1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
|
from __future__ import annotations
import functools
import inspect
import warnings
from collections.abc import Callable, Hashable, Iterable
from typing import TYPE_CHECKING, Any, TypeVar, overload
from xarray.plot import dataarray_plot
from xarray.plot.facetgrid import _easy_facetgrid
from xarray.plot.utils import (
_add_colorbar,
_get_nice_quiver_magnitude,
_infer_meta_data,
_process_cmap_cbar_kwargs,
get_axis,
)
from xarray.structure.alignment import broadcast
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.collections import LineCollection, PathCollection
from matplotlib.colors import Colormap, Normalize
from matplotlib.quiver import Quiver
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import (
AspectOptions,
ExtendOptions,
HueStyleOptions,
ScaleOptions,
)
from xarray.plot.facetgrid import FacetGrid
def _dsplot(plotfunc):
commondoc = """
Parameters
----------
ds : Dataset
x : Hashable or None, optional
Variable name for x-axis.
y : Hashable or None, optional
Variable name for y-axis.
u : Hashable or None, optional
Variable name for the *u* velocity (in *x* direction).
quiver/streamplot plots only.
v : Hashable or None, optional
Variable name for the *v* velocity (in *y* direction).
quiver/streamplot plots only.
hue: Hashable or None, optional
Variable by which to color scatter points or arrows.
hue_style: {'continuous', 'discrete'} or None, optional
How to use the ``hue`` variable:
- ``'continuous'`` -- continuous color scale
(default for numeric ``hue`` variables)
- ``'discrete'`` -- a color for each unique value, using the default color cycle
(default for non-numeric ``hue`` variables)
row : Hashable or None, optional
If passed, make row faceted plots on this dimension name.
col : Hashable or None, optional
If passed, make column faceted plots on this dimension name.
col_wrap : int, optional
Use together with ``col`` to wrap faceted plots.
ax : matplotlib axes object or None, optional
If ``None``, use the current axes. Not applicable when using facets.
figsize : Iterable[float] or None, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
aspect : "auto", "equal", scalar or None, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
sharex : bool or None, optional
If True all subplots share the same x-axis.
sharey : bool or None, optional
If True all subplots share the same y-axis.
add_guide: bool or None, optional
Add a guide that depends on ``hue_style``:
- ``'continuous'`` -- build a colorbar
- ``'discrete'`` -- build a legend
subplot_kws : dict or None, optional
Dictionary of keyword arguments for Matplotlib subplots
(see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`).
Only applies to FacetGrid plotting.
cbar_kwargs : dict, optional
Dictionary of keyword arguments to pass to the colorbar
(see :meth:`matplotlib:matplotlib.figure.Figure.colorbar`).
cbar_ax : matplotlib axes object, optional
Axes in which to draw the colorbar.
cmap : matplotlib colormap name or colormap, optional
The mapping from data values to color space. Either a
Matplotlib colormap name or object. If not provided, this will
be either ``'viridis'`` (if the function infers a sequential
dataset) or ``'RdBu_r'`` (if the function infers a diverging
dataset).
See :doc:`Choosing Colormaps in Matplotlib <matplotlib:users/explain/colors/colormaps>`
for more information.
If *seaborn* is installed, ``cmap`` may also be a
`seaborn color palette <https://seaborn.pydata.org/tutorial/color_palettes.html>`_.
Note: if ``cmap`` is a seaborn color palette,
``levels`` must also be specified.
vmin : float or None, optional
Lower value to anchor the colormap, otherwise it is inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting `vmin` or `vmax` will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
vmax : float or None, optional
Upper value to anchor the colormap, otherwise it is inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting `vmin` or `vmax` will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
norm : matplotlib.colors.Normalize, optional
If ``norm`` has ``vmin`` or ``vmax`` specified, the corresponding
kwarg must be ``None``.
infer_intervals: bool | None
If True the intervals are inferred.
center : float, optional
The value at which to center the colormap. Passing this value implies
use of a diverging colormap. Setting it to ``False`` prevents use of a
diverging colormap.
robust : bool, optional
If ``True`` and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with 2nd and 98th percentiles instead of the extreme values.
colors : str or array-like of color-like, optional
A single color or a list of colors. The ``levels`` argument
is required.
extend : {'neither', 'both', 'min', 'max'}, optional
How to draw arrows extending the colorbar beyond its limits. If not
provided, ``extend`` is inferred from ``vmin``, ``vmax`` and the data limits.
levels : int or array-like, optional
Split the colormap (``cmap``) into discrete color intervals. If an integer
is provided, "nice" levels are chosen based on the data range: this can
imply that the final number of levels is not exactly the expected one.
Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to
setting ``levels=np.linspace(vmin, vmax, N)``.
**kwargs : optional
Additional keyword arguments to wrapped Matplotlib function.
"""
# Build on the original docstring
plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}"
@functools.wraps(
plotfunc, assigned=("__module__", "__name__", "__qualname__", "__doc__")
)
def newplotfunc(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
sharex: bool = True,
sharey: bool = True,
add_guide: bool | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs: Any,
) -> Any:
if args:
# TODO: Deprecated since 2022.10:
msg = "Using positional arguments is deprecated for plot methods, use keyword arguments instead."
assert x is None
x = args[0]
if len(args) > 1:
assert y is None
y = args[1]
if len(args) > 2:
assert u is None
u = args[2]
if len(args) > 3:
assert v is None
v = args[3]
if len(args) > 4:
assert hue is None
hue = args[4]
if len(args) > 5:
raise ValueError(msg)
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
del args
_is_facetgrid = kwargs.pop("_is_facetgrid", False)
if _is_facetgrid: # facetgrid call
meta_data = kwargs.pop("meta_data")
else:
meta_data = _infer_meta_data(
ds, x, y, hue, hue_style, add_guide, funcname=plotfunc.__name__
)
hue_style = meta_data["hue_style"]
# handle facetgrids first
if col or row:
allargs = locals().copy()
allargs["plotfunc"] = globals()[plotfunc.__name__]
allargs["data"] = ds
# remove kwargs to avoid passing the information twice
for arg in ["meta_data", "kwargs", "ds"]:
del allargs[arg]
return _easy_facetgrid(kind="dataset", **allargs, **kwargs)
figsize = kwargs.pop("figsize", None)
ax = get_axis(figsize, size, aspect, ax)
if hue_style == "continuous" and hue is not None:
if _is_facetgrid:
cbar_kwargs = meta_data["cbar_kwargs"]
cmap_params = meta_data["cmap_params"]
else:
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
plotfunc, ds[hue].values, **locals()
)
# subset that can be passed to scatter, hist2d
cmap_params_subset = {
vv: cmap_params[vv] for vv in ["vmin", "vmax", "norm", "cmap"]
}
else:
cmap_params_subset = {}
if (u is not None or v is not None) and plotfunc.__name__ not in (
"quiver",
"streamplot",
):
raise ValueError("u, v are only allowed for quiver or streamplot plots.")
primitive = plotfunc(
ds=ds,
x=x,
y=y,
ax=ax,
u=u,
v=v,
hue=hue,
hue_style=hue_style,
cmap_params=cmap_params_subset,
**kwargs,
)
if _is_facetgrid: # if this was called from Facetgrid.map_dataset,
return primitive # finish here. Else, make labels
if meta_data.get("xlabel", None):
ax.set_xlabel(meta_data.get("xlabel"))
if meta_data.get("ylabel", None):
ax.set_ylabel(meta_data.get("ylabel"))
if meta_data["add_legend"]:
ax.legend(handles=primitive, title=meta_data.get("hue_label", None))
if meta_data["add_colorbar"]:
cbar_kwargs = {} if cbar_kwargs is None else cbar_kwargs
if "label" not in cbar_kwargs:
cbar_kwargs["label"] = meta_data.get("hue_label", None)
_add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params)
if meta_data["add_quiverkey"]:
magnitude = _get_nice_quiver_magnitude(ds[u], ds[v])
units = ds[u].attrs.get("units", "")
ax.quiverkey(
primitive,
X=0.85,
Y=0.9,
U=magnitude,
label=f"{magnitude}\n{units}",
labelpos="E",
coordinates="figure",
)
if plotfunc.__name__ in ("quiver", "streamplot"):
title = ds[u]._title_for_slice()
else:
title = ds[x]._title_for_slice()
ax.set_title(title)
return primitive
# we want to actually expose the signature of newplotfunc
# and not the copied **kwargs from the plotfunc which
# functools.wraps adds, so delete the wrapped attr
del newplotfunc.__wrapped__
return newplotfunc
@overload
def quiver( # type: ignore[misc,unused-ignore] # None is hashable :(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
col: None = None, # no wrap -> primitive
row: None = None, # no wrap -> primitive
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: AspectOptions = None,
subplot_kws: dict[str, Any] | None = None,
add_guide: bool | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
levels: ArrayLike | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
cmap: str | Colormap | None = None,
**kwargs: Any,
) -> Quiver: ...
@overload
def quiver(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
col: Hashable, # wrap -> FacetGrid
row: Hashable | None = None,
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: AspectOptions = None,
subplot_kws: dict[str, Any] | None = None,
add_guide: bool | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
levels: ArrayLike | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
cmap: str | Colormap | None = None,
**kwargs: Any,
) -> FacetGrid[Dataset]: ...
@overload
def quiver(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
col: Hashable | None = None,
row: Hashable, # wrap -> FacetGrid
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: AspectOptions = None,
subplot_kws: dict[str, Any] | None = None,
add_guide: bool | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
levels: ArrayLike | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
cmap: str | Colormap | None = None,
**kwargs: Any,
) -> FacetGrid[Dataset]: ...
@_dsplot
def quiver(
ds: Dataset,
x: Hashable,
y: Hashable,
ax: Axes,
u: Hashable,
v: Hashable,
**kwargs: Any,
) -> Quiver:
"""Quiver plot of Dataset variables.
Wraps :py:func:`matplotlib:matplotlib.pyplot.quiver`.
"""
import matplotlib as mpl
if x is None or y is None or u is None or v is None:
raise ValueError("Must specify x, y, u, v for quiver plots.")
dx, dy, du, dv = broadcast(ds[x], ds[y], ds[u], ds[v])
args = [dx.values, dy.values, du.values, dv.values]
hue = kwargs.pop("hue")
cmap_params = kwargs.pop("cmap_params")
if hue:
args.append(ds[hue].values)
# TODO: Fix this by always returning a norm with vmin, vmax in cmap_params
if not cmap_params["norm"]:
cmap_params["norm"] = mpl.colors.Normalize(
cmap_params.pop("vmin"), cmap_params.pop("vmax")
)
kwargs.pop("hue_style")
kwargs.setdefault("pivot", "middle")
hdl = ax.quiver(*args, **kwargs, **cmap_params)
return hdl
@overload
def streamplot( # type: ignore[misc,unused-ignore] # None is hashable :(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
col: None = None, # no wrap -> primitive
row: None = None, # no wrap -> primitive
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: AspectOptions = None,
subplot_kws: dict[str, Any] | None = None,
add_guide: bool | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
levels: ArrayLike | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
cmap: str | Colormap | None = None,
**kwargs: Any,
) -> LineCollection: ...
@overload
def streamplot(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
col: Hashable, # wrap -> FacetGrid
row: Hashable | None = None,
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: AspectOptions = None,
subplot_kws: dict[str, Any] | None = None,
add_guide: bool | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
levels: ArrayLike | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
cmap: str | Colormap | None = None,
**kwargs: Any,
) -> FacetGrid[Dataset]: ...
@overload
def streamplot(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
u: Hashable | None = None,
v: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
col: Hashable | None = None,
row: Hashable, # wrap -> FacetGrid
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: AspectOptions = None,
subplot_kws: dict[str, Any] | None = None,
add_guide: bool | None = None,
cbar_kwargs: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
infer_intervals: bool | None = None,
center: float | None = None,
levels: ArrayLike | None = None,
robust: bool | None = None,
colors: str | ArrayLike | None = None,
extend: ExtendOptions = None,
cmap: str | Colormap | None = None,
**kwargs: Any,
) -> FacetGrid[Dataset]: ...
@_dsplot
def streamplot(
ds: Dataset,
x: Hashable,
y: Hashable,
ax: Axes,
u: Hashable,
v: Hashable,
**kwargs: Any,
) -> LineCollection:
"""Plot streamlines of Dataset variables.
Wraps :py:func:`matplotlib:matplotlib.pyplot.streamplot`.
"""
import matplotlib as mpl
if x is None or y is None or u is None or v is None:
raise ValueError("Must specify x, y, u, v for streamplot plots.")
# Matplotlib's streamplot has strong restrictions on what x and y can be, so need to
# get arrays transposed the 'right' way around. 'x' cannot vary within 'rows', so
# the dimension of x must be the second dimension. 'y' cannot vary with 'columns' so
# the dimension of y must be the first dimension. If x and y are both 2d, assume the
# user has got them right already.
xdim = ds[x].dims[0] if len(ds[x].dims) == 1 else None
ydim = ds[y].dims[0] if len(ds[y].dims) == 1 else None
if xdim is not None and ydim is None:
ydims = set(ds[y].dims) - {xdim}
if len(ydims) == 1:
ydim = next(iter(ydims))
if ydim is not None and xdim is None:
xdims = set(ds[x].dims) - {ydim}
if len(xdims) == 1:
xdim = next(iter(xdims))
dx, dy, du, dv = broadcast(ds[x], ds[y], ds[u], ds[v])
if xdim is not None and ydim is not None:
# Need to ensure the arrays are transposed correctly
dx = dx.transpose(ydim, xdim)
dy = dy.transpose(ydim, xdim)
du = du.transpose(ydim, xdim)
dv = dv.transpose(ydim, xdim)
hue = kwargs.pop("hue")
cmap_params = kwargs.pop("cmap_params")
if hue:
if xdim is not None and ydim is not None:
ds[hue] = ds[hue].transpose(ydim, xdim)
kwargs["color"] = ds[hue].values
# TODO: Fix this by always returning a norm with vmin, vmax in cmap_params
if not cmap_params["norm"]:
cmap_params["norm"] = mpl.colors.Normalize(
cmap_params.pop("vmin"), cmap_params.pop("vmax")
)
kwargs.pop("hue_style")
hdl = ax.streamplot(
dx.values, dy.values, du.values, dv.values, **kwargs, **cmap_params
)
# Return .lines so colorbar creation works properly
return hdl.lines
F = TypeVar("F", bound=Callable)
def _update_doc_to_dataset(dataarray_plotfunc: Callable) -> Callable[[F], F]:
"""
Add a common docstring by reusing the DataArray one.
TODO: Reduce code duplication.
* The goal is to reduce code duplication by moving all Dataset
specific plots to the DataArray side and use this thin wrapper to
handle the conversion between Dataset and DataArray.
* Improve docstring handling, maybe reword the DataArray versions to
explain Datasets better.
Parameters
----------
dataarray_plotfunc : Callable
Function that returns a finished plot primitive.
"""
# Build on the original docstring
da_doc = dataarray_plotfunc.__doc__
if da_doc is None:
raise NotImplementedError("DataArray plot method requires a docstring")
da_str = """
Parameters
----------
darray : DataArray
"""
ds_str = """
The `y` DataArray will be used as base, any other variables are added as coords.
Parameters
----------
ds : Dataset
"""
# TODO: improve this?
if da_str in da_doc:
ds_doc = da_doc.replace(da_str, ds_str).replace("darray", "ds")
else:
ds_doc = da_doc
@functools.wraps(dataarray_plotfunc)
def wrapper(dataset_plotfunc: F) -> F:
dataset_plotfunc.__doc__ = ds_doc
return dataset_plotfunc
return wrapper # type: ignore[return-value]
def _normalize_args(
plotmethod: str, args: tuple[Any, ...], kwargs: dict[str, Any]
) -> dict[str, Any]:
from xarray.core.dataarray import DataArray
# Determine positional arguments keyword by inspecting the
# signature of the plotmethod:
locals_ = dict(
inspect.signature(getattr(DataArray().plot, plotmethod))
.bind(*args, **kwargs)
.arguments.items()
)
locals_.update(locals_.pop("kwargs", {}))
return locals_
def _temp_dataarray(ds: Dataset, y: Hashable, locals_: dict[str, Any]) -> DataArray:
"""Create a temporary datarray with extra coords."""
from xarray.core.dataarray import DataArray
coords = dict(ds[y].coords)
dims = set(ds[y].dims)
# Add extra coords to the DataArray from valid kwargs, if using all
# kwargs there is a risk that we add unnecessary dataarrays as
# coords straining RAM further for example:
# ds.both and extend="both" would add ds.both to the coords:
valid_coord_kwargs = {"x", "z", "markersize", "hue", "row", "col", "u", "v"}
coord_kwargs = locals_.keys() & valid_coord_kwargs
for k in coord_kwargs:
key = locals_[k]
darray = ds.get(key)
if darray is not None:
coords[key] = darray
dims.update(darray.dims)
# Trim dataset from unnecessary dims:
ds_trimmed = ds.drop_dims(ds.sizes.keys() - dims) # TODO: Use ds.dims in the future
# The dataarray has to include all the dims. Broadcast to that shape
# and add the additional coords:
_y = ds[y].broadcast_like(ds_trimmed)
return DataArray(_y, coords=coords)
@overload
def scatter( # type: ignore[misc,unused-ignore] # None is hashable :(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs: Any,
) -> PathCollection: ...
@overload
def scatter(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs: Any,
) -> FacetGrid[DataArray]: ...
@overload
def scatter(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs: Any,
) -> FacetGrid[DataArray]: ...
@_update_doc_to_dataset(dataarray_plot.scatter)
def scatter(
ds: Dataset,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs: Any,
) -> PathCollection | FacetGrid[DataArray]:
"""Scatter plot Dataset data variables against each other."""
locals_ = locals()
del locals_["ds"]
locals_.update(locals_.pop("kwargs", {}))
da = _temp_dataarray(ds, y, locals_)
return da.plot.scatter(*locals_.pop("args", ()), **locals_)
|