File: _typing.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (317 lines) | stat: -rw-r--r-- 8,075 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from __future__ import annotations

from collections.abc import Callable, Hashable, Iterable, Mapping, Sequence
from enum import Enum
from types import EllipsisType, ModuleType
from typing import (
    TYPE_CHECKING,
    Any,
    Final,
    Literal,
    Protocol,
    SupportsIndex,
    TypeVar,
    Union,
    overload,
    runtime_checkable,
)

import numpy as np

try:
    from typing import TypeAlias
except ImportError:
    if TYPE_CHECKING:
        raise
    else:
        Self: Any = None


# Singleton type, as per https://github.com/python/typing/pull/240
class Default(Enum):
    token: Final = 0


_default = Default.token

# https://stackoverflow.com/questions/74633074/how-to-type-hint-a-generic-numpy-array
_T_co = TypeVar("_T_co", covariant=True)

_dtype = np.dtype
_DType = TypeVar("_DType", bound=np.dtype[Any])
_DType_co = TypeVar("_DType_co", covariant=True, bound=np.dtype[Any])
# A subset of `npt.DTypeLike` that can be parametrized w.r.t. `np.generic`

_ScalarType = TypeVar("_ScalarType", bound=np.generic)
_ScalarType_co = TypeVar("_ScalarType_co", bound=np.generic, covariant=True)


# A protocol for anything with the dtype attribute
@runtime_checkable
class _SupportsDType(Protocol[_DType_co]):
    @property
    def dtype(self) -> _DType_co: ...


_DTypeLike = Union[
    np.dtype[_ScalarType],
    type[_ScalarType],
    _SupportsDType[np.dtype[_ScalarType]],
]

# For unknown shapes Dask uses np.nan, array_api uses None:
_IntOrUnknown = int
_Shape = tuple[_IntOrUnknown, ...]
_ShapeLike = Union[SupportsIndex, Sequence[SupportsIndex]]
_ShapeType = TypeVar("_ShapeType", bound=Any)
_ShapeType_co = TypeVar("_ShapeType_co", bound=Any, covariant=True)

_Axis = int
_Axes = tuple[_Axis, ...]
_AxisLike = Union[_Axis, _Axes]

_Chunks = tuple[_Shape, ...]
_NormalizedChunks = tuple[tuple[int, ...], ...]
# FYI in some cases we don't allow `None`, which this doesn't take account of.
# # FYI the `str` is for a size string, e.g. "16MB", supported by dask.
T_ChunkDim: TypeAlias = str | int | Literal["auto"] | tuple[int, ...] | None  # noqa: PYI051
# We allow the tuple form of this (though arguably we could transition to named dims only)
T_Chunks: TypeAlias = T_ChunkDim | Mapping[Any, T_ChunkDim]

_Dim = Hashable
_Dims = tuple[_Dim, ...]

_DimsLike = Union[str, Iterable[_Dim]]

# https://data-apis.org/array-api/latest/API_specification/indexing.html
# TODO: np.array_api was bugged and didn't allow (None,), but should!
# https://github.com/numpy/numpy/pull/25022
# https://github.com/data-apis/array-api/pull/674
_IndexKey = Union[int, slice, EllipsisType]
_IndexKeys = tuple[_IndexKey, ...]  #  tuple[Union[_IndexKey, None], ...]
_IndexKeyLike = Union[_IndexKey, _IndexKeys]

_AttrsLike = Union[Mapping[Any, Any], None]


class _SupportsReal(Protocol[_T_co]):
    @property
    def real(self) -> _T_co: ...


class _SupportsImag(Protocol[_T_co]):
    @property
    def imag(self) -> _T_co: ...


@runtime_checkable
class _array(Protocol[_ShapeType_co, _DType_co]):
    """
    Minimal duck array named array uses.

    Corresponds to np.ndarray.
    """

    @property
    def shape(self) -> _Shape: ...

    @property
    def dtype(self) -> _DType_co: ...


@runtime_checkable
class _arrayfunction(
    _array[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Duck array supporting NEP 18.

    Corresponds to np.ndarray.
    """

    @overload
    def __getitem__(
        self, key: _arrayfunction[Any, Any] | tuple[_arrayfunction[Any, Any], ...], /
    ) -> _arrayfunction[Any, _DType_co]: ...

    @overload
    def __getitem__(self, key: _IndexKeyLike, /) -> Any: ...

    def __getitem__(
        self,
        key: (
            _IndexKeyLike
            | _arrayfunction[Any, Any]
            | tuple[_arrayfunction[Any, Any], ...]
        ),
        /,
    ) -> _arrayfunction[Any, _DType_co] | Any: ...

    @overload
    def __array__(
        self, dtype: None = ..., /, *, copy: bool | None = ...
    ) -> np.ndarray[Any, _DType_co]: ...
    @overload
    def __array__(
        self, dtype: _DType, /, *, copy: bool | None = ...
    ) -> np.ndarray[Any, _DType]: ...

    def __array__(
        self, dtype: _DType | None = ..., /, *, copy: bool | None = ...
    ) -> np.ndarray[Any, _DType] | np.ndarray[Any, _DType_co]: ...

    # TODO: Should return the same subclass but with a new dtype generic.
    # https://github.com/python/typing/issues/548
    def __array_ufunc__(
        self,
        ufunc: Any,
        method: Any,
        *inputs: Any,
        **kwargs: Any,
    ) -> Any: ...

    # TODO: Should return the same subclass but with a new dtype generic.
    # https://github.com/python/typing/issues/548
    def __array_function__(
        self,
        func: Callable[..., Any],
        types: Iterable[type],
        args: Iterable[Any],
        kwargs: Mapping[str, Any],
    ) -> Any: ...

    @property
    def imag(self) -> _arrayfunction[_ShapeType_co, Any]: ...

    @property
    def real(self) -> _arrayfunction[_ShapeType_co, Any]: ...


@runtime_checkable
class _arrayapi(_array[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]):
    """
    Duck array supporting NEP 47.

    Corresponds to np.ndarray.
    """

    def __getitem__(
        self,
        key: (
            _IndexKeyLike | Any
        ),  # TODO: Any should be _arrayapi[Any, _dtype[np.integer]]
        /,
    ) -> _arrayapi[Any, Any]: ...

    def __array_namespace__(self) -> ModuleType: ...


# NamedArray can most likely use both __array_function__ and __array_namespace__:
_arrayfunction_or_api = (_arrayfunction, _arrayapi)

duckarray = Union[
    _arrayfunction[_ShapeType_co, _DType_co], _arrayapi[_ShapeType_co, _DType_co]
]

# Corresponds to np.typing.NDArray:
DuckArray = _arrayfunction[Any, np.dtype[_ScalarType_co]]


@runtime_checkable
class _chunkedarray(
    _array[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Minimal chunked duck array.

    Corresponds to np.ndarray.
    """

    @property
    def chunks(self) -> _Chunks: ...


@runtime_checkable
class _chunkedarrayfunction(
    _arrayfunction[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Chunked duck array supporting NEP 18.

    Corresponds to np.ndarray.
    """

    @property
    def chunks(self) -> _Chunks: ...


@runtime_checkable
class _chunkedarrayapi(
    _arrayapi[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Chunked duck array supporting NEP 47.

    Corresponds to np.ndarray.
    """

    @property
    def chunks(self) -> _Chunks: ...


# NamedArray can most likely use both __array_function__ and __array_namespace__:
_chunkedarrayfunction_or_api = (_chunkedarrayfunction, _chunkedarrayapi)
chunkedduckarray = Union[
    _chunkedarrayfunction[_ShapeType_co, _DType_co],
    _chunkedarrayapi[_ShapeType_co, _DType_co],
]


@runtime_checkable
class _sparsearray(
    _array[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Minimal sparse duck array.

    Corresponds to np.ndarray.
    """

    def todense(self) -> np.ndarray[Any, _DType_co]: ...


@runtime_checkable
class _sparsearrayfunction(
    _arrayfunction[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Sparse duck array supporting NEP 18.

    Corresponds to np.ndarray.
    """

    def todense(self) -> np.ndarray[Any, _DType_co]: ...


@runtime_checkable
class _sparsearrayapi(
    _arrayapi[_ShapeType_co, _DType_co], Protocol[_ShapeType_co, _DType_co]
):
    """
    Sparse duck array supporting NEP 47.

    Corresponds to np.ndarray.
    """

    def todense(self) -> np.ndarray[Any, _DType_co]: ...


# NamedArray can most likely use both __array_function__ and __array_namespace__:
_sparsearrayfunction_or_api = (_sparsearrayfunction, _sparsearrayapi)
sparseduckarray = Union[
    _sparsearrayfunction[_ShapeType_co, _DType_co],
    _sparsearrayapi[_ShapeType_co, _DType_co],
]

ErrorOptions = Literal["raise", "ignore"]
ErrorOptionsWithWarn = Literal["raise", "warn", "ignore"]