1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
"""
The code in this module is an experiment in going from N=1 to N=2 parallel computing frameworks in xarray.
It could later be used as the basis for a public interface allowing any N frameworks to interoperate with xarray,
but for now it is just a private experiment.
"""
from __future__ import annotations
import functools
from abc import ABC, abstractmethod
from collections.abc import Callable, Iterable, Sequence
from importlib.metadata import EntryPoint, entry_points
from typing import TYPE_CHECKING, Any, Generic, Protocol, TypeVar
import numpy as np
from xarray.core.options import OPTIONS
from xarray.core.utils import emit_user_level_warning
from xarray.namedarray.pycompat import is_chunked_array
if TYPE_CHECKING:
from xarray.namedarray._typing import (
T_Chunks,
_Chunks,
_DType,
_DType_co,
_NormalizedChunks,
_ShapeType,
duckarray,
)
class ChunkedArrayMixinProtocol(Protocol):
def rechunk(self, chunks: Any, **kwargs: Any) -> Any: ...
@property
def dtype(self) -> np.dtype[Any]: ...
@property
def chunks(self) -> _NormalizedChunks: ...
def compute(
self, *data: Any, **kwargs: Any
) -> tuple[np.ndarray[Any, _DType_co], ...]: ...
T_ChunkedArray = TypeVar("T_ChunkedArray", bound=ChunkedArrayMixinProtocol)
KNOWN_CHUNKMANAGERS = {
"dask": "dask",
"cubed": "cubed-xarray",
"arkouda": "arkouda-xarray",
}
@functools.lru_cache(maxsize=1)
def list_chunkmanagers() -> dict[str, ChunkManagerEntrypoint[Any]]:
"""
Return a dictionary of available chunk managers and their ChunkManagerEntrypoint subclass objects.
Returns
-------
chunkmanagers : dict
Dictionary whose values are registered ChunkManagerEntrypoint subclass instances, and whose values
are the strings under which they are registered.
"""
entrypoints = entry_points(group="xarray.chunkmanagers")
return load_chunkmanagers(entrypoints)
def load_chunkmanagers(
entrypoints: Sequence[EntryPoint],
) -> dict[str, ChunkManagerEntrypoint[Any]]:
"""Load entrypoints and instantiate chunkmanagers only once."""
loaded_entrypoints = {}
for entrypoint in entrypoints:
try:
loaded_entrypoints[entrypoint.name] = entrypoint.load()
except ModuleNotFoundError as e:
emit_user_level_warning(
f"Failed to load chunk manager entrypoint {entrypoint.name} due to {e}. Skipping.",
)
available_chunkmanagers = {
name: chunkmanager()
for name, chunkmanager in loaded_entrypoints.items()
if chunkmanager.available
}
return available_chunkmanagers
def guess_chunkmanager(
manager: str | ChunkManagerEntrypoint[Any] | None,
) -> ChunkManagerEntrypoint[Any]:
"""
Get namespace of chunk-handling methods, guessing from what's available.
If the name of a specific ChunkManager is given (e.g. "dask"), then use that.
Else use whatever is installed, defaulting to dask if there are multiple options.
"""
available_chunkmanagers = list_chunkmanagers()
if manager is None:
if len(available_chunkmanagers) == 1:
# use the only option available
manager = next(iter(available_chunkmanagers.keys()))
else:
# use the one in options (default dask)
manager = OPTIONS["chunk_manager"]
if isinstance(manager, str):
if manager not in available_chunkmanagers and manager in KNOWN_CHUNKMANAGERS:
raise ImportError(
f"chunk manager {manager!r} is not available."
f" Please make sure {KNOWN_CHUNKMANAGERS[manager]!r} is installed"
" and importable."
)
elif len(available_chunkmanagers) == 0:
raise ImportError(
"no chunk managers available. Try installing `dask` or another package"
" that provides a chunk manager."
)
elif manager not in available_chunkmanagers:
raise ValueError(
f"unrecognized chunk manager {manager!r} - must be one of the installed"
f" chunk managers: {list(available_chunkmanagers)}"
)
return available_chunkmanagers[manager]
elif isinstance(manager, ChunkManagerEntrypoint):
# already a valid ChunkManager so just pass through
return manager
else:
raise TypeError(
"manager must be a string or instance of ChunkManagerEntrypoint,"
f" but received type {type(manager)}"
)
def get_chunked_array_type(*args: Any) -> ChunkManagerEntrypoint[Any]:
"""
Detects which parallel backend should be used for given set of arrays.
Also checks that all arrays are of same chunking type (i.e. not a mix of cubed and dask).
"""
# TODO this list is probably redundant with something inside xarray.apply_ufunc
ALLOWED_NON_CHUNKED_TYPES = {int, float, np.ndarray}
chunked_arrays = [
a
for a in args
if is_chunked_array(a) and type(a) not in ALLOWED_NON_CHUNKED_TYPES
]
# Asserts all arrays are the same type (or numpy etc.)
chunked_array_types = {type(a) for a in chunked_arrays}
if len(chunked_array_types) > 1:
raise TypeError(
f"Mixing chunked array types is not supported, but received multiple types: {chunked_array_types}"
)
elif len(chunked_array_types) == 0:
raise TypeError("Expected a chunked array but none were found")
# iterate over defined chunk managers, seeing if each recognises this array type
chunked_arr = chunked_arrays[0]
chunkmanagers = list_chunkmanagers()
selected = [
chunkmanager
for chunkmanager in chunkmanagers.values()
if chunkmanager.is_chunked_array(chunked_arr)
]
if not selected:
raise TypeError(
f"Could not find a Chunk Manager which recognises type {type(chunked_arr)}"
)
elif len(selected) >= 2:
raise TypeError(f"Multiple ChunkManagers recognise type {type(chunked_arr)}")
else:
return selected[0]
class ChunkManagerEntrypoint(ABC, Generic[T_ChunkedArray]):
"""
Interface between a particular parallel computing framework and xarray.
This abstract base class must be subclassed by libraries implementing chunked array types, and
registered via the ``chunkmanagers`` entrypoint.
Abstract methods on this class must be implemented, whereas non-abstract methods are only required in order to
enable a subset of xarray functionality, and by default will raise a ``NotImplementedError`` if called.
Attributes
----------
array_cls
Type of the array class this parallel computing framework provides.
Parallel frameworks need to provide an array class that supports the array API standard.
This attribute is used for array instance type checking at runtime.
"""
array_cls: type[T_ChunkedArray]
available: bool = True
@abstractmethod
def __init__(self) -> None:
"""Used to set the array_cls attribute at import time."""
raise NotImplementedError()
def is_chunked_array(self, data: duckarray[Any, Any]) -> bool:
"""
Check if the given object is an instance of this type of chunked array.
Compares against the type stored in the array_cls attribute by default.
Parameters
----------
data : Any
Returns
-------
is_chunked : bool
See Also
--------
dask.is_dask_collection
"""
return isinstance(data, self.array_cls)
@abstractmethod
def chunks(self, data: T_ChunkedArray) -> _NormalizedChunks:
"""
Return the current chunks of the given array.
Returns chunks explicitly as a tuple of tuple of ints.
Used internally by xarray objects' .chunks and .chunksizes properties.
Parameters
----------
data : chunked array
Returns
-------
chunks : tuple[tuple[int, ...], ...]
See Also
--------
dask.array.Array.chunks
cubed.Array.chunks
"""
raise NotImplementedError()
@abstractmethod
def normalize_chunks(
self,
chunks: _Chunks | _NormalizedChunks,
shape: _ShapeType | None = None,
limit: int | None = None,
dtype: _DType | None = None,
previous_chunks: _NormalizedChunks | None = None,
) -> _NormalizedChunks:
"""
Normalize given chunking pattern into an explicit tuple of tuples representation.
Exposed primarily because different chunking backends may want to make different decisions about how to
automatically chunk along dimensions not given explicitly in the input chunks.
Called internally by xarray.open_dataset.
Parameters
----------
chunks : tuple, int, dict, or string
The chunks to be normalized.
shape : Tuple[int]
The shape of the array
limit : int (optional)
The maximum block size to target in bytes,
if freedom is given to choose
dtype : np.dtype
previous_chunks : Tuple[Tuple[int]], optional
Chunks from a previous array that we should use for inspiration when
rechunking dimensions automatically.
See Also
--------
dask.array.core.normalize_chunks
"""
raise NotImplementedError()
@abstractmethod
def from_array(
self, data: duckarray[Any, Any], chunks: _Chunks, **kwargs: Any
) -> T_ChunkedArray:
"""
Create a chunked array from a non-chunked numpy-like array.
Generally input should have a ``.shape``, ``.ndim``, ``.dtype`` and support numpy-style slicing.
Called when the .chunk method is called on an xarray object that is not already chunked.
Also called within open_dataset (when chunks is not None) to create a chunked array from
an xarray lazily indexed array.
Parameters
----------
data : array_like
chunks : int, tuple
How to chunk the array.
See Also
--------
dask.array.from_array
cubed.from_array
"""
raise NotImplementedError()
def rechunk(
self,
data: T_ChunkedArray,
chunks: _NormalizedChunks | tuple[int, ...] | _Chunks,
**kwargs: Any,
) -> Any:
"""
Changes the chunking pattern of the given array.
Called when the .chunk method is called on an xarray object that is already chunked.
Parameters
----------
data : dask array
Array to be rechunked.
chunks : int, tuple, dict or str, optional
The new block dimensions to create. -1 indicates the full size of the
corresponding dimension. Default is "auto" which automatically
determines chunk sizes.
Returns
-------
chunked array
See Also
--------
dask.array.Array.rechunk
cubed.Array.rechunk
"""
return data.rechunk(chunks, **kwargs)
@abstractmethod
def compute(
self, *data: T_ChunkedArray | Any, **kwargs: Any
) -> tuple[np.ndarray[Any, _DType_co], ...]:
"""
Computes one or more chunked arrays, returning them as eager numpy arrays.
Called anytime something needs to computed, including multiple arrays at once.
Used by `.compute`, `.persist`, `.values`.
Parameters
----------
*data : object
Any number of objects. If an object is an instance of the chunked array type, it is computed
and the in-memory result returned as a numpy array. All other types should be passed through unchanged.
Returns
-------
objs
The input, but with all chunked arrays now computed.
See Also
--------
dask.compute
cubed.compute
"""
raise NotImplementedError()
def shuffle(
self, x: T_ChunkedArray, indexer: list[list[int]], axis: int, chunks: T_Chunks
) -> T_ChunkedArray:
raise NotImplementedError()
def persist(
self, *data: T_ChunkedArray | Any, **kwargs: Any
) -> tuple[T_ChunkedArray | Any, ...]:
"""
Persist one or more chunked arrays in memory.
Parameters
----------
*data : object
Any number of objects. If an object is an instance of the chunked array type, it is persisted
as a chunked array in memory. All other types should be passed through unchanged.
Returns
-------
objs
The input, but with all chunked arrays now persisted in memory.
See Also
--------
dask.persist
"""
raise NotImplementedError()
@property
def array_api(self) -> Any:
"""
Return the array_api namespace following the python array API standard.
See https://data-apis.org/array-api/latest/ . Currently used to access the array API function
``full_like``, which is called within the xarray constructors ``xarray.full_like``, ``xarray.ones_like``,
``xarray.zeros_like``, etc.
See Also
--------
dask.array
cubed.array_api
"""
raise NotImplementedError()
def reduction(
self,
arr: T_ChunkedArray,
func: Callable[..., Any],
combine_func: Callable[..., Any] | None = None,
aggregate_func: Callable[..., Any] | None = None,
axis: int | Sequence[int] | None = None,
dtype: _DType_co | None = None,
keepdims: bool = False,
) -> T_ChunkedArray:
"""
A general version of array reductions along one or more axes.
Used inside some reductions like nanfirst, which is used by ``groupby.first``.
Parameters
----------
arr : chunked array
Data to be reduced along one or more axes.
func : Callable(x_chunk, axis, keepdims)
First function to be executed when resolving the dask graph.
This function is applied in parallel to all original chunks of x.
See below for function parameters.
combine_func : Callable(x_chunk, axis, keepdims), optional
Function used for intermediate recursive aggregation (see
split_every below). If omitted, it defaults to aggregate_func.
aggregate_func : Callable(x_chunk, axis, keepdims)
Last function to be executed, producing the final output. It is always invoked, even when the reduced
Array counts a single chunk along the reduced axes.
axis : int or sequence of ints, optional
Axis or axes to aggregate upon. If omitted, aggregate along all axes.
dtype : np.dtype
data type of output. This argument was previously optional, but
leaving as ``None`` will now raise an exception.
keepdims : boolean, optional
Whether the reduction function should preserve the reduced axes,
leaving them at size ``output_size``, or remove them.
Returns
-------
chunked array
See Also
--------
dask.array.reduction
cubed.core.reduction
"""
raise NotImplementedError()
def scan(
self,
func: Callable[..., Any],
binop: Callable[..., Any],
ident: float,
arr: T_ChunkedArray,
axis: int | None = None,
dtype: _DType_co | None = None,
**kwargs: Any,
) -> T_ChunkedArray:
"""
General version of a 1D scan, also known as a cumulative array reduction.
Used in ``ffill`` and ``bfill`` in xarray.
Parameters
----------
func: callable
Cumulative function like np.cumsum or np.cumprod
binop: callable
Associated binary operator like ``np.cumsum->add`` or ``np.cumprod->mul``
ident: Number
Associated identity like ``np.cumsum->0`` or ``np.cumprod->1``
arr: dask Array
axis: int, optional
dtype: dtype
Returns
-------
Chunked array
See also
--------
dask.array.cumreduction
"""
raise NotImplementedError()
@abstractmethod
def apply_gufunc(
self,
func: Callable[..., Any],
signature: str,
*args: Any,
axes: Sequence[tuple[int, ...]] | None = None,
keepdims: bool = False,
output_dtypes: Sequence[_DType_co] | None = None,
vectorize: bool | None = None,
**kwargs: Any,
) -> Any:
"""
Apply a generalized ufunc or similar python function to arrays.
``signature`` determines if the function consumes or produces core
dimensions. The remaining dimensions in given input arrays (``*args``)
are considered loop dimensions and are required to broadcast
naturally against each other.
In other terms, this function is like ``np.vectorize``, but for
the blocks of chunked arrays. If the function itself shall also
be vectorized use ``vectorize=True`` for convenience.
Called inside ``xarray.apply_ufunc``, which is called internally for most xarray operations.
Therefore this method must be implemented for the vast majority of xarray computations to be supported.
Parameters
----------
func : callable
Function to call like ``func(*args, **kwargs)`` on input arrays
(``*args``) that returns an array or tuple of arrays. If multiple
arguments with non-matching dimensions are supplied, this function is
expected to vectorize (broadcast) over axes of positional arguments in
the style of NumPy universal functions [1]_ (if this is not the case,
set ``vectorize=True``). If this function returns multiple outputs,
``output_core_dims`` has to be set as well.
signature: string
Specifies what core dimensions are consumed and produced by ``func``.
According to the specification of numpy.gufunc signature [2]_
*args : numeric
Input arrays or scalars to the callable function.
axes: List of tuples, optional, keyword only
A list of tuples with indices of axes a generalized ufunc should operate on.
For instance, for a signature of ``"(i,j),(j,k)->(i,k)"`` appropriate for
matrix multiplication, the base elements are two-dimensional matrices
and these are taken to be stored in the two last axes of each argument. The
corresponding axes keyword would be ``[(-2, -1), (-2, -1), (-2, -1)]``.
For simplicity, for generalized ufuncs that operate on 1-dimensional arrays
(vectors), a single integer is accepted instead of a single-element tuple,
and for generalized ufuncs for which all outputs are scalars, the output
tuples can be omitted.
keepdims: bool, optional, keyword only
If this is set to True, axes which are reduced over will be left in the result as
a dimension with size one, so that the result will broadcast correctly against the
inputs. This option can only be used for generalized ufuncs that operate on inputs
that all have the same number of core dimensions and with outputs that have no core
dimensions , i.e., with signatures like ``"(i),(i)->()"`` or ``"(m,m)->()"``.
If used, the location of the dimensions in the output can be controlled with axes
and axis.
output_dtypes : Optional, dtype or list of dtypes, keyword only
Valid numpy dtype specification or list thereof.
If not given, a call of ``func`` with a small set of data
is performed in order to try to automatically determine the
output dtypes.
vectorize: bool, keyword only
If set to ``True``, ``np.vectorize`` is applied to ``func`` for
convenience. Defaults to ``False``.
**kwargs : dict
Extra keyword arguments to pass to `func`
Returns
-------
Single chunked array or tuple of chunked arrays
See Also
--------
dask.array.gufunc.apply_gufunc
cubed.apply_gufunc
References
----------
.. [1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html
.. [2] https://docs.scipy.org/doc/numpy/reference/c-api/generalized-ufuncs.html
"""
raise NotImplementedError()
def map_blocks(
self,
func: Callable[..., Any],
*args: Any,
dtype: _DType_co | None = None,
chunks: tuple[int, ...] | None = None,
drop_axis: int | Sequence[int] | None = None,
new_axis: int | Sequence[int] | None = None,
**kwargs: Any,
) -> Any:
"""
Map a function across all blocks of a chunked array.
Called in elementwise operations, but notably not (currently) called within xarray.map_blocks.
Parameters
----------
func : callable
Function to apply to every block in the array.
If ``func`` accepts ``block_info=`` or ``block_id=``
as keyword arguments, these will be passed dictionaries
containing information about input and output chunks/arrays
during computation. See examples for details.
args : dask arrays or other objects
dtype : np.dtype, optional
The ``dtype`` of the output array. It is recommended to provide this.
If not provided, will be inferred by applying the function to a small
set of fake data.
chunks : tuple, optional
Chunk shape of resulting blocks if the function does not preserve
shape. If not provided, the resulting array is assumed to have the same
block structure as the first input array.
drop_axis : number or iterable, optional
Dimensions lost by the function.
new_axis : number or iterable, optional
New dimensions created by the function. Note that these are applied
after ``drop_axis`` (if present).
**kwargs :
Other keyword arguments to pass to function. Values must be constants
(not dask.arrays)
See Also
--------
dask.array.map_blocks
cubed.map_blocks
"""
raise NotImplementedError()
def blockwise(
self,
func: Callable[..., Any],
out_ind: Iterable[Any],
*args: Any, # can't type this as mypy assumes args are all same type, but dask blockwise args alternate types
adjust_chunks: dict[Any, Callable[..., Any]] | None = None,
new_axes: dict[Any, int] | None = None,
align_arrays: bool = True,
**kwargs: Any,
) -> Any:
"""
Tensor operation: Generalized inner and outer products.
A broad class of blocked algorithms and patterns can be specified with a
concise multi-index notation. The ``blockwise`` function applies an in-memory
function across multiple blocks of multiple inputs in a variety of ways.
Many chunked array operations are special cases of blockwise including
elementwise, broadcasting, reductions, tensordot, and transpose.
Currently only called explicitly in xarray when performing multidimensional interpolation.
Parameters
----------
func : callable
Function to apply to individual tuples of blocks
out_ind : iterable
Block pattern of the output, something like 'ijk' or (1, 2, 3)
*args : sequence of Array, index pairs
You may also pass literal arguments, accompanied by None index
e.g. (x, 'ij', y, 'jk', z, 'i', some_literal, None)
**kwargs : dict
Extra keyword arguments to pass to function
adjust_chunks : dict
Dictionary mapping index to function to be applied to chunk sizes
new_axes : dict, keyword only
New indexes and their dimension lengths
align_arrays: bool
Whether or not to align chunks along equally sized dimensions when
multiple arrays are provided. This allows for larger chunks in some
arrays to be broken into smaller ones that match chunk sizes in other
arrays such that they are compatible for block function mapping. If
this is false, then an error will be thrown if arrays do not already
have the same number of blocks in each dimension.
See Also
--------
dask.array.blockwise
cubed.core.blockwise
"""
raise NotImplementedError()
def unify_chunks(
self,
*args: Any, # can't type this as mypy assumes args are all same type, but dask unify_chunks args alternate types
**kwargs: Any,
) -> tuple[dict[str, _NormalizedChunks], list[T_ChunkedArray]]:
"""
Unify chunks across a sequence of arrays.
Called by xarray.unify_chunks.
Parameters
----------
*args: sequence of Array, index pairs
Sequence like (x, 'ij', y, 'jk', z, 'i')
See Also
--------
dask.array.core.unify_chunks
cubed.core.unify_chunks
"""
raise NotImplementedError()
def store(
self,
sources: T_ChunkedArray | Sequence[T_ChunkedArray],
targets: Any,
**kwargs: dict[str, Any],
) -> Any:
"""
Store chunked arrays in array-like objects, overwriting data in target.
This stores chunked arrays into object that supports numpy-style setitem
indexing (e.g. a Zarr Store). Allows storing values chunk by chunk so that it does not have to
fill up memory. For best performance you likely want to align the block size of
the storage target with the block size of your array.
Used when writing to any registered xarray I/O backend.
Parameters
----------
sources: Array or collection of Arrays
targets: array-like or collection of array-likes
These should support setitem syntax ``target[10:20] = ...``.
If sources is a single item, targets must be a single item; if sources is a
collection of arrays, targets must be a matching collection.
kwargs:
Parameters passed to compute/persist (only used if compute=True)
See Also
--------
dask.array.store
cubed.store
"""
raise NotImplementedError()
|