarray.core.types import Dims, InterpOptions, T_Xarray
if TYPE_CHECKING:
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import T_Chunks
from xarray.groupers import RESAMPLE_DIM
class Resample(GroupBy[T_Xarray]):
"""An object that extends the `GroupBy` object with additional logic
for handling specialized re-sampling operations.
You should create a `Resample` object by using the `DataArray.resample` or
`Dataset.resample` methods. The dimension along re-sampling
See Also
--------
DataArray.resample
Dataset.resample
"""
def __init__(
self,
*args,
dim: Hashable | None = None,
resample_dim: Hashable | None = None,
**kwargs,
) -> None:
if dim == resample_dim:
raise ValueError(
f"Proxy resampling dimension ('{resample_dim}') "
f"cannot have the same name as actual dimension ('{dim}')!"
)
self._dim = dim
super().__init__(*args, **kwargs)
def _flox_reduce(
self,
dim: Dims,
keep_attrs: bool | None = None,
**kwargs,
) -> T_Xarray:
result: T_Xarray = (
super()
._flox_reduce(dim=dim, keep_attrs=keep_attrs, **kwargs)
.rename({RESAMPLE_DIM: self._group_dim}) # type: ignore[assignment]
)
return result
def shuffle_to_chunks(self, chunks: T_Chunks = None):
"""
Sort or "shuffle" the underlying object.
"Shuffle" means the object is sorted so that all group members occur sequentially,
in the same chunk. Multiple groups may occur in the same chunk.
This method is particularly useful for chunked arrays (e.g. dask, cubed).
particularly when you need to map a function that requires all members of a group
to be present in a single chunk. For chunked array types, the order of appearance
is not guaranteed, but will depend on the input chunking.
Parameters
----------
chunks : int, tuple of int, "auto" or mapping of hashable to int or tuple of int, optional
How to adjust chunks along dimensions not present in the array being grouped by.
Returns
-------
DataArrayGroupBy or DatasetGroupBy
Examples
--------
>>> import dask.array
>>> da = xr.DataArray(
... dims="time",
... data=dask.array.arange(10, chunks=1),
... coords={"time": xr.date_range("2001-01-01", freq="12h", periods=10)},
... name="a",
... )
>>> shuffled = da.resample(time="2D").shuffle_to_chunks()
>>> shuffled
<xarray.DataArray 'a' (time: 10)> Size: 80B
dask.array<shuffle, shape=(10,), dtype=int64, chunksize=(4,), chunktype=numpy.ndarray>
Coordinates:
* time (time) datetime64[ns] 80B 2001-01-01 ... 2001-01-05T12:00:00
See Also
--------
dask.dataframe.DataFrame.shuffle
dask.array.shuffle
"""
(grouper,) = self.groupers
return self._shuffle_obj(chunks).drop_vars(RESAMPLE_DIM)
def _first_or_last(
self, op: Literal["first", "last"], skipna: bool | None, keep_attrs: bool | None
) -> T_Xarray:
from xarray.core.dataset import Dataset
result = super()._first_or_last(op=op, skipna=skipna, keep_attrs=keep_attrs)
if isinstance(result, Dataset):
# Can't do this in the base class because group_dim is RESAMPLE_DIM
# which is not present in the original object
for var in result.data_vars:
result._variables[var] = result._variables[var].transpose(
*self._obj._variables[var].dims
)
return result
def _drop_coords(self) -> T_Xarray:
"""Drop non-dimension coordinates along the resampled dimension."""
obj = self._obj
for k, v in obj.coords.items():
if k != self._dim and self._dim in v.dims:
obj = obj.drop_vars([k])
return obj
def pad(self, tolerance: float | Iterable[float] | str | None = None) -> T_Xarray:
"""Forward fill new values at up-sampled frequency.
Parameters
----------
tolerance : float | Iterable[float] | str | None, default: None
Maximum distance between original and new labels to limit
the up-sampling method.
Up-sampled data with indices that satisfy the equation
``abs(index[indexer] - target) <= tolerance`` are filled by
new values. Data with indices that are outside the given
tolerance are filled with ``NaN`` s.
Returns
-------
padded : DataArray or Dataset
"""
obj = self._drop_coords()
(grouper,) = self.groupers
return obj.reindex(
{self._dim: grouper.full_index}, method="pad", tolerance=tolerance
)
ffill = pad
def backfill(
self, tolerance: float | Iterable[float] | str | None = None
) -> T_Xarray:
"""Backward fill new values at up-sampled frequency.
Parameters
----------
tolerance : float | Iterable[float] | str | None, default: None
Maximum distance between original and new labels to limit
the up-sampling method.
Up-sampled data with indices that satisfy the equation
``abs(index[indexer] - target) <= tolerance`` are filled by
new values. Data with indices that are outside the given
tolerance are filled with ``NaN`` s.
Returns
-------
backfilled : DataArray or Dataset
"""
obj = self._drop_coords()
(grouper,) = self.groupers
return obj.reindex(
{self._dim: grouper.full_index}, method="backfill", tolerance=tolerance
)
bfill = backfill
def nearest(
self, tolerance: float | Iterable[float] | str | None = None
) -> T_Xarray:
"""Take new values from nearest original coordinate to up-sampled
frequency coordinates.
Parameters
----------
tolerance : float | Iterable[float] | str | None, default: None
Maximum distance between original and new labels to limit
the up-sampling method.
Up-sampled data with indices that satisfy the equation
``abs(index[indexer] - target) <= tolerance`` are filled by
new values. Data with indices that are outside the given
tolerance are filled with ``NaN`` s.
Returns
-------
upsampled : DataArray or Dataset
"""
obj = self._drop_coords()
(grouper,) = self.groupers
return obj.reindex(
{self._dim: grouper.full_index}, method="nearest", tolerance=tolerance
)
def interpolate(self, kind: InterpOptions = "linear", **kwargs) -> T_Xarray:
"""Interpolate up-sampled data using the original data as knots.
Parameters
----------
kind : {"linear", "nearest", "zero", "slinear", \
"quadratic", "cubic", "polynomial"}, default: "linear"
The method used to interpolate. The method should be supported by
the scipy interpolator:
- ``interp1d``: {"linear", "nearest", "zero", "slinear",
"quadratic", "cubic", "polynomial"}
- ``interpn``: {"linear", "nearest"}
If ``"polynomial"`` is passed, the ``order`` keyword argument must
also be provided.
Returns
-------
interpolated : DataArray or Dataset
See Also
--------
DataArray.interp
Dataset.interp
scipy.interpolate.interp1d
"""
return self._interpolate(kind=kind, **kwargs)
def _interpolate(self, kind="linear", **kwargs) -> T_Xarray:
"""Apply scipy.interpolate.interp1d along resampling dimension."""
obj = self._drop_coords()
(grouper,) = self.groupers
kwargs.setdefault("bounds_error", False)
return obj.interp(
coords={self._dim: grouper.full_index},
assume_sorted=True,
method=kind,
kwargs=kwargs,
)
class DataArrayResample(
Resample["DataArray"], DataArrayGroupByBase, DataArrayResampleAggregations
):
"""DataArrayGroupBy object specialized to time resampling operations over a
specified dimension
"""
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> DataArray:
"""Reduce the items in this group by applying `func` along the
pre-defined resampling dimension.
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : "...", str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`.
keep_attrs : bool, optional
If True, the datasets's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : DataArray
Array with summarized data and the indicated dimension(s)
removed.
"""
return super().reduce(
func=func,
dim=dim,
axis=axis,
keep_attrs=keep_attrs,
keepdims=keepdims,
shortcut=shortcut,
**kwargs,
)
def map(
self,
func: Callable[..., Any],
args: tuple[Any, ...] = (),
shortcut: bool | None = False,
**kwargs: Any,
) -> DataArray:
"""Apply a function to each array in the group and concatenate them
together into a new array.
`func` is called like `func(ar, *args, **kwargs)` for each array `ar`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the array. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped array after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : callable
Callable to apply to each array.
shortcut : bool, optional
Whether or not to shortcut evaluation under the assumptions that:
(1) The action of `func` does not depend on any of the array
metadata (attributes or coordinates) but only on the data and
dimensions.
(2) The action of `func` creates arrays with homogeneous metadata,
that is, with the same dimensions and attributes.
If these conditions are satisfied `shortcut` provides significant
speedup. This should be the case for many common groupby operations
(e.g., applying numpy ufuncs).
args : tuple, optional
Positional arguments passed on to `func`.
**kwargs
Used to call `func(ar, **kwargs)` for each array `ar`.
Returns
-------
applied : DataArray
The result of splitting, applying and combining this array.
"""
# TODO: the argument order for Resample doesn't match that for its parent,
# GroupBy
combined = super().map(func, shortcut=shortcut, args=args, **kwargs)
# If the aggregation function didn't drop the original resampling
# dimension, then we need to do so before we can rename the proxy
# dimension we used.
if self._dim in combined.coords:
combined = combined.drop_vars([self._dim])
if RESAMPLE_DIM in combined.dims:
combined = combined.rename({RESAMPLE_DIM: self._dim})
return combined
def apply(self, func, args=(), shortcut=None, **kwargs):
"""
Backward compatible implementation of ``map``
See Also
--------
DataArrayResample.map
"""
warnings.warn(
"Resample.apply may be deprecated in the future. Using Resample.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func=func, shortcut=shortcut, args=args, **kwargs)
def asfreq(self) -> DataArray:
"""Return values of original object at the new up-sampling frequency;
essentially a re-index with new times set to NaN.
Returns
-------
resampled : DataArray
"""
self._obj = self._drop_coords()
return self.mean(None if self._dim is None else [self._dim])
class DatasetResample(
Resample["Dataset"], DatasetGroupByBase, DatasetResampleAggregations
):
"""DatasetGroupBy object specialized to resampling a specified dimension"""
def map(
self,
func: Callable[..., Any],
args: tuple[Any, ...] = (),
shortcut: bool | None = None,
**kwargs: Any,
) -> Dataset:
"""Apply a function over each Dataset in the groups generated for
resampling and concatenate them together into a new Dataset.
`func` is called like `func(ds, *args, **kwargs)` for each dataset `ds`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the datasets. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped item after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : callable
Callable to apply to each sub-dataset.
args : tuple, optional
Positional arguments passed on to `func`.
**kwargs
Used to call `func(ds, **kwargs)` for each sub-dataset `ar`.
Returns
-------
applied : Dataset
The result of splitting, applying and combining this dataset.
"""
# ignore shortcut if set (for now)
applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped())
combined = self._combine(applied)
# If the aggregation function didn't drop the original resampling
# dimension, then we need to do so before we can rename the proxy
# dimension we used.
if self._dim in combined.coords:
combined = combined.drop_vars(self._dim)
if RESAMPLE_DIM in combined.dims:
combined = combined.rename({RESAMPLE_DIM: self._dim})
return combined
def apply(self, func, args=(), shortcut=None, **kwargs):
"""
Backward compatible implementation of ``map``
See Also
--------
DataSetResample.map
"""
warnings.warn(
"Resample.apply may be deprecated in the future. Using Resample.map is encouraged",
PendingDeprecationWarning,
stacklevel=2,
)
return self.map(func=func, shortcut=shortcut, args=args, **kwargs)
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
*,
axis: int | Sequence[int] | None = None,
keep_attrs: bool | None = None,
keepdims: bool = False,
shortcut: bool = True,
**kwargs: Any,
) -> Dataset:
"""Reduce the items in this group by applying `func` along the
pre-defined resampling dimension.
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of collapsing
an np.ndarray over an integer valued axis.
dim : "...", str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`.
keep_attrs : bool, optional
If True, the datasets's attributes (`attrs`) will be copied from
the original object to the new one. If False (default), the new
object will be returned without attributes.
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : Dataset
Array with summarized data and the indicated dimension(s)
removed.
"""
return super().reduce(
func=func,
dim=dim,
axis=axis,
keep_attrs=keep_attrs,
keepdims=keepdims,
shortcut=shortcut,
**kwargs,
)
def asfreq(self) -> Dataset:
"""Return values of original object at the new up-sampling frequency;
essentially a re-index with new times set to NaN.
Returns
-------
resampled : Dataset
"""
self._obj = self._drop_coords()
return self.mean(None if self._dim is None else [self._dim])
|