File: nd_point_index.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (398 lines) | stat: -rw-r--r-- 13,330 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
from __future__ import annotations

import abc
from collections.abc import Hashable, Iterable, Mapping
from typing import TYPE_CHECKING, Any, Generic, TypeVar

import numpy as np

from xarray.core.dataarray import DataArray
from xarray.core.indexes import Index
from xarray.core.indexing import IndexSelResult
from xarray.core.utils import is_scalar
from xarray.core.variable import Variable
from xarray.structure.alignment import broadcast

if TYPE_CHECKING:
    from scipy.spatial import KDTree

    from xarray.core.types import Self


class TreeAdapter(abc.ABC):
    """Lightweight adapter abstract class for plugging in 3rd-party structures
    like :py:class:`scipy.spatial.KDTree` or :py:class:`sklearn.neighbors.KDTree`
    into :py:class:`~xarray.indexes.NDPointIndex`.

    """

    @abc.abstractmethod
    def __init__(self, points: np.ndarray, *, options: Mapping[str, Any]):
        """
        Parameters
        ----------
        points : ndarray of shape (n_points, n_coordinates)
            Two-dimensional array of points/samples (rows) and their
            corresponding coordinate labels (columns) to index.
        """
        ...

    @abc.abstractmethod
    def query(self, points: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
        """Query points.

        Parameters
        ----------
        points: ndarray of shape (n_points, n_coordinates)
            Two-dimensional array of points/samples (rows) and their
            corresponding coordinate labels (columns) to query.

        Returns
        -------
        distances : ndarray of shape (n_points)
            Distances to the nearest neighbors.
        indices : ndarray of shape (n_points)
            Indices of the nearest neighbors in the array of the indexed
            points.
        """
        ...

    def equals(self, other: Self) -> bool:
        """Check equality with another TreeAdapter of the same kind.

        Parameters
        ----------
        other :
            The other TreeAdapter object to compare with this object.

        """
        raise NotImplementedError


class ScipyKDTreeAdapter(TreeAdapter):
    """:py:class:`scipy.spatial.KDTree` adapter for :py:class:`~xarray.indexes.NDPointIndex`."""

    _kdtree: KDTree

    def __init__(self, points: np.ndarray, options: Mapping[str, Any]):
        from scipy.spatial import KDTree

        self._kdtree = KDTree(points, **options)

    def query(self, points: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
        return self._kdtree.query(points)

    def equals(self, other: Self) -> bool:
        return np.array_equal(self._kdtree.data, other._kdtree.data)


def get_points(coords: Iterable[Variable | Any]) -> np.ndarray:
    """Re-arrange data from a sequence of xarray coordinate variables or
    labels into a 2-d array of shape (n_points, n_coordinates).

    """
    data = [c.values if isinstance(c, Variable | DataArray) else c for c in coords]
    return np.stack([np.ravel(d) for d in data]).T


T_TreeAdapter = TypeVar("T_TreeAdapter", bound=TreeAdapter)


class NDPointIndex(Index, Generic[T_TreeAdapter]):
    """Xarray index for irregular, n-dimensional data.

    This index may be associated with a set of coordinate variables representing
    the arbitrary location of data points in an n-dimensional space. All
    coordinates must have the same shape and dimensions. The number of
    associated coordinate variables must correspond to the number of dimensions
    of the space.

    This index supports label-based selection (nearest neighbor lookup). It also
    has limited support for alignment.

    By default, this index relies on :py:class:`scipy.spatial.KDTree` for fast
    lookup.

    Do not use :py:meth:`~xarray.indexes.NDPointIndex.__init__` directly. Instead
    use :py:meth:`xarray.Dataset.set_xindex` or
    :py:meth:`xarray.DataArray.set_xindex` to create and set the index from
    existing coordinates (see the example below).

    Examples
    --------
    An example using a dataset with 2-dimensional coordinates.

    >>> xx = [[1.0, 2.0], [3.0, 0.0]]
    >>> yy = [[11.0, 21.0], [29.0, 9.0]]
    >>> ds = xr.Dataset(coords={"xx": (("y", "x"), xx), "yy": (("y", "x"), yy)})
    >>> ds
    <xarray.Dataset> Size: 64B
    Dimensions:  (y: 2, x: 2)
    Coordinates:
        xx       (y, x) float64 32B 1.0 2.0 3.0 0.0
        yy       (y, x) float64 32B 11.0 21.0 29.0 9.0
    Dimensions without coordinates: y, x
    Data variables:
        *empty*

    Creation of a NDPointIndex from the "xx" and "yy" coordinate variables:

    >>> ds = ds.set_xindex(("xx", "yy"), xr.indexes.NDPointIndex)
    >>> ds
    <xarray.Dataset> Size: 64B
    Dimensions:  (y: 2, x: 2)
    Coordinates:
      * xx       (y, x) float64 32B 1.0 2.0 3.0 0.0
      * yy       (y, x) float64 32B 11.0 21.0 29.0 9.0
    Dimensions without coordinates: y, x
    Data variables:
        *empty*
    Indexes:
      ┌ xx       NDPointIndex (ScipyKDTreeAdapter)
      └ yy

    Point-wise (nearest-neighbor) data selection using Xarray's advanced
    indexing, i.e., using arbitrary dimension(s) for the Variable objects passed
    as labels:

    >>> ds.sel(
    ...     xx=xr.Variable("points", [1.9, 0.1]),
    ...     yy=xr.Variable("points", [13.0, 8.0]),
    ...     method="nearest",
    ... )
    <xarray.Dataset> Size: 32B
    Dimensions:  (points: 2)
    Coordinates:
        xx       (points) float64 16B 1.0 0.0
        yy       (points) float64 16B 11.0 9.0
    Dimensions without coordinates: points
    Data variables:
        *empty*

    Data selection with scalar labels:

    >>> ds.sel(xx=1.9, yy=13.0, method="nearest")
    <xarray.Dataset> Size: 16B
    Dimensions:  ()
    Coordinates:
        xx       float64 8B 1.0
        yy       float64 8B 11.0
    Data variables:
        *empty*

    Data selection with broadcasting the input labels:

    >>> ds.sel(xx=1.9, yy=xr.Variable("points", [13.0, 8.0]), method="nearest")
    <xarray.Dataset> Size: 32B
    Dimensions:  (points: 2)
    Coordinates:
        xx       (points) float64 16B 1.0 0.0
        yy       (points) float64 16B 11.0 9.0
    Dimensions without coordinates: points
    Data variables:
        *empty*

    >>> da = xr.DataArray(
    ...     [[45.1, 53.3], [65.4, 78.2]],
    ...     coords={"u": [1.9, 0.1], "v": [13.0, 8.0]},
    ...     dims=("u", "v"),
    ... )
    >>> ds.sel(xx=da.u, yy=da.v, method="nearest")
    <xarray.Dataset> Size: 64B
    Dimensions:  (u: 2, v: 2)
    Coordinates:
        xx       (u, v) float64 32B 1.0 0.0 1.0 0.0
        yy       (u, v) float64 32B 11.0 9.0 11.0 9.0
    Dimensions without coordinates: u, v
    Data variables:
        *empty*

    Data selection with array-like labels (implicit dimensions):

    >>> ds.sel(xx=[[1.9], [0.1]], yy=[[13.0], [8.0]], method="nearest")
    <xarray.Dataset> Size: 32B
    Dimensions:  (y: 2, x: 1)
    Coordinates:
        xx       (y, x) float64 16B 1.0 0.0
        yy       (y, x) float64 16B 11.0 9.0
    Dimensions without coordinates: y, x
    Data variables:
        *empty*

    """

    _tree_obj: T_TreeAdapter
    _coord_names: tuple[Hashable, ...]
    _dims: tuple[Hashable, ...]
    _shape: tuple[int, ...]

    def __init__(
        self,
        tree_obj: T_TreeAdapter,
        *,
        coord_names: tuple[Hashable, ...],
        dims: tuple[Hashable, ...],
        shape: tuple[int, ...],
    ):
        # this constructor is "private"
        assert isinstance(tree_obj, TreeAdapter)
        self._tree_obj = tree_obj

        assert len(coord_names) == len(dims) == len(shape)
        self._coord_names = coord_names
        self._dims = dims
        self._shape = shape

    @classmethod
    def from_variables(
        cls,
        variables: Mapping[Any, Variable],
        *,
        options: Mapping[str, Any],
    ) -> Self:
        if len({var.dims for var in variables.values()}) > 1:
            var_names = ",".join(vn for vn in variables)
            raise ValueError(
                f"variables {var_names} must all have the same dimensions and the same shape"
            )

        var0 = next(iter(variables.values()))

        if len(variables) != len(var0.dims):
            raise ValueError(
                f"the number of variables {len(variables)} doesn't match "
                f"the number of dimensions {len(var0.dims)}"
            )

        opts = dict(options)

        tree_adapter_cls: type[T_TreeAdapter] = opts.pop("tree_adapter_cls", None)
        if tree_adapter_cls is None:
            tree_adapter_cls = ScipyKDTreeAdapter

        points = get_points(variables.values())

        return cls(
            tree_adapter_cls(points, options=opts),
            coord_names=tuple(variables),
            dims=var0.dims,
            shape=var0.shape,
        )

    def create_variables(
        self, variables: Mapping[Any, Variable] | None = None
    ) -> dict[Any, Variable]:
        if variables is not None:
            for var in variables.values():
                # maybe re-sync variable dimensions with the index object
                # returned by NDPointIndex.rename()
                if var.dims != self._dims:
                    var.dims = self._dims
            return dict(**variables)
        else:
            return {}

    def equals(
        self, other: Index, *, exclude: frozenset[Hashable] | None = None
    ) -> bool:
        if not isinstance(other, NDPointIndex):
            return False
        if type(self._tree_obj) is not type(other._tree_obj):
            return False
        return self._tree_obj.equals(other._tree_obj)

    def _get_dim_indexers(
        self,
        indices: np.ndarray,
        label_dims: tuple[Hashable, ...],
        label_shape: tuple[int, ...],
    ) -> dict[Hashable, Variable]:
        """Returns dimension indexers based on the query results (indices) and
        the original label dimensions and shape.

        1. Unravel the flat indices returned from the query
        2. Reshape the unraveled indices according to indexers shapes
        3. Wrap the indices in xarray.Variable objects.

        """
        dim_indexers = {}

        u_indices = list(np.unravel_index(indices.ravel(), self._shape))

        for dim, ind in zip(self._dims, u_indices, strict=False):
            dim_indexers[dim] = Variable(label_dims, ind.reshape(label_shape))

        return dim_indexers

    def sel(
        self, labels: dict[Any, Any], method=None, tolerance=None
    ) -> IndexSelResult:
        if method != "nearest":
            raise ValueError(
                "NDPointIndex only supports selection with method='nearest'"
            )

        missing_labels = set(self._coord_names) - set(labels)
        if missing_labels:
            missing_labels_str = ",".join([f"{name}" for name in missing_labels])
            raise ValueError(f"missing labels for coordinate(s): {missing_labels_str}.")

        # maybe convert labels into xarray DataArray objects
        xr_labels: dict[Any, DataArray] = {}

        for name, lbl in labels.items():
            if isinstance(lbl, DataArray):
                xr_labels[name] = lbl
            elif isinstance(lbl, Variable):
                xr_labels[name] = DataArray(lbl)
            elif is_scalar(lbl):
                xr_labels[name] = DataArray(lbl, dims=())
            elif np.asarray(lbl).ndim == len(self._dims):
                xr_labels[name] = DataArray(lbl, dims=self._dims)
            else:
                raise ValueError(
                    "invalid label value. NDPointIndex only supports advanced (point-wise) indexing "
                    "with the following label value kinds:\n"
                    "- xarray.DataArray or xarray.Variable objects\n"
                    "- scalar values\n"
                    "- unlabelled array-like objects with the same number of dimensions "
                    f"than the {self._coord_names} coordinate variables ({len(self._dims)})"
                )

        # broadcast xarray labels against one another and determine labels shape and dimensions
        broadcasted = broadcast(*xr_labels.values())
        label_dims = broadcasted[0].dims
        label_shape = broadcasted[0].shape
        xr_labels = dict(zip(xr_labels, broadcasted, strict=True))

        # get and return dimension indexers
        points = get_points(xr_labels[name] for name in self._coord_names)
        _, indices = self._tree_obj.query(points)

        dim_indexers = self._get_dim_indexers(indices, label_dims, label_shape)

        return IndexSelResult(dim_indexers=dim_indexers)

    def rename(
        self,
        name_dict: Mapping[Any, Hashable],
        dims_dict: Mapping[Any, Hashable],
    ) -> Self:
        if not set(self._coord_names) & set(name_dict) and not set(self._dims) & set(
            dims_dict
        ):
            return self

        new_coord_names = tuple(name_dict.get(n, n) for n in self._coord_names)
        new_dims = tuple(dims_dict.get(d, d) for d in self._dims)

        return type(self)(
            self._tree_obj,
            coord_names=new_coord_names,
            dims=new_dims,
            shape=self._shape,
        )

    def _repr_inline_(self, max_width: int) -> str:
        tree_obj_type = self._tree_obj.__class__.__name__
        return f"{self.__class__.__name__} ({tree_obj_type})"