File: treenode.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (875 lines) | stat: -rw-r--r-- 29,521 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
from __future__ import annotations

import collections
import sys
from collections.abc import Iterator, Mapping
from pathlib import PurePosixPath
from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    TypeVar,
)

from xarray.core.types import Self
from xarray.core.utils import Frozen, is_dict_like

if TYPE_CHECKING:
    from xarray.core.types import T_DataArray


class InvalidTreeError(Exception):
    """Raised when user attempts to create an invalid tree in some way."""


class NotFoundInTreeError(ValueError):
    """Raised when operation can't be completed because one node is not part of the expected tree."""


class NodePath(PurePosixPath):
    """Represents a path from one node to another within a tree."""

    def __init__(self, *pathsegments):
        if sys.version_info >= (3, 12):
            super().__init__(*pathsegments)
        else:
            super().__new__(PurePosixPath, *pathsegments)
        if self.drive:
            raise ValueError("NodePaths cannot have drives")

        if self.root not in ["/", ""]:
            raise ValueError(
                'Root of NodePath can only be either "/" or "", with "" meaning the path is relative.'
            )
        # TODO should we also forbid suffixes to avoid node names with dots in them?


Tree = TypeVar("Tree", bound="TreeNode")


class TreeNode(Generic[Tree]):
    """
    Base class representing a node of a tree, with methods for traversing and altering the tree.

    This class stores no data, it has only parents and children attributes, and various methods.

    Stores child nodes in an dict, ensuring that equality checks between trees
    and order of child nodes is preserved (since python 3.7).

    Nodes themselves are intrinsically unnamed (do not possess a ._name attribute), but if the node has a parent you can
    find the key it is stored under via the .name property.

    The .parent attribute is read-only: to replace the parent using public API you must set this node as the child of a
    new parent using `new_parent.children[name] = child_node`, or to instead detach from the current parent use
    `child_node.orphan()`.

    This class is intended to be subclassed by DataTree, which will overwrite some of the inherited behaviour,
    in particular to make names an inherent attribute, and allow setting parents directly. The intention is to mirror
    the class structure of xarray.Variable & xarray.DataArray, where Variable is unnamed but DataArray is (optionally)
    named.

    Also allows access to any other node in the tree via unix-like paths, including upwards referencing via '../'.

    (This class is heavily inspired by the anytree library's NodeMixin class.)

    """

    _parent: Tree | None
    _children: dict[str, Tree]

    def __init__(self, children: Mapping[str, Tree] | None = None):
        """Create a parentless node."""
        self._parent = None
        self._children = {}

        if children:
            # shallow copy to avoid modifying arguments in-place (see GH issue #9196)
            self.children = {name: child.copy() for name, child in children.items()}

    @property
    def parent(self) -> Tree | None:
        """Parent of this node."""
        return self._parent

    @parent.setter
    def parent(self: Tree, new_parent: Tree) -> None:
        raise AttributeError(
            "Cannot set parent attribute directly, you must modify the children of the other node instead using dict-like syntax"
        )

    def _set_parent(
        self, new_parent: Tree | None, child_name: str | None = None
    ) -> None:
        # TODO is it possible to refactor in a way that removes this private method?

        if new_parent is not None and not isinstance(new_parent, TreeNode):
            raise TypeError(
                "Parent nodes must be of type DataTree or None, "
                f"not type {type(new_parent)}"
            )

        old_parent = self._parent
        if new_parent is not old_parent:
            self._check_loop(new_parent)
            self._detach(old_parent)
            self._attach(new_parent, child_name)

    def _check_loop(self, new_parent: Tree | None) -> None:
        """Checks that assignment of this new parent will not create a cycle."""
        if new_parent is not None:
            if new_parent is self:
                raise InvalidTreeError(
                    f"Cannot set parent, as node {self} cannot be a parent of itself."
                )

            if self._is_descendant_of(new_parent):
                raise InvalidTreeError(
                    "Cannot set parent, as intended parent is already a descendant of this node."
                )

    def _is_descendant_of(self, node: Tree) -> bool:
        return any(n is self for n in node.parents)

    def _detach(self, parent: Tree | None) -> None:
        if parent is not None:
            self._pre_detach(parent)
            parents_children = parent.children
            parent._children = {
                name: child
                for name, child in parents_children.items()
                if child is not self
            }
            self._parent = None
            self._post_detach(parent)

    def _attach(self, parent: Tree | None, child_name: str | None = None) -> None:
        if parent is not None:
            if child_name is None:
                raise ValueError(
                    "To directly set parent, child needs a name, but child is unnamed"
                )

            self._pre_attach(parent, child_name)
            parentchildren = parent._children
            assert not any(child is self for child in parentchildren), (
                "Tree is corrupt."
            )
            parentchildren[child_name] = self
            self._parent = parent
            self._post_attach(parent, child_name)
        else:
            self._parent = None

    def orphan(self) -> None:
        """Detach this node from its parent."""
        self._set_parent(new_parent=None)

    @property
    def children(self: Tree) -> Mapping[str, Tree]:
        """Child nodes of this node, stored under a mapping via their names."""
        return Frozen(self._children)

    @children.setter
    def children(self: Tree, children: Mapping[str, Tree]) -> None:
        self._check_children(children)
        children = {**children}

        old_children = self.children
        del self.children
        try:
            self._pre_attach_children(children)
            for name, child in children.items():
                child._set_parent(new_parent=self, child_name=name)
            self._post_attach_children(children)
            assert len(self.children) == len(children)
        except Exception:
            # if something goes wrong then revert to previous children
            self.children = old_children
            raise

    @children.deleter
    def children(self) -> None:
        # TODO this just detaches all the children, it doesn't actually delete them...
        children = self.children
        self._pre_detach_children(children)
        for child in self.children.values():
            child.orphan()
        assert len(self.children) == 0
        self._post_detach_children(children)

    @staticmethod
    def _check_children(children: Mapping[str, Tree]) -> None:
        """Check children for correct types and for any duplicates."""
        if not is_dict_like(children):
            raise TypeError(
                "children must be a dict-like mapping from names to node objects"
            )

        seen = set()
        for name, child in children.items():
            if not isinstance(child, TreeNode):
                raise TypeError(
                    f"Cannot add object {name}. It is of type {type(child)}, "
                    "but can only add children of type DataTree"
                )

            childid = id(child)
            if childid not in seen:
                seen.add(childid)
            else:
                raise InvalidTreeError(
                    f"Cannot add same node {name} multiple times as different children."
                )

    def __repr__(self) -> str:
        return f"TreeNode(children={dict(self._children)})"

    def _pre_detach_children(self: Tree, children: Mapping[str, Tree]) -> None:
        """Method call before detaching `children`."""
        pass

    def _post_detach_children(self: Tree, children: Mapping[str, Tree]) -> None:
        """Method call after detaching `children`."""
        pass

    def _pre_attach_children(self: Tree, children: Mapping[str, Tree]) -> None:
        """Method call before attaching `children`."""
        pass

    def _post_attach_children(self: Tree, children: Mapping[str, Tree]) -> None:
        """Method call after attaching `children`."""
        pass

    def copy(self, *, inherit: bool = True, deep: bool = False) -> Self:
        """
        Returns a copy of this subtree.

        Copies this node and all child nodes.

        If `deep=True`, a deep copy is made of each of the component variables.
        Otherwise, a shallow copy of each of the component variable is made, so
        that the underlying memory region of the new datatree is the same as in
        the original datatree.

        Parameters
        ----------
        inherit : bool
            Whether inherited coordinates defined on parents of this node should
            also be copied onto the new tree. Only relevant if the `parent` of
            this node is not yet, and "Inherited coordinates" appear in its
            repr.
        deep : bool
            Whether each component variable is loaded into memory and copied onto
            the new object. Default is False.

        Returns
        -------
        object : DataTree
            New object with dimensions, attributes, coordinates, name, encoding,
            and data of this node and all child nodes copied from original.

        See Also
        --------
        xarray.Dataset.copy
        pandas.DataFrame.copy
        """
        return self._copy_subtree(inherit=inherit, deep=deep)

    def _copy_subtree(
        self, inherit: bool, deep: bool = False, memo: dict[int, Any] | None = None
    ) -> Self:
        """Copy entire subtree recursively."""
        new_tree = self._copy_node(inherit=inherit, deep=deep, memo=memo)
        for name, child in self.children.items():
            # TODO use `.children[name] = ...` once #9477 is implemented
            new_tree._set(
                name, child._copy_subtree(inherit=False, deep=deep, memo=memo)
            )
        return new_tree

    def _copy_node(
        self, inherit: bool, deep: bool = False, memo: dict[int, Any] | None = None
    ) -> Self:
        """Copy just one node of a tree"""
        new_empty_node = type(self)()
        return new_empty_node

    def __copy__(self) -> Self:
        return self._copy_subtree(inherit=True, deep=False)

    def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
        return self._copy_subtree(inherit=True, deep=True, memo=memo)

    def _iter_parents(self: Tree) -> Iterator[Tree]:
        """Iterate up the tree, starting from the current node's parent."""
        node: Tree | None = self.parent
        while node is not None:
            yield node
            node = node.parent

    def iter_lineage(self: Tree) -> tuple[Tree, ...]:
        """Iterate up the tree, starting from the current node."""
        from warnings import warn

        warn(
            "`iter_lineage` has been deprecated, and in the future will raise an error."
            "Please use `parents` from now on.",
            DeprecationWarning,
            stacklevel=2,
        )
        return (self, *self.parents)

    @property
    def lineage(self: Tree) -> tuple[Tree, ...]:
        """All parent nodes and their parent nodes, starting with the closest."""
        from warnings import warn

        warn(
            "`lineage` has been deprecated, and in the future will raise an error."
            "Please use `parents` from now on.",
            DeprecationWarning,
            stacklevel=2,
        )
        return self.iter_lineage()

    @property
    def parents(self: Tree) -> tuple[Tree, ...]:
        """All parent nodes and their parent nodes, starting with the closest."""
        return tuple(self._iter_parents())

    @property
    def ancestors(self: Tree) -> tuple[Tree, ...]:
        """All parent nodes and their parent nodes, starting with the most distant."""

        from warnings import warn

        warn(
            "`ancestors` has been deprecated, and in the future will raise an error."
            "Please use `parents`. Example: `tuple(reversed(node.parents))`",
            DeprecationWarning,
            stacklevel=2,
        )
        return (*reversed(self.parents), self)

    @property
    def root(self: Tree) -> Tree:
        """Root node of the tree"""
        node = self
        while node.parent is not None:
            node = node.parent
        return node

    @property
    def is_root(self) -> bool:
        """Whether this node is the tree root."""
        return self.parent is None

    @property
    def is_leaf(self) -> bool:
        """
        Whether this node is a leaf node.

        Leaf nodes are defined as nodes which have no children.
        """
        return self.children == {}

    @property
    def leaves(self: Tree) -> tuple[Tree, ...]:
        """
        All leaf nodes.

        Leaf nodes are defined as nodes which have no children.
        """
        return tuple(node for node in self.subtree if node.is_leaf)

    @property
    def siblings(self: Tree) -> dict[str, Tree]:
        """
        Nodes with the same parent as this node.
        """
        if self.parent:
            return {
                name: child
                for name, child in self.parent.children.items()
                if child is not self
            }
        else:
            return {}

    @property
    def subtree(self: Tree) -> Iterator[Tree]:
        """
        Iterate over all nodes in this tree, including both self and all descendants.

        Iterates breadth-first.

        See Also
        --------
        DataTree.subtree_with_keys
        DataTree.descendants
        group_subtrees
        """
        # https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
        queue = collections.deque([self])
        while queue:
            node = queue.popleft()
            yield node
            queue.extend(node.children.values())

    @property
    def subtree_with_keys(self: Tree) -> Iterator[tuple[str, Tree]]:
        """
        Iterate over relative paths and node pairs for all nodes in this tree.

        Iterates breadth-first.

        See Also
        --------
        DataTree.subtree
        DataTree.descendants
        group_subtrees
        """
        queue = collections.deque([(NodePath(), self)])
        while queue:
            path, node = queue.popleft()
            yield str(path), node
            queue.extend((path / name, child) for name, child in node.children.items())

    @property
    def descendants(self: Tree) -> tuple[Tree, ...]:
        """
        Child nodes and all their child nodes.

        Returned in depth-first order.

        See Also
        --------
        DataTree.subtree
        """
        all_nodes = tuple(self.subtree)
        this_node, *descendants = all_nodes
        return tuple(descendants)

    @property
    def level(self: Tree) -> int:
        """
        Level of this node.

        Level means number of parent nodes above this node before reaching the root.
        The root node is at level 0.

        Returns
        -------
        level : int

        See Also
        --------
        depth
        width
        """
        return len(self.parents)

    @property
    def depth(self: Tree) -> int:
        """
        Maximum level of this tree.

        Measured from the root, which has a depth of 0.

        Returns
        -------
        depth : int

        See Also
        --------
        level
        width
        """
        return max(node.level for node in self.root.subtree)

    @property
    def width(self: Tree) -> int:
        """
        Number of nodes at this level in the tree.

        Includes number of immediate siblings, but also "cousins" in other branches and so-on.

        Returns
        -------
        depth : int

        See Also
        --------
        level
        depth
        """
        return len([node for node in self.root.subtree if node.level == self.level])

    def _pre_detach(self: Tree, parent: Tree) -> None:
        """Method call before detaching from `parent`."""
        pass

    def _post_detach(self: Tree, parent: Tree) -> None:
        """Method call after detaching from `parent`."""
        pass

    def _pre_attach(self: Tree, parent: Tree, name: str) -> None:
        """Method call before attaching to `parent`."""
        pass

    def _post_attach(self: Tree, parent: Tree, name: str) -> None:
        """Method call after attaching to `parent`."""
        pass

    def get(self: Tree, key: str, default: Tree | None = None) -> Tree | None:
        """
        Return the child node with the specified key.

        Only looks for the node within the immediate children of this node,
        not in other nodes of the tree.
        """
        if key in self.children:
            return self.children[key]
        else:
            return default

    # TODO `._walk` method to be called by both `_get_item` and `_set_item`

    def _get_item(self: Tree, path: str | NodePath) -> Tree | T_DataArray:
        """
        Returns the object lying at the given path.

        Raises a KeyError if there is no object at the given path.
        """
        if isinstance(path, str):
            path = NodePath(path)

        if path.root:
            current_node = self.root
            root, *parts = list(path.parts)
        else:
            current_node = self
            parts = list(path.parts)

        for part in parts:
            if part == "..":
                if current_node.parent is None:
                    raise KeyError(f"Could not find node at {path}")
                else:
                    current_node = current_node.parent
            elif part in ("", "."):
                pass
            elif current_node.get(part) is None:
                raise KeyError(f"Could not find node at {path}")
            else:
                current_node = current_node.get(part)
        return current_node

    def _set(self: Tree, key: str, val: Tree) -> None:
        """
        Set the child node with the specified key to value.

        Counterpart to the public .get method, and also only works on the immediate node, not other nodes in the tree.
        """
        new_children = {**self.children, key: val}
        self.children = new_children

    def _set_item(
        self: Tree,
        path: str | NodePath,
        item: Tree | T_DataArray,
        new_nodes_along_path: bool = False,
        allow_overwrite: bool = True,
    ) -> None:
        """
        Set a new item in the tree, overwriting anything already present at that path.

        The given value either forms a new node of the tree or overwrites an
        existing item at that location.

        Parameters
        ----------
        path
        item
        new_nodes_along_path : bool
            If true, then if necessary new nodes will be created along the
            given path, until the tree can reach the specified location.
        allow_overwrite : bool
            Whether or not to overwrite any existing node at the location given
            by path.

        Raises
        ------
        KeyError
            If node cannot be reached, and new_nodes_along_path=False.
            Or if a node already exists at the specified path, and allow_overwrite=False.
        """
        if isinstance(path, str):
            path = NodePath(path)

        if not path.name:
            raise ValueError("Can't set an item under a path which has no name")

        if path.root:
            # absolute path
            current_node = self.root
            root, *parts, name = path.parts
        else:
            # relative path
            current_node = self
            *parts, name = path.parts

        if parts:
            # Walk to location of new node, creating intermediate node objects as we go if necessary
            for part in parts:
                if part == "..":
                    if current_node.parent is None:
                        # We can't create a parent if `new_nodes_along_path=True` as we wouldn't know what to name it
                        raise KeyError(f"Could not reach node at path {path}")
                    else:
                        current_node = current_node.parent
                elif part in ("", "."):
                    pass
                elif part in current_node.children:
                    current_node = current_node.children[part]
                elif new_nodes_along_path:
                    # Want child classes (i.e. DataTree) to populate tree with their own types
                    new_node = type(self)()
                    current_node._set(part, new_node)
                    current_node = current_node.children[part]
                else:
                    raise KeyError(f"Could not reach node at path {path}")

        if name in current_node.children:
            # Deal with anything already existing at this location
            if allow_overwrite:
                current_node._set(name, item)
            else:
                raise KeyError(f"Already a node object at path {path}")
        else:
            current_node._set(name, item)

    def __delitem__(self: Tree, key: str) -> None:
        """Remove a child node from this tree object."""
        if key in self.children:
            child = self._children[key]
            del self._children[key]
            child.orphan()
        else:
            raise KeyError(key)

    def same_tree(self, other: Tree) -> bool:
        """True if other node is in the same tree as this node."""
        return self.root is other.root


AnyNamedNode = TypeVar("AnyNamedNode", bound="NamedNode")


def _validate_name(name: str | None) -> None:
    if name is not None:
        if not isinstance(name, str):
            raise TypeError("node name must be a string or None")
        if "/" in name:
            raise ValueError("node names cannot contain forward slashes")


class NamedNode(TreeNode, Generic[Tree]):
    """
    A TreeNode which knows its own name.

    Implements path-like relationships to other nodes in its tree.
    """

    _name: str | None
    _parent: Tree | None
    _children: dict[str, Tree]

    def __init__(self, name=None, children=None):
        super().__init__(children=children)
        _validate_name(name)
        self._name = name

    @property
    def name(self) -> str | None:
        """The name of this node."""
        return self._name

    @name.setter
    def name(self, name: str | None) -> None:
        if self.parent is not None:
            raise ValueError(
                "cannot set the name of a node which already has a parent. "
                "Consider creating a detached copy of this node via .copy() "
                "on the parent node."
            )
        _validate_name(name)
        self._name = name

    def __repr__(self, level=0):
        repr_value = "\t" * level + self.__str__() + "\n"
        for child in self.children:
            repr_value += self.get(child).__repr__(level + 1)
        return repr_value

    def __str__(self) -> str:
        name_repr = repr(self.name) if self.name is not None else ""
        return f"NamedNode({name_repr})"

    def _post_attach(self, parent: Self, name: str) -> None:
        """Ensures child has name attribute corresponding to key under which it has been stored."""
        _validate_name(name)  # is this check redundant?
        self._name = name

    def _copy_node(
        self, inherit: bool, deep: bool = False, memo: dict[int, Any] | None = None
    ) -> Self:
        """Copy just one node of a tree"""
        new_node = super()._copy_node(inherit=inherit, deep=deep, memo=memo)
        new_node._name = self.name
        return new_node

    @property
    def path(self) -> str:
        """Return the file-like path from the root to this node."""
        if self.is_root:
            return "/"
        else:
            root, *ancestors = tuple(reversed(self.parents))
            # don't include name of root because (a) root might not have a name & (b) we want path relative to root.
            names = [*(node.name for node in ancestors), self.name]
            return "/" + "/".join(names)

    def relative_to(self: NamedNode, other: NamedNode) -> str:
        """
        Compute the relative path from this node to node `other`.

        If other is not in this tree, or it's otherwise impossible, raise a ValueError.
        """
        if not self.same_tree(other):
            raise NotFoundInTreeError(
                "Cannot find relative path because nodes do not lie within the same tree"
            )

        this_path = NodePath(self.path)
        if any(other.path == parent.path for parent in (self, *self.parents)):
            return str(this_path.relative_to(other.path))
        else:
            common_ancestor = self.find_common_ancestor(other)
            path_to_common_ancestor = other._path_to_ancestor(common_ancestor)
            return str(
                path_to_common_ancestor / this_path.relative_to(common_ancestor.path)
            )

    def find_common_ancestor(self, other: NamedNode) -> NamedNode:
        """
        Find the first common ancestor of two nodes in the same tree.

        Raise ValueError if they are not in the same tree.
        """
        if self is other:
            return self

        other_paths = [op.path for op in other.parents]
        for parent in (self, *self.parents):
            if parent.path in other_paths:
                return parent

        raise NotFoundInTreeError(
            "Cannot find common ancestor because nodes do not lie within the same tree"
        )

    def _path_to_ancestor(self, ancestor: NamedNode) -> NodePath:
        """Return the relative path from this node to the given ancestor node"""

        if not self.same_tree(ancestor):
            raise NotFoundInTreeError(
                "Cannot find relative path to ancestor because nodes do not lie within the same tree"
            )
        if ancestor.path not in [a.path for a in (self, *self.parents)]:
            raise NotFoundInTreeError(
                "Cannot find relative path to ancestor because given node is not an ancestor of this node"
            )

        parents_paths = [parent.path for parent in (self, *self.parents)]
        generation_gap = list(parents_paths).index(ancestor.path)
        path_upwards = "../" * generation_gap if generation_gap > 0 else "."
        return NodePath(path_upwards)


class TreeIsomorphismError(ValueError):
    """Error raised if two tree objects do not share the same node structure."""


def group_subtrees(
    *trees: AnyNamedNode,
) -> Iterator[tuple[str, tuple[AnyNamedNode, ...]]]:
    """Iterate over subtrees grouped by relative paths in breadth-first order.

    `group_subtrees` allows for applying operations over all nodes of a
    collection of DataTree objects with nodes matched by their relative paths.

    Example usage::

        outputs = {}
        for path, (node_a, node_b) in group_subtrees(tree_a, tree_b):
            outputs[path] = f(node_a, node_b)
        tree_out = DataTree.from_dict(outputs)

    Parameters
    ----------
    *trees : Tree
        Trees to iterate over.

    Yields
    ------
    A tuple of the relative path and corresponding nodes for each subtree in the
    inputs.

    Raises
    ------
    TreeIsomorphismError
        If trees are not isomorphic, i.e., they have different structures.

    See also
    --------
    DataTree.subtree
    DataTree.subtree_with_keys
    """
    if not trees:
        raise TypeError("must pass at least one tree object")

    # https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode
    queue = collections.deque([(NodePath(), trees)])

    while queue:
        path, active_nodes = queue.popleft()

        # yield before raising an error, in case the caller chooses to exit
        # iteration early
        yield str(path), active_nodes

        first_node = active_nodes[0]
        if any(
            sibling.children.keys() != first_node.children.keys()
            for sibling in active_nodes[1:]
        ):
            path_str = "root node" if not path.parts else f"node {str(path)!r}"
            child_summary = " vs ".join(
                str(list(node.children)) for node in active_nodes
            )
            raise TreeIsomorphismError(
                f"children at {path_str} do not match: {child_summary}"
            )

        for name in first_node.children:
            child_nodes = tuple(node.children[name] for node in active_nodes)
            queue.append((path / name, child_nodes))


def zip_subtrees(
    *trees: AnyNamedNode,
) -> Iterator[tuple[AnyNamedNode, ...]]:
    """Zip together subtrees aligned by relative path."""
    for _, nodes in group_subtrees(*trees):
        yield nodes