1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
|
from __future__ import annotations
import copy
import math
import warnings
from collections.abc import Callable, Hashable, Iterable, Mapping, Sequence
from itertools import starmap
from types import EllipsisType
from typing import (
TYPE_CHECKING,
Any,
Generic,
Literal,
TypeVar,
cast,
overload,
)
import numpy as np
# TODO: get rid of this after migrating this class to array API
from xarray.core import dtypes, formatting, formatting_html
from xarray.core.indexing import (
ExplicitlyIndexed,
ImplicitToExplicitIndexingAdapter,
OuterIndexer,
)
from xarray.namedarray._aggregations import NamedArrayAggregations
from xarray.namedarray._typing import (
ErrorOptionsWithWarn,
_arrayapi,
_arrayfunction_or_api,
_chunkedarray,
_default,
_dtype,
_DType_co,
_ScalarType_co,
_ShapeType_co,
_sparsearrayfunction_or_api,
_SupportsImag,
_SupportsReal,
)
from xarray.namedarray.parallelcompat import guess_chunkmanager
from xarray.namedarray.pycompat import to_numpy
from xarray.namedarray.utils import (
either_dict_or_kwargs,
infix_dims,
is_dict_like,
is_duck_dask_array,
to_0d_object_array,
)
if TYPE_CHECKING:
from numpy.typing import ArrayLike, NDArray
from xarray.core.types import Dims, T_Chunks
from xarray.namedarray._typing import (
Default,
_AttrsLike,
_Chunks,
_Dim,
_Dims,
_DimsLike,
_DType,
_IntOrUnknown,
_ScalarType,
_Shape,
_ShapeType,
duckarray,
)
from xarray.namedarray.parallelcompat import ChunkManagerEntrypoint
try:
from dask.typing import (
Graph,
NestedKeys,
PostComputeCallable,
PostPersistCallable,
SchedulerGetCallable,
)
except ImportError:
Graph: Any # type: ignore[no-redef]
NestedKeys: Any # type: ignore[no-redef]
SchedulerGetCallable: Any # type: ignore[no-redef]
PostComputeCallable: Any # type: ignore[no-redef]
PostPersistCallable: Any # type: ignore[no-redef]
from typing import Self
T_NamedArray = TypeVar("T_NamedArray", bound="_NamedArray[Any]")
T_NamedArrayInteger = TypeVar(
"T_NamedArrayInteger", bound="_NamedArray[np.integer[Any]]"
)
@overload
def _new(
x: NamedArray[Any, _DType_co],
dims: _DimsLike | Default = ...,
data: duckarray[_ShapeType, _DType] = ...,
attrs: _AttrsLike | Default = ...,
) -> NamedArray[_ShapeType, _DType]: ...
@overload
def _new(
x: NamedArray[_ShapeType_co, _DType_co],
dims: _DimsLike | Default = ...,
data: Default = ...,
attrs: _AttrsLike | Default = ...,
) -> NamedArray[_ShapeType_co, _DType_co]: ...
def _new(
x: NamedArray[Any, _DType_co],
dims: _DimsLike | Default = _default,
data: duckarray[_ShapeType, _DType] | Default = _default,
attrs: _AttrsLike | Default = _default,
) -> NamedArray[_ShapeType, _DType] | NamedArray[Any, _DType_co]:
"""
Create a new array with new typing information.
Parameters
----------
x : NamedArray
Array to create a new array from
dims : Iterable of Hashable, optional
Name(s) of the dimension(s).
Will copy the dims from x by default.
data : duckarray, optional
The actual data that populates the array. Should match the
shape specified by `dims`.
Will copy the data from x by default.
attrs : dict, optional
A dictionary containing any additional information or
attributes you want to store with the array.
Will copy the attrs from x by default.
"""
dims_ = copy.copy(x._dims) if dims is _default else dims
attrs_: Mapping[Any, Any] | None
if attrs is _default:
attrs_ = None if x._attrs is None else x._attrs.copy()
else:
attrs_ = attrs
if data is _default:
return type(x)(dims_, copy.copy(x._data), attrs_)
else:
cls_ = cast("type[NamedArray[_ShapeType, _DType]]", type(x))
return cls_(dims_, data, attrs_)
@overload
def from_array(
dims: _DimsLike,
data: duckarray[_ShapeType, _DType],
attrs: _AttrsLike = ...,
) -> NamedArray[_ShapeType, _DType]: ...
@overload
def from_array(
dims: _DimsLike,
data: ArrayLike,
attrs: _AttrsLike = ...,
) -> NamedArray[Any, Any]: ...
def from_array(
dims: _DimsLike,
data: duckarray[_ShapeType, _DType] | ArrayLike,
attrs: _AttrsLike = None,
) -> NamedArray[_ShapeType, _DType] | NamedArray[Any, Any]:
"""
Create a Named array from an array-like object.
Parameters
----------
dims : str or iterable of str
Name(s) of the dimension(s).
data : T_DuckArray or ArrayLike
The actual data that populates the array. Should match the
shape specified by `dims`.
attrs : dict, optional
A dictionary containing any additional information or
attributes you want to store with the array.
Default is None, meaning no attributes will be stored.
"""
if isinstance(data, NamedArray):
raise TypeError(
"Array is already a Named array. Use 'data.data' to retrieve the data array"
)
# TODO: dask.array.ma.MaskedArray also exists, better way?
if isinstance(data, np.ma.MaskedArray):
mask = np.ma.getmaskarray(data) # type: ignore[no-untyped-call]
if mask.any():
# TODO: requires refactoring/vendoring xarray.core.dtypes and
# xarray.core.duck_array_ops
raise NotImplementedError("MaskedArray is not supported yet")
return NamedArray(dims, data, attrs)
if isinstance(data, _arrayfunction_or_api) and not isinstance(data, np.generic):
return NamedArray(dims, data, attrs)
if isinstance(data, tuple):
return NamedArray(dims, to_0d_object_array(data), attrs)
# validate whether the data is valid data types.
return NamedArray(dims, np.asarray(data), attrs)
class NamedArray(NamedArrayAggregations, Generic[_ShapeType_co, _DType_co]):
"""
A wrapper around duck arrays with named dimensions
and attributes which describe a single Array.
Numeric operations on this object implement array broadcasting and
dimension alignment based on dimension names,
rather than axis order.
Parameters
----------
dims : str or iterable of hashable
Name(s) of the dimension(s).
data : array-like or duck-array
The actual data that populates the array. Should match the
shape specified by `dims`.
attrs : dict, optional
A dictionary containing any additional information or
attributes you want to store with the array.
Default is None, meaning no attributes will be stored.
Raises
------
ValueError
If the `dims` length does not match the number of data dimensions (ndim).
Examples
--------
>>> data = np.array([1.5, 2, 3], dtype=float)
>>> narr = NamedArray(("x",), data, {"units": "m"}) # TODO: Better name than narr?
"""
__slots__ = ("_attrs", "_data", "_dims")
_data: duckarray[Any, _DType_co]
_dims: _Dims
_attrs: dict[Any, Any] | None
def __init__(
self,
dims: _DimsLike,
data: duckarray[Any, _DType_co],
attrs: _AttrsLike = None,
):
self._data = data
self._dims = self._parse_dimensions(dims)
self._attrs = dict(attrs) if attrs else None
def __init_subclass__(cls, **kwargs: Any) -> None:
if NamedArray in cls.__bases__ and (cls._new == NamedArray._new):
# Type hinting does not work for subclasses unless _new is
# overridden with the correct class.
raise TypeError(
"Subclasses of `NamedArray` must override the `_new` method."
)
super().__init_subclass__(**kwargs)
@overload
def _new(
self,
dims: _DimsLike | Default = ...,
data: duckarray[_ShapeType, _DType] = ...,
attrs: _AttrsLike | Default = ...,
) -> NamedArray[_ShapeType, _DType]: ...
@overload
def _new(
self,
dims: _DimsLike | Default = ...,
data: Default = ...,
attrs: _AttrsLike | Default = ...,
) -> NamedArray[_ShapeType_co, _DType_co]: ...
def _new(
self,
dims: _DimsLike | Default = _default,
data: duckarray[Any, _DType] | Default = _default,
attrs: _AttrsLike | Default = _default,
) -> NamedArray[_ShapeType, _DType] | NamedArray[_ShapeType_co, _DType_co]:
"""
Create a new array with new typing information.
_new has to be reimplemented each time NamedArray is subclassed,
otherwise type hints will not be correct. The same is likely true
for methods that relied on _new.
Parameters
----------
dims : Iterable of Hashable, optional
Name(s) of the dimension(s).
Will copy the dims from x by default.
data : duckarray, optional
The actual data that populates the array. Should match the
shape specified by `dims`.
Will copy the data from x by default.
attrs : dict, optional
A dictionary containing any additional information or
attributes you want to store with the array.
Will copy the attrs from x by default.
"""
return _new(self, dims, data, attrs)
def _replace(
self,
dims: _DimsLike | Default = _default,
data: duckarray[_ShapeType_co, _DType_co] | Default = _default,
attrs: _AttrsLike | Default = _default,
) -> Self:
"""
Create a new array with the same typing information.
The types for each argument cannot change,
use self._new if that is a risk.
Parameters
----------
dims : Iterable of Hashable, optional
Name(s) of the dimension(s).
Will copy the dims from x by default.
data : duckarray, optional
The actual data that populates the array. Should match the
shape specified by `dims`.
Will copy the data from x by default.
attrs : dict, optional
A dictionary containing any additional information or
attributes you want to store with the array.
Will copy the attrs from x by default.
"""
return cast("Self", self._new(dims, data, attrs))
def _copy(
self,
deep: bool = True,
data: duckarray[_ShapeType_co, _DType_co] | None = None,
memo: dict[int, Any] | None = None,
) -> Self:
if data is None:
ndata = self._data
if deep:
ndata = copy.deepcopy(ndata, memo=memo)
else:
ndata = data
self._check_shape(ndata)
attrs = (
copy.deepcopy(self._attrs, memo=memo) if deep else copy.copy(self._attrs)
)
return self._replace(data=ndata, attrs=attrs)
def __copy__(self) -> Self:
return self._copy(deep=False)
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
return self._copy(deep=True, memo=memo)
def copy(
self,
deep: bool = True,
data: duckarray[_ShapeType_co, _DType_co] | None = None,
) -> Self:
"""Returns a copy of this object.
If `deep=True`, the data array is loaded into memory and copied onto
the new object. Dimensions, attributes and encodings are always copied.
Use `data` to create a new object with the same structure as
original but entirely new data.
Parameters
----------
deep : bool, default: True
Whether the data array is loaded into memory and copied onto
the new object. Default is True.
data : array_like, optional
Data to use in the new object. Must have same shape as original.
When `data` is used, `deep` is ignored.
Returns
-------
object : NamedArray
New object with dimensions, attributes, and optionally
data copied from original.
"""
return self._copy(deep=deep, data=data)
@property
def ndim(self) -> int:
"""
Number of array dimensions.
See Also
--------
numpy.ndarray.ndim
"""
return len(self.shape)
@property
def size(self) -> _IntOrUnknown:
"""
Number of elements in the array.
Equal to ``np.prod(a.shape)``, i.e., the product of the array’s dimensions.
See Also
--------
numpy.ndarray.size
"""
return math.prod(self.shape)
def __len__(self) -> _IntOrUnknown:
try:
return self.shape[0]
except Exception as exc:
raise TypeError("len() of unsized object") from exc
@property
def dtype(self) -> _DType_co:
"""
Data-type of the array’s elements.
See Also
--------
ndarray.dtype
numpy.dtype
"""
return self._data.dtype
@property
def shape(self) -> _Shape:
"""
Get the shape of the array.
Returns
-------
shape : tuple of ints
Tuple of array dimensions.
See Also
--------
numpy.ndarray.shape
"""
return self._data.shape
@property
def nbytes(self) -> _IntOrUnknown:
"""
Total bytes consumed by the elements of the data array.
If the underlying data array does not include ``nbytes``, estimates
the bytes consumed based on the ``size`` and ``dtype``.
"""
from xarray.namedarray._array_api import _get_data_namespace
if hasattr(self._data, "nbytes"):
return self._data.nbytes # type: ignore[no-any-return]
if hasattr(self.dtype, "itemsize"):
itemsize = self.dtype.itemsize
elif isinstance(self._data, _arrayapi):
xp = _get_data_namespace(self)
if xp.isdtype(self.dtype, "bool"):
itemsize = 1
elif xp.isdtype(self.dtype, "integral"):
itemsize = xp.iinfo(self.dtype).bits // 8
else:
itemsize = xp.finfo(self.dtype).bits // 8
else:
raise TypeError(
"cannot compute the number of bytes (no array API nor nbytes / itemsize)"
)
return self.size * itemsize
@property
def dims(self) -> _Dims:
"""Tuple of dimension names with which this NamedArray is associated."""
return self._dims
@dims.setter
def dims(self, value: _DimsLike) -> None:
self._dims = self._parse_dimensions(value)
def _parse_dimensions(self, dims: _DimsLike) -> _Dims:
dims = (dims,) if isinstance(dims, str) else tuple(dims)
if len(dims) != self.ndim:
raise ValueError(
f"dimensions {dims} must have the same length as the "
f"number of data dimensions, ndim={self.ndim}"
)
if len(set(dims)) < len(dims):
repeated_dims = {d for d in dims if dims.count(d) > 1}
warnings.warn(
f"Duplicate dimension names present: dimensions {repeated_dims} appear more than once in dims={dims}. "
"We do not yet support duplicate dimension names, but we do allow initial construction of the object. "
"We recommend you rename the dims immediately to become distinct, as most xarray functionality is likely to fail silently if you do not. "
"To rename the dimensions you will need to set the ``.dims`` attribute of each variable, ``e.g. var.dims=('x0', 'x1')``.",
UserWarning,
stacklevel=2,
)
return dims
@property
def attrs(self) -> dict[Any, Any]:
"""Dictionary of local attributes on this NamedArray."""
if self._attrs is None:
self._attrs = {}
return self._attrs
@attrs.setter
def attrs(self, value: Mapping[Any, Any]) -> None:
self._attrs = dict(value) if value else None
def _check_shape(self, new_data: duckarray[Any, _DType_co]) -> None:
if new_data.shape != self.shape:
raise ValueError(
f"replacement data must match the {self.__class__.__name__}'s shape. "
f"replacement data has shape {new_data.shape}; {self.__class__.__name__} has shape {self.shape}"
)
@property
def data(self) -> duckarray[Any, _DType_co]:
"""
The NamedArray's data as an array. The underlying array type
(e.g. dask, sparse, pint) is preserved.
"""
return self._data
@data.setter
def data(self, data: duckarray[Any, _DType_co]) -> None:
self._check_shape(data)
self._data = data
@property
def imag(
self: NamedArray[_ShapeType, np.dtype[_SupportsImag[_ScalarType]]], # type: ignore[type-var]
) -> NamedArray[_ShapeType, _dtype[_ScalarType]]:
"""
The imaginary part of the array.
See Also
--------
numpy.ndarray.imag
"""
if isinstance(self._data, _arrayapi):
from xarray.namedarray._array_api import imag
return imag(self)
return self._new(data=self._data.imag)
@property
def real(
self: NamedArray[_ShapeType, np.dtype[_SupportsReal[_ScalarType]]], # type: ignore[type-var]
) -> NamedArray[_ShapeType, _dtype[_ScalarType]]:
"""
The real part of the array.
See Also
--------
numpy.ndarray.real
"""
if isinstance(self._data, _arrayapi):
from xarray.namedarray._array_api import real
return real(self)
return self._new(data=self._data.real)
def __dask_tokenize__(self) -> object:
# Use v.data, instead of v._data, in order to cope with the wrappers
# around NetCDF and the like
from dask.base import normalize_token
return normalize_token((type(self), self._dims, self.data, self._attrs or None))
def __dask_graph__(self) -> Graph | None:
if is_duck_dask_array(self._data):
return self._data.__dask_graph__()
else:
# TODO: Should this method just raise instead?
# raise NotImplementedError("Method requires self.data to be a dask array")
return None
def __dask_keys__(self) -> NestedKeys:
if is_duck_dask_array(self._data):
return self._data.__dask_keys__()
else:
raise AttributeError("Method requires self.data to be a dask array.")
def __dask_layers__(self) -> Sequence[str]:
if is_duck_dask_array(self._data):
return self._data.__dask_layers__()
else:
raise AttributeError("Method requires self.data to be a dask array.")
@property
def __dask_optimize__(
self,
) -> Callable[..., dict[Any, Any]]:
if is_duck_dask_array(self._data):
return self._data.__dask_optimize__ # type: ignore[no-any-return]
else:
raise AttributeError("Method requires self.data to be a dask array.")
@property
def __dask_scheduler__(self) -> SchedulerGetCallable:
if is_duck_dask_array(self._data):
return self._data.__dask_scheduler__
else:
raise AttributeError("Method requires self.data to be a dask array.")
def __dask_postcompute__(
self,
) -> tuple[PostComputeCallable, tuple[Any, ...]]:
if is_duck_dask_array(self._data):
array_func, array_args = self._data.__dask_postcompute__() # type: ignore[no-untyped-call]
return self._dask_finalize, (array_func,) + array_args
else:
raise AttributeError("Method requires self.data to be a dask array.")
def __dask_postpersist__(
self,
) -> tuple[
Callable[
[Graph, PostPersistCallable[Any], Any, Any],
Self,
],
tuple[Any, ...],
]:
if is_duck_dask_array(self._data):
a: tuple[PostPersistCallable[Any], tuple[Any, ...]]
a = self._data.__dask_postpersist__() # type: ignore[no-untyped-call]
array_func, array_args = a
return self._dask_finalize, (array_func,) + array_args
else:
raise AttributeError("Method requires self.data to be a dask array.")
def _dask_finalize(
self,
results: Graph,
array_func: PostPersistCallable[Any],
*args: Any,
**kwargs: Any,
) -> Self:
data = array_func(results, *args, **kwargs)
return type(self)(self._dims, data, attrs=self._attrs)
@overload
def get_axis_num(self, dim: str) -> int: ... # type: ignore [overload-overlap]
@overload
def get_axis_num(self, dim: Iterable[Hashable]) -> tuple[int, ...]: ...
@overload
def get_axis_num(self, dim: Hashable) -> int: ...
def get_axis_num(self, dim: Hashable | Iterable[Hashable]) -> int | tuple[int, ...]:
"""Return axis number(s) corresponding to dimension(s) in this array.
Parameters
----------
dim : str or iterable of str
Dimension name(s) for which to lookup axes.
Returns
-------
int or tuple of int
Axis number or numbers corresponding to the given dimensions.
"""
if not isinstance(dim, str) and isinstance(dim, Iterable):
return tuple(self._get_axis_num(d) for d in dim)
else:
return self._get_axis_num(dim)
def _get_axis_num(self: Any, dim: Hashable) -> int:
_raise_if_any_duplicate_dimensions(self.dims)
try:
return self.dims.index(dim) # type: ignore[no-any-return]
except ValueError as err:
raise ValueError(
f"{dim!r} not found in array dimensions {self.dims!r}"
) from err
@property
def chunks(self) -> _Chunks | None:
"""
Tuple of block lengths for this NamedArray's data, in order of dimensions, or None if
the underlying data is not a dask array.
See Also
--------
NamedArray.chunk
NamedArray.chunksizes
xarray.unify_chunks
"""
data = self._data
if isinstance(data, _chunkedarray):
return data.chunks
else:
return None
@property
def chunksizes(
self,
) -> Mapping[_Dim, _Shape]:
"""
Mapping from dimension names to block lengths for this NamedArray's data.
If this NamedArray does not contain chunked arrays, the mapping will be empty.
Cannot be modified directly, but can be modified by calling .chunk().
Differs from NamedArray.chunks because it returns a mapping of dimensions to chunk shapes
instead of a tuple of chunk shapes.
See Also
--------
NamedArray.chunk
NamedArray.chunks
xarray.unify_chunks
"""
data = self._data
if isinstance(data, _chunkedarray):
return dict(zip(self.dims, data.chunks, strict=True))
else:
return {}
@property
def sizes(self) -> dict[_Dim, _IntOrUnknown]:
"""Ordered mapping from dimension names to lengths."""
return dict(zip(self.dims, self.shape, strict=True))
def chunk(
self,
chunks: T_Chunks = {}, # noqa: B006 # even though it's unsafe, it is being used intentionally here (#4667)
chunked_array_type: str | ChunkManagerEntrypoint[Any] | None = None,
from_array_kwargs: Any = None,
**chunks_kwargs: Any,
) -> Self:
"""Coerce this array's data into a dask array with the given chunks.
If this variable is a non-dask array, it will be converted to dask
array. If it's a dask array, it will be rechunked to the given chunk
sizes.
If neither chunks is not provided for one or more dimensions, chunk
sizes along that dimension will not be updated; non-dask arrays will be
converted into dask arrays with a single block.
Parameters
----------
chunks : int, tuple or dict, optional
Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or
``{'x': 5, 'y': 5}``.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntrypoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example, with dask as the default chunked array type, this method would pass additional kwargs
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
**chunks_kwargs : {dim: chunks, ...}, optional
The keyword arguments form of ``chunks``.
One of chunks or chunks_kwargs must be provided.
Returns
-------
chunked : xarray.Variable
See Also
--------
Variable.chunks
Variable.chunksizes
xarray.unify_chunks
dask.array.from_array
"""
if from_array_kwargs is None:
from_array_kwargs = {}
if chunks is None:
warnings.warn(
"None value for 'chunks' is deprecated. "
"It will raise an error in the future. Use instead '{}'",
category=FutureWarning,
stacklevel=2,
)
chunks = {}
if isinstance(chunks, float | str | int | tuple | list):
# TODO we shouldn't assume here that other chunkmanagers can handle these types
# TODO should we call normalize_chunks here?
pass # dask.array.from_array can handle these directly
else:
chunks = either_dict_or_kwargs(chunks, chunks_kwargs, "chunk")
if is_dict_like(chunks):
# This method of iteration allows for duplicated dimension names, GH8579
chunks = {
dim_number: chunks[dim]
for dim_number, dim in enumerate(self.dims)
if dim in chunks
}
chunkmanager = guess_chunkmanager(chunked_array_type)
data_old = self._data
if chunkmanager.is_chunked_array(data_old):
data_chunked = chunkmanager.rechunk(data_old, chunks) # type: ignore[arg-type]
else:
ndata: duckarray[Any, Any]
if not isinstance(data_old, ExplicitlyIndexed):
ndata = data_old
else:
# Unambiguously handle array storage backends (like NetCDF4 and h5py)
# that can't handle general array indexing. For example, in netCDF4 you
# can do "outer" indexing along two dimensions independent, which works
# differently from how NumPy handles it.
# da.from_array works by using lazy indexing with a tuple of slices.
# Using OuterIndexer is a pragmatic choice: dask does not yet handle
# different indexing types in an explicit way:
# https://github.com/dask/dask/issues/2883
ndata = ImplicitToExplicitIndexingAdapter(data_old, OuterIndexer) # type: ignore[assignment]
if is_dict_like(chunks):
chunks = tuple(starmap(chunks.get, enumerate(ndata.shape)))
data_chunked = chunkmanager.from_array(ndata, chunks, **from_array_kwargs) # type: ignore[arg-type]
return self._replace(data=data_chunked)
def to_numpy(self) -> np.ndarray[Any, Any]:
"""Coerces wrapped data to numpy and returns a numpy.ndarray"""
# TODO an entrypoint so array libraries can choose coercion method?
return to_numpy(self._data)
def as_numpy(self) -> Self:
"""Coerces wrapped data into a numpy array, returning a Variable."""
return self._replace(data=self.to_numpy())
def reduce(
self,
func: Callable[..., Any],
dim: Dims = None,
axis: int | Sequence[int] | None = None,
keepdims: bool = False,
**kwargs: Any,
) -> NamedArray[Any, Any]:
"""Reduce this array by applying `func` along some dimension(s).
Parameters
----------
func : callable
Function which can be called in the form
`func(x, axis=axis, **kwargs)` to return the result of reducing an
np.ndarray over an integer valued axis.
dim : "...", str, Iterable of Hashable or None, optional
Dimension(s) over which to apply `func`. By default `func` is
applied over all dimensions.
axis : int or Sequence of int, optional
Axis(es) over which to apply `func`. Only one of the 'dim'
and 'axis' arguments can be supplied. If neither are supplied, then
the reduction is calculated over the flattened array (by calling
`func(x)` without an axis argument).
keepdims : bool, default: False
If True, the dimensions which are reduced are left in the result
as dimensions of size one
**kwargs : dict
Additional keyword arguments passed on to `func`.
Returns
-------
reduced : Array
Array with summarized data and the indicated dimension(s)
removed.
"""
if dim == ...:
dim = None
if dim is not None and axis is not None:
raise ValueError("cannot supply both 'axis' and 'dim' arguments")
if dim is not None:
axis = self.get_axis_num(dim)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", r"Mean of empty slice", category=RuntimeWarning
)
if axis is not None:
if isinstance(axis, tuple) and len(axis) == 1:
# unpack axis for the benefit of functions
# like np.argmin which can't handle tuple arguments
axis = axis[0]
data = func(self.data, axis=axis, **kwargs)
else:
data = func(self.data, **kwargs)
if getattr(data, "shape", ()) == self.shape:
dims = self.dims
else:
removed_axes: Iterable[int]
if axis is None:
removed_axes = range(self.ndim)
else:
removed_axes = np.atleast_1d(axis) % self.ndim
if keepdims:
# Insert np.newaxis for removed dims
slices = tuple(
np.newaxis if i in removed_axes else slice(None, None)
for i in range(self.ndim)
)
if getattr(data, "shape", None) is None:
# Reduce has produced a scalar value, not an array-like
data = np.asanyarray(data)[slices]
else:
data = data[slices]
dims = self.dims
else:
dims = tuple(
adim for n, adim in enumerate(self.dims) if n not in removed_axes
)
# Return NamedArray to handle IndexVariable when data is nD
return from_array(dims, data, attrs=self._attrs)
def _nonzero(self: T_NamedArrayInteger) -> tuple[T_NamedArrayInteger, ...]:
"""Equivalent numpy's nonzero but returns a tuple of NamedArrays."""
# TODO: we should replace dask's native nonzero
# after https://github.com/dask/dask/issues/1076 is implemented.
# TODO: cast to ndarray and back to T_DuckArray is a workaround
nonzeros = np.nonzero(cast("NDArray[np.integer[Any]]", self.data))
_attrs = self.attrs
return tuple(
cast("T_NamedArrayInteger", self._new((dim,), nz, _attrs))
for nz, dim in zip(nonzeros, self.dims, strict=True)
)
def __repr__(self) -> str:
return formatting.array_repr(self)
def _repr_html_(self) -> str:
return formatting_html.array_repr(self)
def _as_sparse(
self,
sparse_format: Literal["coo"] | Default = _default,
fill_value: ArrayLike | Default = _default,
) -> NamedArray[Any, _DType_co]:
"""
Use sparse-array as backend.
"""
import sparse
from xarray.namedarray._array_api import astype
# TODO: what to do if dask-backended?
if fill_value is _default:
dtype, fill_value = dtypes.maybe_promote(self.dtype)
else:
dtype = dtypes.result_type(self.dtype, fill_value)
if sparse_format is _default:
sparse_format = "coo"
try:
as_sparse = getattr(sparse, f"as_{sparse_format.lower()}")
except AttributeError as exc:
raise ValueError(f"{sparse_format} is not a valid sparse format") from exc
data = as_sparse(astype(self, dtype).data, fill_value=fill_value)
return self._new(data=data)
def _to_dense(self) -> NamedArray[Any, _DType_co]:
"""
Change backend from sparse to np.array.
"""
if isinstance(self._data, _sparsearrayfunction_or_api):
data_dense: np.ndarray[Any, _DType_co] = self._data.todense()
return self._new(data=data_dense)
else:
raise TypeError("self.data is not a sparse array")
def permute_dims(
self,
*dim: Iterable[_Dim] | EllipsisType,
missing_dims: ErrorOptionsWithWarn = "raise",
) -> NamedArray[Any, _DType_co]:
"""Return a new object with transposed dimensions.
Parameters
----------
*dim : Hashable, optional
By default, reverse the order of the dimensions. Otherwise, reorder the
dimensions to this order.
missing_dims : {"raise", "warn", "ignore"}, default: "raise"
What to do if dimensions that should be selected from are not present in the
NamedArray:
- "raise": raise an exception
- "warn": raise a warning, and ignore the missing dimensions
- "ignore": ignore the missing dimensions
Returns
-------
NamedArray
The returned NamedArray has permuted dimensions and data with the
same attributes as the original.
See Also
--------
numpy.transpose
"""
from xarray.namedarray._array_api import permute_dims
if not dim:
dims = self.dims[::-1]
else:
dims = tuple(infix_dims(dim, self.dims, missing_dims)) # type: ignore[arg-type]
if len(dims) < 2 or dims == self.dims:
# no need to transpose if only one dimension
# or dims are in same order
return self.copy(deep=False)
axes = self.get_axis_num(dims)
assert isinstance(axes, tuple)
return permute_dims(self, axes)
@property
def T(self) -> NamedArray[Any, _DType_co]:
"""Return a new object with transposed dimensions."""
if self.ndim != 2:
raise ValueError(
f"x.T requires x to have 2 dimensions, got {self.ndim}. Use x.permute_dims() to permute dimensions."
)
return self.permute_dims()
def broadcast_to(
self, dim: Mapping[_Dim, int] | None = None, **dim_kwargs: Any
) -> NamedArray[Any, _DType_co]:
"""
Broadcast the NamedArray to a new shape. New dimensions are not allowed.
This method allows for the expansion of the array's dimensions to a specified shape.
It handles both positional and keyword arguments for specifying the dimensions to broadcast.
An error is raised if new dimensions are attempted to be added.
Parameters
----------
dim : dict, str, sequence of str, optional
Dimensions to broadcast the array to. If a dict, keys are dimension names and values are the new sizes.
If a string or sequence of strings, existing dimensions are matched with a size of 1.
**dim_kwargs : Any
Additional dimensions specified as keyword arguments. Each keyword argument specifies the name of an existing dimension and its size.
Returns
-------
NamedArray
A new NamedArray with the broadcasted dimensions.
Examples
--------
>>> data = np.asarray([[1.0, 2.0], [3.0, 4.0]])
>>> array = xr.NamedArray(("x", "y"), data)
>>> array.sizes
{'x': 2, 'y': 2}
>>> broadcasted = array.broadcast_to(x=2, y=2)
>>> broadcasted.sizes
{'x': 2, 'y': 2}
"""
from xarray.core import duck_array_ops
combined_dims = either_dict_or_kwargs(dim, dim_kwargs, "broadcast_to")
# Check that no new dimensions are added
if new_dims := set(combined_dims) - set(self.dims):
raise ValueError(
f"Cannot add new dimensions: {new_dims}. Only existing dimensions are allowed. "
"Use `expand_dims` method to add new dimensions."
)
# Create a dictionary of the current dimensions and their sizes
current_shape = self.sizes
# Update the current shape with the new dimensions, keeping the order of the original dimensions
broadcast_shape = {d: current_shape.get(d, 1) for d in self.dims}
broadcast_shape |= combined_dims
# Ensure the dimensions are in the correct order
ordered_dims = list(broadcast_shape.keys())
ordered_shape = tuple(broadcast_shape[d] for d in ordered_dims)
data = duck_array_ops.broadcast_to(self._data, ordered_shape) # type: ignore[no-untyped-call] # TODO: use array-api-compat function
return self._new(data=data, dims=ordered_dims)
def expand_dims(
self,
dim: _Dim | Default = _default,
) -> NamedArray[Any, _DType_co]:
"""
Expand the dimensions of the NamedArray.
This method adds new dimensions to the object. The new dimensions are added at the beginning of the array.
Parameters
----------
dim : Hashable, optional
Dimension name to expand the array to. This dimension will be added at the beginning of the array.
Returns
-------
NamedArray
A new NamedArray with expanded dimensions.
Examples
--------
>>> data = np.asarray([[1.0, 2.0], [3.0, 4.0]])
>>> array = xr.NamedArray(("x", "y"), data)
# expand dimensions by specifying a new dimension name
>>> expanded = array.expand_dims(dim="z")
>>> expanded.dims
('z', 'x', 'y')
"""
from xarray.namedarray._array_api import expand_dims
return expand_dims(self, dim=dim)
_NamedArray = NamedArray[Any, np.dtype[_ScalarType_co]]
def _raise_if_any_duplicate_dimensions(
dims: _Dims, err_context: str = "This function"
) -> None:
if len(set(dims)) < len(dims):
repeated_dims = {d for d in dims if dims.count(d) > 1}
raise ValueError(
f"{err_context} cannot handle duplicate dimensions, but dimensions {repeated_dims} appear more than once on this object's dims: {dims}"
)
|