File: utils.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (1351 lines) | stat: -rw-r--r-- 40,203 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
"""Internal utilities; not for external use"""

# Some functions in this module are derived from functions in pandas. For
# reference, here is a copy of the pandas copyright notice:

# BSD 3-Clause License

# Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
# All rights reserved.

# Copyright (c) 2011-2022, Open source contributors.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:

# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.

# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.

# * Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import annotations

import contextlib
import difflib
import functools
import importlib
import inspect
import io
import itertools
import math
import os
import re
import sys
import warnings
from collections.abc import (
    Callable,
    Collection,
    Container,
    Hashable,
    ItemsView,
    Iterable,
    Iterator,
    KeysView,
    Mapping,
    MutableMapping,
    MutableSet,
    Sequence,
    ValuesView,
)
from collections.abc import (
    Set as AbstractSet,
)
from enum import Enum
from pathlib import Path
from types import EllipsisType, ModuleType
from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    Literal,
    TypeGuard,
    TypeVar,
    cast,
    overload,
)

import numpy as np
import pandas as pd

from xarray.namedarray.utils import (  # noqa: F401
    ReprObject,
    drop_missing_dims,
    either_dict_or_kwargs,
    infix_dims,
    is_dask_collection,
    is_dict_like,
    is_duck_array,
    is_duck_dask_array,
    module_available,
    to_0d_object_array,
)

if TYPE_CHECKING:
    from xarray.core.types import Dims, ErrorOptionsWithWarn

K = TypeVar("K")
V = TypeVar("V")
T = TypeVar("T")


def is_allowed_extension_array_dtype(dtype: Any):
    return pd.api.types.is_extension_array_dtype(dtype) and not isinstance(  # noqa: TID251
        dtype, pd.StringDtype
    )


def is_allowed_extension_array(array: Any) -> bool:
    return (
        hasattr(array, "dtype")
        and is_allowed_extension_array_dtype(array.dtype)
        and not isinstance(array, pd.arrays.NumpyExtensionArray)  # type: ignore[attr-defined]
    )


def alias_message(old_name: str, new_name: str) -> str:
    return f"{old_name} has been deprecated. Use {new_name} instead."


def alias_warning(old_name: str, new_name: str, stacklevel: int = 3) -> None:
    warnings.warn(
        alias_message(old_name, new_name), FutureWarning, stacklevel=stacklevel
    )


def alias(obj: Callable[..., T], old_name: str) -> Callable[..., T]:
    assert isinstance(old_name, str)

    @functools.wraps(obj)
    def wrapper(*args, **kwargs):
        alias_warning(old_name, obj.__name__)
        return obj(*args, **kwargs)

    wrapper.__doc__ = alias_message(old_name, obj.__name__)
    return wrapper


def did_you_mean(
    word: Hashable, possibilities: Iterable[Hashable], *, n: int = 10
) -> str:
    """
    Suggest a few correct words based on a list of possibilities

    Parameters
    ----------
    word : Hashable
        Word to compare to a list of possibilities.
    possibilities : Iterable of Hashable
        The iterable of Hashable that contains the correct values.
    n : int, default: 10
        Maximum number of suggestions to show.

    Examples
    --------
    >>> did_you_mean("bluch", ("blech", "gray_r", 1, None, (2, 56)))
    "Did you mean one of ('blech',)?"
    >>> did_you_mean("none", ("blech", "gray_r", 1, None, (2, 56)))
    'Did you mean one of (None,)?'

    See also
    --------
    https://en.wikipedia.org/wiki/String_metric
    """
    # Convert all values to string, get_close_matches doesn't handle all hashables:
    possibilities_str: dict[str, Hashable] = {str(k): k for k in possibilities}

    msg = ""
    if len(
        best_str := difflib.get_close_matches(
            str(word), list(possibilities_str.keys()), n=n
        )
    ):
        best = tuple(possibilities_str[k] for k in best_str)
        msg = f"Did you mean one of {best}?"

    return msg


def get_valid_numpy_dtype(array: np.ndarray | pd.Index) -> np.dtype:
    """Return a numpy compatible dtype from either
    a numpy array or a pandas.Index.

    Used for wrapping a pandas.Index as an xarray.Variable.

    """
    if isinstance(array, pd.PeriodIndex):
        return np.dtype("O")

    if hasattr(array, "categories"):
        # category isn't a real numpy dtype
        dtype = array.categories.dtype
        if not is_valid_numpy_dtype(dtype):
            dtype = np.dtype("O")
        return dtype

    if not is_valid_numpy_dtype(array.dtype):
        return np.dtype("O")

    return array.dtype  # type: ignore[return-value]


def maybe_coerce_to_str(index, original_coords):
    """maybe coerce a pandas Index back to a nunpy array of type str

    pd.Index uses object-dtype to store str - try to avoid this for coords
    """
    from xarray.core import dtypes

    try:
        result_type = dtypes.result_type(*original_coords)
    except TypeError:
        pass
    else:
        if result_type.kind in "SU":
            index = np.asarray(index, dtype=result_type.type)

    return index


def maybe_wrap_array(original, new_array):
    """Wrap a transformed array with __array_wrap__ if it can be done safely.

    This lets us treat arbitrary functions that take and return ndarray objects
    like ufuncs, as long as they return an array with the same shape.
    """
    # in case func lost array's metadata
    if isinstance(new_array, np.ndarray) and new_array.shape == original.shape:
        return original.__array_wrap__(new_array)
    else:
        return new_array


def equivalent(first: T, second: T) -> bool:
    """Compare two objects for equivalence (identity or equality), using
    array_equiv if either object is an ndarray. If both objects are lists,
    equivalent is sequentially called on all the elements.
    """
    # TODO: refactor to avoid circular import
    from xarray.core import duck_array_ops

    if first is second:
        return True
    if isinstance(first, np.ndarray) or isinstance(second, np.ndarray):
        return duck_array_ops.array_equiv(first, second)
    if isinstance(first, list) or isinstance(second, list):
        return list_equiv(first, second)  # type: ignore[arg-type]
    return (first == second) or (pd.isnull(first) and pd.isnull(second))  # type: ignore[call-overload]


def list_equiv(first: Sequence[T], second: Sequence[T]) -> bool:
    if len(first) != len(second):
        return False
    return all(itertools.starmap(equivalent, zip(first, second, strict=True)))


def peek_at(iterable: Iterable[T]) -> tuple[T, Iterator[T]]:
    """Returns the first value from iterable, as well as a new iterator with
    the same content as the original iterable
    """
    gen = iter(iterable)
    peek = next(gen)
    return peek, itertools.chain([peek], gen)


def update_safety_check(
    first_dict: Mapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> None:
    """Check the safety of updating one dictionary with another.

    Raises ValueError if dictionaries have non-compatible values for any key,
    where compatibility is determined by identity (they are the same item) or
    the `compat` function.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        All items in the second dictionary are checked against for conflicts
        against items in the first dictionary.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.
    """
    for k, v in second_dict.items():
        if k in first_dict and not compat(v, first_dict[k]):
            raise ValueError(
                "unsafe to merge dictionaries without "
                f"overriding values; conflicting key {k!r}"
            )


def remove_incompatible_items(
    first_dict: MutableMapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> None:
    """Remove incompatible items from the first dictionary in-place.

    Items are retained if their keys are found in both dictionaries and the
    values are compatible.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        Mappings to merge.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.
    """
    for k in list(first_dict):
        if k not in second_dict or not compat(first_dict[k], second_dict[k]):
            del first_dict[k]


def is_full_slice(value: Any) -> bool:
    return isinstance(value, slice) and value == slice(None)


def is_list_like(value: Any) -> TypeGuard[list | tuple]:
    return isinstance(value, list | tuple)


def _is_scalar(value, include_0d):
    from xarray.core.variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES

    if include_0d:
        include_0d = getattr(value, "ndim", None) == 0
    return (
        include_0d
        or isinstance(value, str | bytes)
        or not (
            isinstance(value, (Iterable,) + NON_NUMPY_SUPPORTED_ARRAY_TYPES)
            or hasattr(value, "__array_function__")
            or hasattr(value, "__array_namespace__")
        )
    )


def is_scalar(value: Any, include_0d: bool = True) -> TypeGuard[Hashable]:
    """Whether to treat a value as a scalar.

    Any non-iterable, string, or 0-D array
    """
    return _is_scalar(value, include_0d)


def is_valid_numpy_dtype(dtype: Any) -> bool:
    try:
        np.dtype(dtype)
    except (TypeError, ValueError):
        return False
    else:
        return True


def to_0d_array(value: Any) -> np.ndarray:
    """Given a value, wrap it in a 0-D numpy.ndarray."""
    if np.isscalar(value) or (isinstance(value, np.ndarray) and value.ndim == 0):
        return np.array(value)
    else:
        return to_0d_object_array(value)


def dict_equiv(
    first: Mapping[K, V],
    second: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> bool:
    """Test equivalence of two dict-like objects. If any of the values are
    numpy arrays, compare them correctly.

    Parameters
    ----------
    first, second : dict-like
        Dictionaries to compare for equality
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.

    Returns
    -------
    equals : bool
        True if the dictionaries are equal
    """
    for k in first:
        if k not in second or not compat(first[k], second[k]):
            return False
    return all(k in first for k in second)


def compat_dict_intersection(
    first_dict: Mapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
    """Return the intersection of two dictionaries as a new dictionary.

    Items are retained if their keys are found in both dictionaries and the
    values are compatible.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        Mappings to merge.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.

    Returns
    -------
    intersection : dict
        Intersection of the contents.
    """
    new_dict = dict(first_dict)
    remove_incompatible_items(new_dict, second_dict, compat)
    return new_dict


def compat_dict_union(
    first_dict: Mapping[K, V],
    second_dict: Mapping[K, V],
    compat: Callable[[V, V], bool] = equivalent,
) -> MutableMapping[K, V]:
    """Return the union of two dictionaries as a new dictionary.

    An exception is raised if any keys are found in both dictionaries and the
    values are not compatible.

    Parameters
    ----------
    first_dict, second_dict : dict-like
        Mappings to merge.
    compat : function, optional
        Binary operator to determine if two values are compatible. By default,
        checks for equivalence.

    Returns
    -------
    union : dict
        union of the contents.
    """
    new_dict = dict(first_dict)
    update_safety_check(first_dict, second_dict, compat)
    new_dict.update(second_dict)
    return new_dict


class Frozen(Mapping[K, V]):
    """Wrapper around an object implementing the mapping interface to make it
    immutable. If you really want to modify the mapping, the mutable version is
    saved under the `mapping` attribute.
    """

    __slots__ = ("mapping",)

    def __init__(self, mapping: Mapping[K, V]):
        self.mapping = mapping

    def __getitem__(self, key: K) -> V:
        return self.mapping[key]

    def __iter__(self) -> Iterator[K]:
        return iter(self.mapping)

    def __len__(self) -> int:
        return len(self.mapping)

    def __contains__(self, key: object) -> bool:
        return key in self.mapping

    def __repr__(self) -> str:
        return f"{type(self).__name__}({self.mapping!r})"


def FrozenDict(*args, **kwargs) -> Frozen:
    return Frozen(dict(*args, **kwargs))


class FrozenMappingWarningOnValuesAccess(Frozen[K, V]):
    """
    Class which behaves like a Mapping but warns if the values are accessed.

    Temporary object to aid in deprecation cycle of `Dataset.dims` (see GH issue #8496).
    `Dataset.dims` is being changed from returning a mapping of dimension names to lengths to just
    returning a frozen set of dimension names (to increase consistency with `DataArray.dims`).
    This class retains backwards compatibility but raises a warning only if the return value
    of ds.dims is used like a dictionary (i.e. it doesn't raise a warning if used in a way that
    would also be valid for a FrozenSet, e.g. iteration).
    """

    __slots__ = ("mapping",)

    def _warn(self) -> None:
        emit_user_level_warning(
            "The return type of `Dataset.dims` will be changed to return a set of dimension names in future, "
            "in order to be more consistent with `DataArray.dims`. To access a mapping from dimension names to lengths, "
            "please use `Dataset.sizes`.",
            FutureWarning,
        )

    def __getitem__(self, key: K) -> V:
        self._warn()
        return super().__getitem__(key)

    @overload
    def get(self, key: K, /) -> V | None: ...

    @overload
    def get(self, key: K, /, default: V | T) -> V | T: ...

    def get(self, key: K, default: T | None = None) -> V | T | None:
        self._warn()
        return super().get(key, default)

    def keys(self) -> KeysView[K]:
        self._warn()
        return super().keys()

    def items(self) -> ItemsView[K, V]:
        self._warn()
        return super().items()

    def values(self) -> ValuesView[V]:
        self._warn()
        return super().values()


class FilteredMapping(Mapping[K, V]):
    """Implements the Mapping interface. Uses the wrapped mapping for item lookup
    and a separate wrapped keys collection for iteration.

    Can be used to construct a mapping object from another dict-like object without
    eagerly accessing its items or when a mapping object is expected but only
    iteration over keys is actually used.

    Note: keys should be a subset of mapping, but FilteredMapping does not
    validate consistency of the provided `keys` and `mapping`. It is the
    caller's responsibility to ensure that they are suitable for the task at
    hand.
    """

    __slots__ = ("keys_", "mapping")

    def __init__(self, keys: Collection[K], mapping: Mapping[K, V]):
        self.keys_ = keys  # .keys is already a property on Mapping
        self.mapping = mapping

    def __getitem__(self, key: K) -> V:
        if key not in self.keys_:
            raise KeyError(key)
        return self.mapping[key]

    def __iter__(self) -> Iterator[K]:
        return iter(self.keys_)

    def __len__(self) -> int:
        return len(self.keys_)

    def __repr__(self) -> str:
        return f"{type(self).__name__}(keys={self.keys_!r}, mapping={self.mapping!r})"


class OrderedSet(MutableSet[T]):
    """A simple ordered set.

    The API matches the builtin set, but it preserves insertion order of elements, like
    a dict. Note that, unlike in an OrderedDict, equality tests are not order-sensitive.
    """

    _d: dict[T, None]

    __slots__ = ("_d",)

    def __init__(self, values: Iterable[T] | None = None):
        self._d = {}
        if values is not None:
            self.update(values)

    # Required methods for MutableSet

    def __contains__(self, value: Hashable) -> bool:
        return value in self._d

    def __iter__(self) -> Iterator[T]:
        return iter(self._d)

    def __len__(self) -> int:
        return len(self._d)

    def add(self, value: T) -> None:
        self._d[value] = None

    def discard(self, value: T) -> None:
        del self._d[value]

    # Additional methods

    def update(self, values: Iterable[T]) -> None:
        self._d.update(dict.fromkeys(values))

    def __repr__(self) -> str:
        return f"{type(self).__name__}({list(self)!r})"


class NdimSizeLenMixin:
    """Mixin class that extends a class that defines a ``shape`` property to
    one that also defines ``ndim``, ``size`` and ``__len__``.
    """

    __slots__ = ()

    @property
    def ndim(self: Any) -> int:
        """
        Number of array dimensions.

        See Also
        --------
        numpy.ndarray.ndim
        """
        return len(self.shape)

    @property
    def size(self: Any) -> int:
        """
        Number of elements in the array.

        Equal to ``np.prod(a.shape)``, i.e., the product of the array’s dimensions.

        See Also
        --------
        numpy.ndarray.size
        """
        return math.prod(self.shape)

    def __len__(self: Any) -> int:
        try:
            return self.shape[0]
        except IndexError as err:
            raise TypeError("len() of unsized object") from err


class NDArrayMixin(NdimSizeLenMixin):
    """Mixin class for making wrappers of N-dimensional arrays that conform to
    the ndarray interface required for the data argument to Variable objects.

    A subclass should set the `array` property and override one or more of
    `dtype`, `shape` and `__getitem__`.
    """

    __slots__ = ()

    @property
    def dtype(self: Any) -> np.dtype:
        return self.array.dtype

    @property
    def shape(self: Any) -> tuple[int, ...]:
        return self.array.shape

    def __getitem__(self: Any, key):
        return self.array[key]

    def __repr__(self: Any) -> str:
        return f"{type(self).__name__}(array={self.array!r})"


@contextlib.contextmanager
def close_on_error(f):
    """Context manager to ensure that a file opened by xarray is closed if an
    exception is raised before the user sees the file object.
    """
    try:
        yield
    except Exception:
        f.close()
        raise


def is_remote_uri(path: str) -> bool:
    """Finds URLs of the form protocol:// or protocol::

    This also matches for http[s]://, which were the only remote URLs
    supported in <=v0.16.2.
    """
    return bool(re.search(r"^[a-z][a-z0-9]*(\://|\:\:)", path))


def read_magic_number_from_file(filename_or_obj, count=8) -> bytes:
    # check byte header to determine file type
    if not isinstance(filename_or_obj, io.IOBase):
        raise TypeError(f"cannot read the magic number from {type(filename_or_obj)}")
    if filename_or_obj.tell() != 0:
        filename_or_obj.seek(0)
    magic_number = filename_or_obj.read(count)
    filename_or_obj.seek(0)
    return magic_number


def try_read_magic_number_from_path(pathlike, count=8) -> bytes | None:
    if isinstance(pathlike, str) or hasattr(pathlike, "__fspath__"):
        path = os.fspath(pathlike)
        try:
            with open(path, "rb") as f:
                return read_magic_number_from_file(f, count)
        except (FileNotFoundError, IsADirectoryError, TypeError):
            pass
    return None


def try_read_magic_number_from_file_or_path(filename_or_obj, count=8) -> bytes | None:
    magic_number = try_read_magic_number_from_path(filename_or_obj, count)
    if magic_number is None:
        with contextlib.suppress(TypeError):
            magic_number = read_magic_number_from_file(filename_or_obj, count)
    return magic_number


def is_uniform_spaced(arr, **kwargs) -> bool:
    """Return True if values of an array are uniformly spaced and sorted.

    >>> is_uniform_spaced(range(5))
    True
    >>> is_uniform_spaced([-4, 0, 100])
    False

    kwargs are additional arguments to ``np.isclose``
    """
    arr = np.array(arr, dtype=float)
    diffs = np.diff(arr)
    return bool(np.isclose(diffs.min(), diffs.max(), **kwargs))


def hashable(v: Any) -> TypeGuard[Hashable]:
    """Determine whether `v` can be hashed."""
    try:
        hash(v)
    except TypeError:
        return False
    return True


def iterable(v: Any) -> TypeGuard[Iterable[Any]]:
    """Determine whether `v` is iterable."""
    try:
        iter(v)
    except TypeError:
        return False
    return True


def iterable_of_hashable(v: Any) -> TypeGuard[Iterable[Hashable]]:
    """Determine whether `v` is an Iterable of Hashables."""
    try:
        it = iter(v)
    except TypeError:
        return False
    return all(hashable(elm) for elm in it)


def decode_numpy_dict_values(attrs: Mapping[K, V]) -> dict[K, V]:
    """Convert attribute values from numpy objects to native Python objects,
    for use in to_dict
    """
    attrs = dict(attrs)
    for k, v in attrs.items():
        if isinstance(v, np.ndarray):
            attrs[k] = cast(V, v.tolist())
        elif isinstance(v, np.generic):
            attrs[k] = v.item()
    return attrs


def ensure_us_time_resolution(val):
    """Convert val out of numpy time, for use in to_dict.
    Needed because of numpy bug GH#7619"""
    if np.issubdtype(val.dtype, np.datetime64):
        val = val.astype("datetime64[us]")
    elif np.issubdtype(val.dtype, np.timedelta64):
        val = val.astype("timedelta64[us]")
    return val


class HiddenKeyDict(MutableMapping[K, V]):
    """Acts like a normal dictionary, but hides certain keys."""

    __slots__ = ("_data", "_hidden_keys")

    # ``__init__`` method required to create instance from class.

    def __init__(self, data: MutableMapping[K, V], hidden_keys: Iterable[K]):
        self._data = data
        self._hidden_keys = frozenset(hidden_keys)

    def _raise_if_hidden(self, key: K) -> None:
        if key in self._hidden_keys:
            raise KeyError(f"Key `{key!r}` is hidden.")

    # The next five methods are requirements of the ABC.
    def __setitem__(self, key: K, value: V) -> None:
        self._raise_if_hidden(key)
        self._data[key] = value

    def __getitem__(self, key: K) -> V:
        self._raise_if_hidden(key)
        return self._data[key]

    def __delitem__(self, key: K) -> None:
        self._raise_if_hidden(key)
        del self._data[key]

    def __iter__(self) -> Iterator[K]:
        for k in self._data:
            if k not in self._hidden_keys:
                yield k

    def __len__(self) -> int:
        num_hidden = len(self._hidden_keys & self._data.keys())
        return len(self._data) - num_hidden


def get_temp_dimname(dims: Container[Hashable], new_dim: Hashable) -> Hashable:
    """Get an new dimension name based on new_dim, that is not used in dims.
    If the same name exists, we add an underscore(s) in the head.

    Example1:
        dims: ['a', 'b', 'c']
        new_dim: ['_rolling']
        -> ['_rolling']
    Example2:
        dims: ['a', 'b', 'c', '_rolling']
        new_dim: ['_rolling']
        -> ['__rolling']
    """
    while new_dim in dims:
        new_dim = "_" + str(new_dim)
    return new_dim


def drop_dims_from_indexers(
    indexers: Mapping[Any, Any],
    dims: Iterable[Hashable] | Mapping[Any, int],
    missing_dims: ErrorOptionsWithWarn,
) -> Mapping[Hashable, Any]:
    """Depending on the setting of missing_dims, drop any dimensions from indexers that
    are not present in dims.

    Parameters
    ----------
    indexers : dict
    dims : sequence
    missing_dims : {"raise", "warn", "ignore"}
    """

    if missing_dims == "raise":
        invalid = indexers.keys() - set(dims)
        if invalid:
            raise ValueError(
                f"Dimensions {invalid} do not exist. Expected one or more of {dims}"
            )

        return indexers

    elif missing_dims == "warn":
        # don't modify input
        indexers = dict(indexers)

        invalid = indexers.keys() - set(dims)
        if invalid:
            warnings.warn(
                f"Dimensions {invalid} do not exist. Expected one or more of {dims}",
                stacklevel=2,
            )
        for key in invalid:
            indexers.pop(key)

        return indexers

    elif missing_dims == "ignore":
        return {key: val for key, val in indexers.items() if key in dims}

    else:
        raise ValueError(
            f"Unrecognised option {missing_dims} for missing_dims argument"
        )


@overload
def parse_dims_as_tuple(
    dim: Dims,
    all_dims: tuple[Hashable, ...],
    *,
    check_exists: bool = True,
    replace_none: Literal[True] = True,
) -> tuple[Hashable, ...]: ...


@overload
def parse_dims_as_tuple(
    dim: Dims,
    all_dims: tuple[Hashable, ...],
    *,
    check_exists: bool = True,
    replace_none: Literal[False],
) -> tuple[Hashable, ...] | EllipsisType | None: ...


def parse_dims_as_tuple(
    dim: Dims,
    all_dims: tuple[Hashable, ...],
    *,
    check_exists: bool = True,
    replace_none: bool = True,
) -> tuple[Hashable, ...] | EllipsisType | None:
    """Parse one or more dimensions.

    A single dimension must be always a str, multiple dimensions
    can be Hashables. This supports e.g. using a tuple as a dimension.
    If you supply e.g. a set of dimensions the order cannot be
    conserved, but for sequences it will be.

    Parameters
    ----------
    dim : str, Iterable of Hashable, "..." or None
        Dimension(s) to parse.
    all_dims : tuple of Hashable
        All possible dimensions.
    check_exists: bool, default: True
        if True, check if dim is a subset of all_dims.
    replace_none : bool, default: True
        If True, return all_dims if dim is None or "...".

    Returns
    -------
    parsed_dims : tuple of Hashable
        Input dimensions as a tuple.
    """
    if dim is None or dim is ...:
        if replace_none:
            return all_dims
        return dim
    if isinstance(dim, str):
        dim = (dim,)
    if check_exists:
        _check_dims(set(dim), set(all_dims))
    return tuple(dim)


@overload
def parse_dims_as_set(
    dim: Dims,
    all_dims: set[Hashable],
    *,
    check_exists: bool = True,
    replace_none: Literal[True] = True,
) -> set[Hashable]: ...


@overload
def parse_dims_as_set(
    dim: Dims,
    all_dims: set[Hashable],
    *,
    check_exists: bool = True,
    replace_none: Literal[False],
) -> set[Hashable] | EllipsisType | None: ...


def parse_dims_as_set(
    dim: Dims,
    all_dims: set[Hashable],
    *,
    check_exists: bool = True,
    replace_none: bool = True,
) -> set[Hashable] | EllipsisType | None:
    """Like parse_dims_as_tuple, but returning a set instead of a tuple."""
    # TODO: Consider removing parse_dims_as_tuple?
    if dim is None or dim is ...:
        if replace_none:
            return all_dims
        return dim
    if isinstance(dim, str):
        dim = {dim}
    dim = set(dim)
    if check_exists:
        _check_dims(dim, all_dims)
    return dim


@overload
def parse_ordered_dims(
    dim: Dims,
    all_dims: tuple[Hashable, ...],
    *,
    check_exists: bool = True,
    replace_none: Literal[True] = True,
) -> tuple[Hashable, ...]: ...


@overload
def parse_ordered_dims(
    dim: Dims,
    all_dims: tuple[Hashable, ...],
    *,
    check_exists: bool = True,
    replace_none: Literal[False],
) -> tuple[Hashable, ...] | EllipsisType | None: ...


def parse_ordered_dims(
    dim: Dims,
    all_dims: tuple[Hashable, ...],
    *,
    check_exists: bool = True,
    replace_none: bool = True,
) -> tuple[Hashable, ...] | EllipsisType | None:
    """Parse one or more dimensions.

    A single dimension must be always a str, multiple dimensions
    can be Hashables. This supports e.g. using a tuple as a dimension.
    An ellipsis ("...") in a sequence of dimensions will be
    replaced with all remaining dimensions. This only makes sense when
    the input is a sequence and not e.g. a set.

    Parameters
    ----------
    dim : str, Sequence of Hashable or "...", "..." or None
        Dimension(s) to parse. If "..." appears in a Sequence
        it always gets replaced with all remaining dims
    all_dims : tuple of Hashable
        All possible dimensions.
    check_exists: bool, default: True
        if True, check if dim is a subset of all_dims.
    replace_none : bool, default: True
        If True, return all_dims if dim is None.

    Returns
    -------
    parsed_dims : tuple of Hashable
        Input dimensions as a tuple.
    """
    if dim is not None and dim is not ... and not isinstance(dim, str) and ... in dim:
        dims_set: set[Hashable | EllipsisType] = set(dim)
        all_dims_set = set(all_dims)
        if check_exists:
            _check_dims(dims_set, all_dims_set)
        if len(all_dims_set) != len(all_dims):
            raise ValueError("Cannot use ellipsis with repeated dims")
        dims = tuple(dim)
        if dims.count(...) > 1:
            raise ValueError("More than one ellipsis supplied")
        other_dims = tuple(d for d in all_dims if d not in dims_set)
        idx = dims.index(...)
        return dims[:idx] + other_dims + dims[idx + 1 :]
    else:
        # mypy cannot resolve that the sequence cannot contain "..."
        return parse_dims_as_tuple(  # type: ignore[call-overload]
            dim=dim,
            all_dims=all_dims,
            check_exists=check_exists,
            replace_none=replace_none,
        )


def _check_dims(dim: AbstractSet[Hashable], all_dims: AbstractSet[Hashable]) -> None:
    wrong_dims = (dim - all_dims) - {...}
    if wrong_dims:
        wrong_dims_str = ", ".join(f"'{d}'" for d in wrong_dims)
        raise ValueError(
            f"Dimension(s) {wrong_dims_str} do not exist. Expected one or more of {all_dims}"
        )


_Accessor = TypeVar("_Accessor")


class UncachedAccessor(Generic[_Accessor]):
    """Acts like a property, but on both classes and class instances

    This class is necessary because some tools (e.g. pydoc and sphinx)
    inspect classes for which property returns itself and not the
    accessor.
    """

    def __init__(self, accessor: type[_Accessor]) -> None:
        self._accessor = accessor

    @overload
    def __get__(self, obj: None, cls) -> type[_Accessor]: ...

    @overload
    def __get__(self, obj: object, cls) -> _Accessor: ...

    def __get__(self, obj: object | None, cls) -> type[_Accessor] | _Accessor:
        if obj is None:
            return self._accessor

        return self._accessor(obj)  # type: ignore[call-arg]  # assume it is a valid accessor!


# Singleton type, as per https://github.com/python/typing/pull/240
class Default(Enum):
    token = 0


_default = Default.token


def iterate_nested(nested_list):
    for item in nested_list:
        if isinstance(item, list):
            yield from iterate_nested(item)
        else:
            yield item


def contains_only_chunked_or_numpy(obj) -> bool:
    """Returns True if xarray object contains only numpy arrays or chunked arrays (i.e. pure dask or cubed).

    Expects obj to be Dataset or DataArray"""
    from xarray.core.dataarray import DataArray
    from xarray.core.indexing import ExplicitlyIndexed
    from xarray.namedarray.pycompat import is_chunked_array

    if isinstance(obj, DataArray):
        obj = obj._to_temp_dataset()

    return all(
        isinstance(var._data, ExplicitlyIndexed | np.ndarray)
        or is_chunked_array(var._data)
        for var in obj._variables.values()
    )


def find_stack_level(test_mode=False) -> int:
    """Find the first place in the stack that is not inside xarray or the Python standard library.

    This is unless the code emanates from a test, in which case we would prefer
    to see the xarray source.

    This function is taken from pandas and modified to exclude standard library paths.

    Parameters
    ----------
    test_mode : bool
        Flag used for testing purposes to switch off the detection of test
        directories in the stack trace.

    Returns
    -------
    stacklevel : int
        First level in the stack that is not part of xarray or the Python standard library.
    """
    import xarray as xr

    pkg_dir = Path(xr.__file__).parent
    test_dir = pkg_dir / "tests"

    std_lib_init = sys.modules["os"].__file__
    # Mostly to appease mypy; I don't think this can happen...
    if std_lib_init is None:
        return 0

    std_lib_dir = Path(std_lib_init).parent

    frame = inspect.currentframe()
    n = 0
    while frame:
        fname = inspect.getfile(frame)
        if (
            fname.startswith(str(pkg_dir))
            and (not fname.startswith(str(test_dir)) or test_mode)
        ) or (
            fname.startswith(str(std_lib_dir))
            and "site-packages" not in fname
            and "dist-packages" not in fname
        ):
            frame = frame.f_back
            n += 1
        else:
            break
    return n


def emit_user_level_warning(message, category=None) -> None:
    """Emit a warning at the user level by inspecting the stack trace."""
    stacklevel = find_stack_level()
    return warnings.warn(message, category=category, stacklevel=stacklevel)


def consolidate_dask_from_array_kwargs(
    from_array_kwargs: dict[Any, Any],
    name: str | None = None,
    lock: bool | None = None,
    inline_array: bool | None = None,
) -> dict[Any, Any]:
    """
    Merge dask-specific kwargs with arbitrary from_array_kwargs dict.

    Temporary function, to be deleted once explicitly passing dask-specific kwargs to .chunk() is deprecated.
    """

    from_array_kwargs = _resolve_doubly_passed_kwarg(
        from_array_kwargs,
        kwarg_name="name",
        passed_kwarg_value=name,
        default=None,
        err_msg_dict_name="from_array_kwargs",
    )
    from_array_kwargs = _resolve_doubly_passed_kwarg(
        from_array_kwargs,
        kwarg_name="lock",
        passed_kwarg_value=lock,
        default=False,
        err_msg_dict_name="from_array_kwargs",
    )
    from_array_kwargs = _resolve_doubly_passed_kwarg(
        from_array_kwargs,
        kwarg_name="inline_array",
        passed_kwarg_value=inline_array,
        default=False,
        err_msg_dict_name="from_array_kwargs",
    )

    return from_array_kwargs


def _resolve_doubly_passed_kwarg(
    kwargs_dict: dict[Any, Any],
    kwarg_name: str,
    passed_kwarg_value: str | bool | None,
    default: bool | None,
    err_msg_dict_name: str,
) -> dict[Any, Any]:
    # if in kwargs_dict but not passed explicitly then just pass kwargs_dict through unaltered
    if kwarg_name in kwargs_dict and passed_kwarg_value is None:
        pass
    # if passed explicitly but not in kwargs_dict then use that
    elif kwarg_name not in kwargs_dict and passed_kwarg_value is not None:
        kwargs_dict[kwarg_name] = passed_kwarg_value
    # if in neither then use default
    elif kwarg_name not in kwargs_dict and passed_kwarg_value is None:
        kwargs_dict[kwarg_name] = default
    # if in both then raise
    else:
        raise ValueError(
            f"argument {kwarg_name} cannot be passed both as a keyword argument and within "
            f"the {err_msg_dict_name} dictionary"
        )

    return kwargs_dict


def attempt_import(module: str) -> ModuleType:
    """Import an optional dependency, and raise an informative error on failure.

    Parameters
    ----------
    module : str
        Module to import. For example, ``'zarr'`` or ``'matplotlib.pyplot'``.

    Returns
    -------
    module : ModuleType
        The Imported module.

    Raises
    ------
    ImportError
        If the module could not be imported.

    Notes
    -----
    Static type checkers will not be able to infer the type of the returned module,
    so it is recommended to precede this function with a direct import of the module,
    guarded by an ``if TYPE_CHECKING`` block, to preserve type checker functionality.
    See the examples section below for a demonstration.

    Examples
    --------
    >>> from xarray.core.utils import attempt_import
    >>> if TYPE_CHECKING:
    ...     import zarr
    ... else:
    ...     zarr = attempt_import("zarr")
    ...
    """
    install_mapping = dict(nc_time_axis="nc-time-axis")
    package_purpose = dict(
        zarr="for working with Zarr stores",
        cftime="for working with non-standard calendars",
        matplotlib="for plotting",
        hypothesis="for the `xarray.testing.strategies` submodule",
    )
    package_name = module.split(".", maxsplit=1)[0]  # e.g. "zarr" from "zarr.storage"
    install_name = install_mapping.get(package_name, package_name)
    reason = package_purpose.get(package_name, "")
    try:
        return importlib.import_module(module)
    except ImportError as e:
        raise ImportError(
            f"The {install_name} package is required {reason}"
            " but could not be imported."
            " Please install it with your package manager (e.g. conda or pip)."
        ) from e


_DEFAULT_NAME = ReprObject("<default-name>")


def result_name(objects: Iterable[Any]) -> Any:
    # use the same naming heuristics as pandas:
    # https://github.com/blaze/blaze/issues/458#issuecomment-51936356
    names = {getattr(obj, "name", _DEFAULT_NAME) for obj in objects}
    names.discard(_DEFAULT_NAME)
    if len(names) == 1:
        (name,) = names
    else:
        name = None
    return name


def _get_func_args(func, param_names):
    """Use `inspect.signature` to try accessing `func` args. Otherwise, ensure
    they are provided by user.
    """
    try:
        func_args = inspect.signature(func).parameters
    except ValueError as err:
        func_args = {}
        if not param_names:
            raise ValueError(
                "Unable to inspect `func` signature, and `param_names` was not provided."
            ) from err
    if param_names:
        params = param_names
    else:
        params = list(func_args)[1:]
        if any(
            (p.kind in [p.VAR_POSITIONAL, p.VAR_KEYWORD]) for p in func_args.values()
        ):
            raise ValueError(
                "`param_names` must be provided because `func` takes variable length arguments."
            )
    return params, func_args