File: core.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (1172 lines) | stat: -rw-r--r-- 40,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
from __future__ import annotations

import copy
import math
import warnings
from collections.abc import Callable, Hashable, Iterable, Mapping, Sequence
from itertools import starmap
from types import EllipsisType
from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    Literal,
    TypeVar,
    cast,
    overload,
)

import numpy as np

# TODO: get rid of this after migrating this class to array API
from xarray.core import dtypes, formatting, formatting_html
from xarray.core.indexing import (
    ExplicitlyIndexed,
    ImplicitToExplicitIndexingAdapter,
    OuterIndexer,
)
from xarray.namedarray._aggregations import NamedArrayAggregations
from xarray.namedarray._typing import (
    ErrorOptionsWithWarn,
    _arrayapi,
    _arrayfunction_or_api,
    _chunkedarray,
    _default,
    _dtype,
    _DType_co,
    _ScalarType_co,
    _ShapeType_co,
    _sparsearrayfunction_or_api,
    _SupportsImag,
    _SupportsReal,
)
from xarray.namedarray.parallelcompat import guess_chunkmanager
from xarray.namedarray.pycompat import to_numpy
from xarray.namedarray.utils import (
    either_dict_or_kwargs,
    infix_dims,
    is_dict_like,
    is_duck_dask_array,
    to_0d_object_array,
)

if TYPE_CHECKING:
    from numpy.typing import ArrayLike, NDArray

    from xarray.core.types import Dims, T_Chunks
    from xarray.namedarray._typing import (
        Default,
        _AttrsLike,
        _Chunks,
        _Dim,
        _Dims,
        _DimsLike,
        _DType,
        _IntOrUnknown,
        _ScalarType,
        _Shape,
        _ShapeType,
        duckarray,
    )
    from xarray.namedarray.parallelcompat import ChunkManagerEntrypoint

    try:
        from dask.typing import (
            Graph,
            NestedKeys,
            PostComputeCallable,
            PostPersistCallable,
            SchedulerGetCallable,
        )
    except ImportError:
        Graph: Any  # type: ignore[no-redef]
        NestedKeys: Any  # type: ignore[no-redef]
        SchedulerGetCallable: Any  # type: ignore[no-redef]
        PostComputeCallable: Any  # type: ignore[no-redef]
        PostPersistCallable: Any  # type: ignore[no-redef]

    from typing import Self

    T_NamedArray = TypeVar("T_NamedArray", bound="_NamedArray[Any]")
    T_NamedArrayInteger = TypeVar(
        "T_NamedArrayInteger", bound="_NamedArray[np.integer[Any]]"
    )


@overload
def _new(
    x: NamedArray[Any, _DType_co],
    dims: _DimsLike | Default = ...,
    data: duckarray[_ShapeType, _DType] = ...,
    attrs: _AttrsLike | Default = ...,
) -> NamedArray[_ShapeType, _DType]: ...


@overload
def _new(
    x: NamedArray[_ShapeType_co, _DType_co],
    dims: _DimsLike | Default = ...,
    data: Default = ...,
    attrs: _AttrsLike | Default = ...,
) -> NamedArray[_ShapeType_co, _DType_co]: ...


def _new(
    x: NamedArray[Any, _DType_co],
    dims: _DimsLike | Default = _default,
    data: duckarray[_ShapeType, _DType] | Default = _default,
    attrs: _AttrsLike | Default = _default,
) -> NamedArray[_ShapeType, _DType] | NamedArray[Any, _DType_co]:
    """
    Create a new array with new typing information.

    Parameters
    ----------
    x : NamedArray
        Array to create a new array from
    dims : Iterable of Hashable, optional
        Name(s) of the dimension(s).
        Will copy the dims from x by default.
    data : duckarray, optional
        The actual data that populates the array. Should match the
        shape specified by `dims`.
        Will copy the data from x by default.
    attrs : dict, optional
        A dictionary containing any additional information or
        attributes you want to store with the array.
        Will copy the attrs from x by default.
    """
    dims_ = copy.copy(x._dims) if dims is _default else dims

    attrs_: Mapping[Any, Any] | None
    if attrs is _default:
        attrs_ = None if x._attrs is None else x._attrs.copy()
    else:
        attrs_ = attrs

    if data is _default:
        return type(x)(dims_, copy.copy(x._data), attrs_)
    else:
        cls_ = cast("type[NamedArray[_ShapeType, _DType]]", type(x))
        return cls_(dims_, data, attrs_)


@overload
def from_array(
    dims: _DimsLike,
    data: duckarray[_ShapeType, _DType],
    attrs: _AttrsLike = ...,
) -> NamedArray[_ShapeType, _DType]: ...


@overload
def from_array(
    dims: _DimsLike,
    data: ArrayLike,
    attrs: _AttrsLike = ...,
) -> NamedArray[Any, Any]: ...


def from_array(
    dims: _DimsLike,
    data: duckarray[_ShapeType, _DType] | ArrayLike,
    attrs: _AttrsLike = None,
) -> NamedArray[_ShapeType, _DType] | NamedArray[Any, Any]:
    """
    Create a Named array from an array-like object.

    Parameters
    ----------
    dims : str or iterable of str
        Name(s) of the dimension(s).
    data : T_DuckArray or ArrayLike
        The actual data that populates the array. Should match the
        shape specified by `dims`.
    attrs : dict, optional
        A dictionary containing any additional information or
        attributes you want to store with the array.
        Default is None, meaning no attributes will be stored.
    """
    if isinstance(data, NamedArray):
        raise TypeError(
            "Array is already a Named array. Use 'data.data' to retrieve the data array"
        )

    # TODO: dask.array.ma.MaskedArray also exists, better way?
    if isinstance(data, np.ma.MaskedArray):
        mask = np.ma.getmaskarray(data)  # type: ignore[no-untyped-call]
        if mask.any():
            # TODO: requires refactoring/vendoring xarray.core.dtypes and
            # xarray.core.duck_array_ops
            raise NotImplementedError("MaskedArray is not supported yet")

        return NamedArray(dims, data, attrs)

    if isinstance(data, _arrayfunction_or_api) and not isinstance(data, np.generic):
        return NamedArray(dims, data, attrs)

    if isinstance(data, tuple):
        return NamedArray(dims, to_0d_object_array(data), attrs)

    # validate whether the data is valid data types.
    return NamedArray(dims, np.asarray(data), attrs)


class NamedArray(NamedArrayAggregations, Generic[_ShapeType_co, _DType_co]):
    """
    A wrapper around duck arrays with named dimensions
    and attributes which describe a single Array.
    Numeric operations on this object implement array broadcasting and
    dimension alignment based on dimension names,
    rather than axis order.


    Parameters
    ----------
    dims : str or iterable of hashable
        Name(s) of the dimension(s).
    data : array-like or duck-array
        The actual data that populates the array. Should match the
        shape specified by `dims`.
    attrs : dict, optional
        A dictionary containing any additional information or
        attributes you want to store with the array.
        Default is None, meaning no attributes will be stored.

    Raises
    ------
    ValueError
        If the `dims` length does not match the number of data dimensions (ndim).


    Examples
    --------
    >>> data = np.array([1.5, 2, 3], dtype=float)
    >>> narr = NamedArray(("x",), data, {"units": "m"})  # TODO: Better name than narr?
    """

    __slots__ = ("_attrs", "_data", "_dims")

    _data: duckarray[Any, _DType_co]
    _dims: _Dims
    _attrs: dict[Any, Any] | None

    def __init__(
        self,
        dims: _DimsLike,
        data: duckarray[Any, _DType_co],
        attrs: _AttrsLike = None,
    ):
        self._data = data
        self._dims = self._parse_dimensions(dims)
        self._attrs = dict(attrs) if attrs else None

    def __init_subclass__(cls, **kwargs: Any) -> None:
        if NamedArray in cls.__bases__ and (cls._new == NamedArray._new):
            # Type hinting does not work for subclasses unless _new is
            # overridden with the correct class.
            raise TypeError(
                "Subclasses of `NamedArray` must override the `_new` method."
            )
        super().__init_subclass__(**kwargs)

    @overload
    def _new(
        self,
        dims: _DimsLike | Default = ...,
        data: duckarray[_ShapeType, _DType] = ...,
        attrs: _AttrsLike | Default = ...,
    ) -> NamedArray[_ShapeType, _DType]: ...

    @overload
    def _new(
        self,
        dims: _DimsLike | Default = ...,
        data: Default = ...,
        attrs: _AttrsLike | Default = ...,
    ) -> NamedArray[_ShapeType_co, _DType_co]: ...

    def _new(
        self,
        dims: _DimsLike | Default = _default,
        data: duckarray[Any, _DType] | Default = _default,
        attrs: _AttrsLike | Default = _default,
    ) -> NamedArray[_ShapeType, _DType] | NamedArray[_ShapeType_co, _DType_co]:
        """
        Create a new array with new typing information.

        _new has to be reimplemented each time NamedArray is subclassed,
        otherwise type hints will not be correct. The same is likely true
        for methods that relied on _new.

        Parameters
        ----------
        dims : Iterable of Hashable, optional
            Name(s) of the dimension(s).
            Will copy the dims from x by default.
        data : duckarray, optional
            The actual data that populates the array. Should match the
            shape specified by `dims`.
            Will copy the data from x by default.
        attrs : dict, optional
            A dictionary containing any additional information or
            attributes you want to store with the array.
            Will copy the attrs from x by default.
        """
        return _new(self, dims, data, attrs)

    def _replace(
        self,
        dims: _DimsLike | Default = _default,
        data: duckarray[_ShapeType_co, _DType_co] | Default = _default,
        attrs: _AttrsLike | Default = _default,
    ) -> Self:
        """
        Create a new array with the same typing information.

        The types for each argument cannot change,
        use self._new if that is a risk.

        Parameters
        ----------
        dims : Iterable of Hashable, optional
            Name(s) of the dimension(s).
            Will copy the dims from x by default.
        data : duckarray, optional
            The actual data that populates the array. Should match the
            shape specified by `dims`.
            Will copy the data from x by default.
        attrs : dict, optional
            A dictionary containing any additional information or
            attributes you want to store with the array.
            Will copy the attrs from x by default.
        """
        return cast("Self", self._new(dims, data, attrs))

    def _copy(
        self,
        deep: bool = True,
        data: duckarray[_ShapeType_co, _DType_co] | None = None,
        memo: dict[int, Any] | None = None,
    ) -> Self:
        if data is None:
            ndata = self._data
            if deep:
                ndata = copy.deepcopy(ndata, memo=memo)
        else:
            ndata = data
            self._check_shape(ndata)

        attrs = (
            copy.deepcopy(self._attrs, memo=memo) if deep else copy.copy(self._attrs)
        )

        return self._replace(data=ndata, attrs=attrs)

    def __copy__(self) -> Self:
        return self._copy(deep=False)

    def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
        return self._copy(deep=True, memo=memo)

    def copy(
        self,
        deep: bool = True,
        data: duckarray[_ShapeType_co, _DType_co] | None = None,
    ) -> Self:
        """Returns a copy of this object.

        If `deep=True`, the data array is loaded into memory and copied onto
        the new object. Dimensions, attributes and encodings are always copied.

        Use `data` to create a new object with the same structure as
        original but entirely new data.

        Parameters
        ----------
        deep : bool, default: True
            Whether the data array is loaded into memory and copied onto
            the new object. Default is True.
        data : array_like, optional
            Data to use in the new object. Must have same shape as original.
            When `data` is used, `deep` is ignored.

        Returns
        -------
        object : NamedArray
            New object with dimensions, attributes, and optionally
            data copied from original.


        """
        return self._copy(deep=deep, data=data)

    @property
    def ndim(self) -> int:
        """
        Number of array dimensions.

        See Also
        --------
        numpy.ndarray.ndim
        """
        return len(self.shape)

    @property
    def size(self) -> _IntOrUnknown:
        """
        Number of elements in the array.

        Equal to ``np.prod(a.shape)``, i.e., the product of the array’s dimensions.

        See Also
        --------
        numpy.ndarray.size
        """
        return math.prod(self.shape)

    def __len__(self) -> _IntOrUnknown:
        try:
            return self.shape[0]
        except Exception as exc:
            raise TypeError("len() of unsized object") from exc

    @property
    def dtype(self) -> _DType_co:
        """
        Data-type of the array’s elements.

        See Also
        --------
        ndarray.dtype
        numpy.dtype
        """
        return self._data.dtype

    @property
    def shape(self) -> _Shape:
        """
        Get the shape of the array.

        Returns
        -------
        shape : tuple of ints
            Tuple of array dimensions.

        See Also
        --------
        numpy.ndarray.shape
        """
        return self._data.shape

    @property
    def nbytes(self) -> _IntOrUnknown:
        """
        Total bytes consumed by the elements of the data array.

        If the underlying data array does not include ``nbytes``, estimates
        the bytes consumed based on the ``size`` and ``dtype``.
        """
        from xarray.namedarray._array_api import _get_data_namespace

        if hasattr(self._data, "nbytes"):
            return self._data.nbytes  # type: ignore[no-any-return]

        if hasattr(self.dtype, "itemsize"):
            itemsize = self.dtype.itemsize
        elif isinstance(self._data, _arrayapi):
            xp = _get_data_namespace(self)

            if xp.isdtype(self.dtype, "bool"):
                itemsize = 1
            elif xp.isdtype(self.dtype, "integral"):
                itemsize = xp.iinfo(self.dtype).bits // 8
            else:
                itemsize = xp.finfo(self.dtype).bits // 8
        else:
            raise TypeError(
                "cannot compute the number of bytes (no array API nor nbytes / itemsize)"
            )

        return self.size * itemsize

    @property
    def dims(self) -> _Dims:
        """Tuple of dimension names with which this NamedArray is associated."""
        return self._dims

    @dims.setter
    def dims(self, value: _DimsLike) -> None:
        self._dims = self._parse_dimensions(value)

    def _parse_dimensions(self, dims: _DimsLike) -> _Dims:
        dims = (dims,) if isinstance(dims, str) else tuple(dims)
        if len(dims) != self.ndim:
            raise ValueError(
                f"dimensions {dims} must have the same length as the "
                f"number of data dimensions, ndim={self.ndim}"
            )
        if len(set(dims)) < len(dims):
            repeated_dims = {d for d in dims if dims.count(d) > 1}
            warnings.warn(
                f"Duplicate dimension names present: dimensions {repeated_dims} appear more than once in dims={dims}. "
                "We do not yet support duplicate dimension names, but we do allow initial construction of the object. "
                "We recommend you rename the dims immediately to become distinct, as most xarray functionality is likely to fail silently if you do not. "
                "To rename the dimensions you will need to set the ``.dims`` attribute of each variable, ``e.g. var.dims=('x0', 'x1')``.",
                UserWarning,
                stacklevel=2,
            )
        return dims

    @property
    def attrs(self) -> dict[Any, Any]:
        """Dictionary of local attributes on this NamedArray."""
        if self._attrs is None:
            self._attrs = {}
        return self._attrs

    @attrs.setter
    def attrs(self, value: Mapping[Any, Any]) -> None:
        self._attrs = dict(value) if value else None

    def _check_shape(self, new_data: duckarray[Any, _DType_co]) -> None:
        if new_data.shape != self.shape:
            raise ValueError(
                f"replacement data must match the {self.__class__.__name__}'s shape. "
                f"replacement data has shape {new_data.shape}; {self.__class__.__name__} has shape {self.shape}"
            )

    @property
    def data(self) -> duckarray[Any, _DType_co]:
        """
        The NamedArray's data as an array. The underlying array type
        (e.g. dask, sparse, pint) is preserved.

        """

        return self._data

    @data.setter
    def data(self, data: duckarray[Any, _DType_co]) -> None:
        self._check_shape(data)
        self._data = data

    @property
    def imag(
        self: NamedArray[_ShapeType, np.dtype[_SupportsImag[_ScalarType]]],  # type: ignore[type-var]
    ) -> NamedArray[_ShapeType, _dtype[_ScalarType]]:
        """
        The imaginary part of the array.

        See Also
        --------
        numpy.ndarray.imag
        """
        if isinstance(self._data, _arrayapi):
            from xarray.namedarray._array_api import imag

            return imag(self)

        return self._new(data=self._data.imag)

    @property
    def real(
        self: NamedArray[_ShapeType, np.dtype[_SupportsReal[_ScalarType]]],  # type: ignore[type-var]
    ) -> NamedArray[_ShapeType, _dtype[_ScalarType]]:
        """
        The real part of the array.

        See Also
        --------
        numpy.ndarray.real
        """
        if isinstance(self._data, _arrayapi):
            from xarray.namedarray._array_api import real

            return real(self)
        return self._new(data=self._data.real)

    def __dask_tokenize__(self) -> object:
        # Use v.data, instead of v._data, in order to cope with the wrappers
        # around NetCDF and the like
        from dask.base import normalize_token

        return normalize_token((type(self), self._dims, self.data, self._attrs or None))

    def __dask_graph__(self) -> Graph | None:
        if is_duck_dask_array(self._data):
            return self._data.__dask_graph__()
        else:
            # TODO: Should this method just raise instead?
            # raise NotImplementedError("Method requires self.data to be a dask array")
            return None

    def __dask_keys__(self) -> NestedKeys:
        if is_duck_dask_array(self._data):
            return self._data.__dask_keys__()
        else:
            raise AttributeError("Method requires self.data to be a dask array.")

    def __dask_layers__(self) -> Sequence[str]:
        if is_duck_dask_array(self._data):
            return self._data.__dask_layers__()
        else:
            raise AttributeError("Method requires self.data to be a dask array.")

    @property
    def __dask_optimize__(
        self,
    ) -> Callable[..., dict[Any, Any]]:
        if is_duck_dask_array(self._data):
            return self._data.__dask_optimize__  # type: ignore[no-any-return]
        else:
            raise AttributeError("Method requires self.data to be a dask array.")

    @property
    def __dask_scheduler__(self) -> SchedulerGetCallable:
        if is_duck_dask_array(self._data):
            return self._data.__dask_scheduler__
        else:
            raise AttributeError("Method requires self.data to be a dask array.")

    def __dask_postcompute__(
        self,
    ) -> tuple[PostComputeCallable, tuple[Any, ...]]:
        if is_duck_dask_array(self._data):
            array_func, array_args = self._data.__dask_postcompute__()  # type: ignore[no-untyped-call]
            return self._dask_finalize, (array_func,) + array_args
        else:
            raise AttributeError("Method requires self.data to be a dask array.")

    def __dask_postpersist__(
        self,
    ) -> tuple[
        Callable[
            [Graph, PostPersistCallable[Any], Any, Any],
            Self,
        ],
        tuple[Any, ...],
    ]:
        if is_duck_dask_array(self._data):
            a: tuple[PostPersistCallable[Any], tuple[Any, ...]]
            a = self._data.__dask_postpersist__()  # type: ignore[no-untyped-call]
            array_func, array_args = a

            return self._dask_finalize, (array_func,) + array_args
        else:
            raise AttributeError("Method requires self.data to be a dask array.")

    def _dask_finalize(
        self,
        results: Graph,
        array_func: PostPersistCallable[Any],
        *args: Any,
        **kwargs: Any,
    ) -> Self:
        data = array_func(results, *args, **kwargs)
        return type(self)(self._dims, data, attrs=self._attrs)

    @overload
    def get_axis_num(self, dim: str) -> int: ...  # type: ignore [overload-overlap]

    @overload
    def get_axis_num(self, dim: Iterable[Hashable]) -> tuple[int, ...]: ...

    @overload
    def get_axis_num(self, dim: Hashable) -> int: ...

    def get_axis_num(self, dim: Hashable | Iterable[Hashable]) -> int | tuple[int, ...]:
        """Return axis number(s) corresponding to dimension(s) in this array.

        Parameters
        ----------
        dim : str or iterable of str
            Dimension name(s) for which to lookup axes.

        Returns
        -------
        int or tuple of int
            Axis number or numbers corresponding to the given dimensions.
        """
        if not isinstance(dim, str) and isinstance(dim, Iterable):
            return tuple(self._get_axis_num(d) for d in dim)
        else:
            return self._get_axis_num(dim)

    def _get_axis_num(self: Any, dim: Hashable) -> int:
        _raise_if_any_duplicate_dimensions(self.dims)
        try:
            return self.dims.index(dim)  # type: ignore[no-any-return]
        except ValueError as err:
            raise ValueError(
                f"{dim!r} not found in array dimensions {self.dims!r}"
            ) from err

    @property
    def chunks(self) -> _Chunks | None:
        """
        Tuple of block lengths for this NamedArray's data, in order of dimensions, or None if
        the underlying data is not a dask array.

        See Also
        --------
        NamedArray.chunk
        NamedArray.chunksizes
        xarray.unify_chunks
        """
        data = self._data
        if isinstance(data, _chunkedarray):
            return data.chunks
        else:
            return None

    @property
    def chunksizes(
        self,
    ) -> Mapping[_Dim, _Shape]:
        """
        Mapping from dimension names to block lengths for this NamedArray's data.

        If this NamedArray does not contain chunked arrays, the mapping will be empty.

        Cannot be modified directly, but can be modified by calling .chunk().

        Differs from NamedArray.chunks because it returns a mapping of dimensions to chunk shapes
        instead of a tuple of chunk shapes.

        See Also
        --------
        NamedArray.chunk
        NamedArray.chunks
        xarray.unify_chunks
        """
        data = self._data
        if isinstance(data, _chunkedarray):
            return dict(zip(self.dims, data.chunks, strict=True))
        else:
            return {}

    @property
    def sizes(self) -> dict[_Dim, _IntOrUnknown]:
        """Ordered mapping from dimension names to lengths."""
        return dict(zip(self.dims, self.shape, strict=True))

    def chunk(
        self,
        chunks: T_Chunks = {},  # noqa: B006  # even though it's unsafe, it is being used intentionally here (#4667)
        chunked_array_type: str | ChunkManagerEntrypoint[Any] | None = None,
        from_array_kwargs: Any = None,
        **chunks_kwargs: Any,
    ) -> Self:
        """Coerce this array's data into a dask array with the given chunks.

        If this variable is a non-dask array, it will be converted to dask
        array. If it's a dask array, it will be rechunked to the given chunk
        sizes.

        If neither chunks is not provided for one or more dimensions, chunk
        sizes along that dimension will not be updated; non-dask arrays will be
        converted into dask arrays with a single block.

        Parameters
        ----------
        chunks : int, tuple or dict, optional
            Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or
            ``{'x': 5, 'y': 5}``.
        chunked_array_type: str, optional
            Which chunked array type to coerce this datasets' arrays to.
            Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntrypoint` system.
            Experimental API that should not be relied upon.
        from_array_kwargs: dict, optional
            Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
            chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
            For example, with dask as the default chunked array type, this method would pass additional kwargs
            to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
        **chunks_kwargs : {dim: chunks, ...}, optional
            The keyword arguments form of ``chunks``.
            One of chunks or chunks_kwargs must be provided.

        Returns
        -------
        chunked : xarray.Variable

        See Also
        --------
        Variable.chunks
        Variable.chunksizes
        xarray.unify_chunks
        dask.array.from_array
        """

        if from_array_kwargs is None:
            from_array_kwargs = {}

        if chunks is None:
            warnings.warn(
                "None value for 'chunks' is deprecated. "
                "It will raise an error in the future. Use instead '{}'",
                category=FutureWarning,
                stacklevel=2,
            )
            chunks = {}

        if isinstance(chunks, float | str | int | tuple | list):
            # TODO we shouldn't assume here that other chunkmanagers can handle these types
            # TODO should we call normalize_chunks here?
            pass  # dask.array.from_array can handle these directly
        else:
            chunks = either_dict_or_kwargs(chunks, chunks_kwargs, "chunk")

        if is_dict_like(chunks):
            # This method of iteration allows for duplicated dimension names, GH8579
            chunks = {
                dim_number: chunks[dim]
                for dim_number, dim in enumerate(self.dims)
                if dim in chunks
            }

        chunkmanager = guess_chunkmanager(chunked_array_type)

        data_old = self._data
        if chunkmanager.is_chunked_array(data_old):
            data_chunked = chunkmanager.rechunk(data_old, chunks)  # type: ignore[arg-type]
        else:
            ndata: duckarray[Any, Any]
            if not isinstance(data_old, ExplicitlyIndexed):
                ndata = data_old
            else:
                # Unambiguously handle array storage backends (like NetCDF4 and h5py)
                # that can't handle general array indexing. For example, in netCDF4 you
                # can do "outer" indexing along two dimensions independent, which works
                # differently from how NumPy handles it.
                # da.from_array works by using lazy indexing with a tuple of slices.
                # Using OuterIndexer is a pragmatic choice: dask does not yet handle
                # different indexing types in an explicit way:
                # https://github.com/dask/dask/issues/2883
                ndata = ImplicitToExplicitIndexingAdapter(data_old, OuterIndexer)  # type: ignore[assignment]

            if is_dict_like(chunks):
                chunks = tuple(starmap(chunks.get, enumerate(ndata.shape)))

            data_chunked = chunkmanager.from_array(ndata, chunks, **from_array_kwargs)  # type: ignore[arg-type]

        return self._replace(data=data_chunked)

    def to_numpy(self) -> np.ndarray[Any, Any]:
        """Coerces wrapped data to numpy and returns a numpy.ndarray"""
        # TODO an entrypoint so array libraries can choose coercion method?
        return to_numpy(self._data)

    def as_numpy(self) -> Self:
        """Coerces wrapped data into a numpy array, returning a Variable."""
        return self._replace(data=self.to_numpy())

    def reduce(
        self,
        func: Callable[..., Any],
        dim: Dims = None,
        axis: int | Sequence[int] | None = None,
        keepdims: bool = False,
        **kwargs: Any,
    ) -> NamedArray[Any, Any]:
        """Reduce this array by applying `func` along some dimension(s).

        Parameters
        ----------
        func : callable
            Function which can be called in the form
            `func(x, axis=axis, **kwargs)` to return the result of reducing an
            np.ndarray over an integer valued axis.
        dim : "...", str, Iterable of Hashable or None, optional
            Dimension(s) over which to apply `func`. By default `func` is
            applied over all dimensions.
        axis : int or Sequence of int, optional
            Axis(es) over which to apply `func`. Only one of the 'dim'
            and 'axis' arguments can be supplied. If neither are supplied, then
            the reduction is calculated over the flattened array (by calling
            `func(x)` without an axis argument).
        keepdims : bool, default: False
            If True, the dimensions which are reduced are left in the result
            as dimensions of size one
        **kwargs : dict
            Additional keyword arguments passed on to `func`.

        Returns
        -------
        reduced : Array
            Array with summarized data and the indicated dimension(s)
            removed.
        """
        if dim == ...:
            dim = None
        if dim is not None and axis is not None:
            raise ValueError("cannot supply both 'axis' and 'dim' arguments")

        if dim is not None:
            axis = self.get_axis_num(dim)

        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore", r"Mean of empty slice", category=RuntimeWarning
            )
            if axis is not None:
                if isinstance(axis, tuple) and len(axis) == 1:
                    # unpack axis for the benefit of functions
                    # like np.argmin which can't handle tuple arguments
                    axis = axis[0]
                data = func(self.data, axis=axis, **kwargs)
            else:
                data = func(self.data, **kwargs)

        if getattr(data, "shape", ()) == self.shape:
            dims = self.dims
        else:
            removed_axes: Iterable[int]
            if axis is None:
                removed_axes = range(self.ndim)
            else:
                removed_axes = np.atleast_1d(axis) % self.ndim
            if keepdims:
                # Insert np.newaxis for removed dims
                slices = tuple(
                    np.newaxis if i in removed_axes else slice(None, None)
                    for i in range(self.ndim)
                )
                if getattr(data, "shape", None) is None:
                    # Reduce has produced a scalar value, not an array-like
                    data = np.asanyarray(data)[slices]
                else:
                    data = data[slices]
                dims = self.dims
            else:
                dims = tuple(
                    adim for n, adim in enumerate(self.dims) if n not in removed_axes
                )

        # Return NamedArray to handle IndexVariable when data is nD
        return from_array(dims, data, attrs=self._attrs)

    def _nonzero(self: T_NamedArrayInteger) -> tuple[T_NamedArrayInteger, ...]:
        """Equivalent numpy's nonzero but returns a tuple of NamedArrays."""
        # TODO: we should replace dask's native nonzero
        # after https://github.com/dask/dask/issues/1076 is implemented.
        # TODO: cast to ndarray and back to T_DuckArray is a workaround
        nonzeros = np.nonzero(cast("NDArray[np.integer[Any]]", self.data))
        _attrs = self.attrs
        return tuple(
            cast("T_NamedArrayInteger", self._new((dim,), nz, _attrs))
            for nz, dim in zip(nonzeros, self.dims, strict=True)
        )

    def __repr__(self) -> str:
        return formatting.array_repr(self)

    def _repr_html_(self) -> str:
        return formatting_html.array_repr(self)

    def _as_sparse(
        self,
        sparse_format: Literal["coo"] | Default = _default,
        fill_value: ArrayLike | Default = _default,
    ) -> NamedArray[Any, _DType_co]:
        """
        Use sparse-array as backend.
        """
        import sparse

        from xarray.namedarray._array_api import astype

        # TODO: what to do if dask-backended?
        if fill_value is _default:
            dtype, fill_value = dtypes.maybe_promote(self.dtype)
        else:
            dtype = dtypes.result_type(self.dtype, fill_value)

        if sparse_format is _default:
            sparse_format = "coo"
        try:
            as_sparse = getattr(sparse, f"as_{sparse_format.lower()}")
        except AttributeError as exc:
            raise ValueError(f"{sparse_format} is not a valid sparse format") from exc

        data = as_sparse(astype(self, dtype).data, fill_value=fill_value)
        return self._new(data=data)

    def _to_dense(self) -> NamedArray[Any, _DType_co]:
        """
        Change backend from sparse to np.array.
        """
        if isinstance(self._data, _sparsearrayfunction_or_api):
            data_dense: np.ndarray[Any, _DType_co] = self._data.todense()
            return self._new(data=data_dense)
        else:
            raise TypeError("self.data is not a sparse array")

    def permute_dims(
        self,
        *dim: Iterable[_Dim] | EllipsisType,
        missing_dims: ErrorOptionsWithWarn = "raise",
    ) -> NamedArray[Any, _DType_co]:
        """Return a new object with transposed dimensions.

        Parameters
        ----------
        *dim : Hashable, optional
            By default, reverse the order of the dimensions. Otherwise, reorder the
            dimensions to this order.
        missing_dims : {"raise", "warn", "ignore"}, default: "raise"
            What to do if dimensions that should be selected from are not present in the
            NamedArray:
            - "raise": raise an exception
            - "warn": raise a warning, and ignore the missing dimensions
            - "ignore": ignore the missing dimensions

        Returns
        -------
        NamedArray
            The returned NamedArray has permuted dimensions and data with the
            same attributes as the original.


        See Also
        --------
        numpy.transpose
        """

        from xarray.namedarray._array_api import permute_dims

        if not dim:
            dims = self.dims[::-1]
        else:
            dims = tuple(infix_dims(dim, self.dims, missing_dims))  # type: ignore[arg-type]

        if len(dims) < 2 or dims == self.dims:
            # no need to transpose if only one dimension
            # or dims are in same order
            return self.copy(deep=False)

        axes = self.get_axis_num(dims)
        assert isinstance(axes, tuple)

        return permute_dims(self, axes)

    @property
    def T(self) -> NamedArray[Any, _DType_co]:
        """Return a new object with transposed dimensions."""
        if self.ndim != 2:
            raise ValueError(
                f"x.T requires x to have 2 dimensions, got {self.ndim}. Use x.permute_dims() to permute dimensions."
            )

        return self.permute_dims()

    def broadcast_to(
        self, dim: Mapping[_Dim, int] | None = None, **dim_kwargs: Any
    ) -> NamedArray[Any, _DType_co]:
        """
        Broadcast the NamedArray to a new shape. New dimensions are not allowed.

        This method allows for the expansion of the array's dimensions to a specified shape.
        It handles both positional and keyword arguments for specifying the dimensions to broadcast.
        An error is raised if new dimensions are attempted to be added.

        Parameters
        ----------
        dim : dict, str, sequence of str, optional
            Dimensions to broadcast the array to. If a dict, keys are dimension names and values are the new sizes.
            If a string or sequence of strings, existing dimensions are matched with a size of 1.

        **dim_kwargs : Any
            Additional dimensions specified as keyword arguments. Each keyword argument specifies the name of an existing dimension and its size.

        Returns
        -------
        NamedArray
            A new NamedArray with the broadcasted dimensions.

        Examples
        --------
        >>> data = np.asarray([[1.0, 2.0], [3.0, 4.0]])
        >>> array = xr.NamedArray(("x", "y"), data)
        >>> array.sizes
        {'x': 2, 'y': 2}

        >>> broadcasted = array.broadcast_to(x=2, y=2)
        >>> broadcasted.sizes
        {'x': 2, 'y': 2}
        """

        from xarray.core import duck_array_ops

        combined_dims = either_dict_or_kwargs(dim, dim_kwargs, "broadcast_to")

        # Check that no new dimensions are added
        if new_dims := set(combined_dims) - set(self.dims):
            raise ValueError(
                f"Cannot add new dimensions: {new_dims}. Only existing dimensions are allowed. "
                "Use `expand_dims` method to add new dimensions."
            )

        # Create a dictionary of the current dimensions and their sizes
        current_shape = self.sizes

        # Update the current shape with the new dimensions, keeping the order of the original dimensions
        broadcast_shape = {d: current_shape.get(d, 1) for d in self.dims}
        broadcast_shape |= combined_dims

        # Ensure the dimensions are in the correct order
        ordered_dims = list(broadcast_shape.keys())
        ordered_shape = tuple(broadcast_shape[d] for d in ordered_dims)
        data = duck_array_ops.broadcast_to(self._data, ordered_shape)  # type: ignore[no-untyped-call]  # TODO: use array-api-compat function
        return self._new(data=data, dims=ordered_dims)

    def expand_dims(
        self,
        dim: _Dim | Default = _default,
    ) -> NamedArray[Any, _DType_co]:
        """
        Expand the dimensions of the NamedArray.

        This method adds new dimensions to the object. The new dimensions are added at the beginning of the array.

        Parameters
        ----------
        dim : Hashable, optional
            Dimension name to expand the array to. This dimension will be added at the beginning of the array.

        Returns
        -------
        NamedArray
            A new NamedArray with expanded dimensions.


        Examples
        --------

        >>> data = np.asarray([[1.0, 2.0], [3.0, 4.0]])
        >>> array = xr.NamedArray(("x", "y"), data)


        # expand dimensions by specifying a new dimension name
        >>> expanded = array.expand_dims(dim="z")
        >>> expanded.dims
        ('z', 'x', 'y')

        """

        from xarray.namedarray._array_api import expand_dims

        return expand_dims(self, dim=dim)


_NamedArray = NamedArray[Any, np.dtype[_ScalarType_co]]


def _raise_if_any_duplicate_dimensions(
    dims: _Dims, err_context: str = "This function"
) -> None:
    if len(set(dims)) < len(dims):
        repeated_dims = {d for d in dims if dims.count(d) > 1}
        raise ValueError(
            f"{err_context} cannot handle duplicate dimensions, but dimensions {repeated_dims} appear more than once on this object's dims: {dims}"
        )