1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
|
from __future__ import annotations
import functools
import itertools
import warnings
from collections.abc import Callable, Hashable, Iterable, MutableMapping
from typing import TYPE_CHECKING, Any, Generic, Literal, TypeVar, cast
import numpy as np
from xarray.core.formatting import format_item
from xarray.core.types import HueStyleOptions, T_DataArrayOrSet
from xarray.plot.utils import (
_LINEWIDTH_RANGE,
_MARKERSIZE_RANGE,
_add_legend,
_determine_guide,
_get_nice_quiver_magnitude,
_guess_coords_to_plot,
_infer_xy_labels,
_Normalize,
_parse_size,
_process_cmap_cbar_kwargs,
label_from_attrs,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.cm import ScalarMappable
from matplotlib.colorbar import Colorbar
from matplotlib.figure import Figure
from matplotlib.legend import Legend
from matplotlib.quiver import QuiverKey
from matplotlib.text import Annotation
from xarray.core.dataarray import DataArray
# Overrides axes.labelsize, xtick.major.size, ytick.major.size
# from mpl.rcParams
_FONTSIZE = "small"
# For major ticks on x, y axes
_NTICKS = 5
def _nicetitle(coord, value, maxchar, template):
"""
Put coord, value in template and truncate at maxchar
"""
prettyvalue = format_item(value, quote_strings=False)
title = template.format(coord=coord, value=prettyvalue)
if len(title) > maxchar:
title = title[: (maxchar - 3)] + "..."
return title
T_FacetGrid = TypeVar("T_FacetGrid", bound="FacetGrid")
class FacetGrid(Generic[T_DataArrayOrSet]):
"""
Initialize the Matplotlib figure and FacetGrid object.
The :class:`FacetGrid` is an object that links a xarray DataArray to
a Matplotlib figure with a particular structure.
In particular, :class:`FacetGrid` is used to draw plots with multiple
axes, where each axes shows the same relationship conditioned on
different levels of some dimension. It's possible to condition on up to
two variables by assigning variables to the rows and columns of the
grid.
The general approach to plotting here is called "small multiples",
where the same kind of plot is repeated multiple times, and the
specific use of small multiples to display the same relationship
conditioned on one or more other variables is often called a "trellis
plot".
The basic workflow is to initialize the :class:`FacetGrid` object with
the DataArray and the variable names that are used to structure the grid.
Then plotting functions can be applied to each subset by calling
:meth:`FacetGrid.map_dataarray` or :meth:`FacetGrid.map`.
Attributes
----------
axs : ndarray of matplotlib.axes.Axes
Array containing axes in corresponding position, as returned from
:py:func:`matplotlib.pyplot.subplots`.
col_labels : list of matplotlib.text.Annotation
Column titles.
row_labels : list of matplotlib.text.Annotation
Row titles.
fig : matplotlib.figure.Figure
The figure containing all the axes.
name_dicts : ndarray of dict
Array containing dictionaries mapping coordinate names to values. ``None`` is
used as a sentinel value for axes that should remain empty, i.e.,
sometimes the rightmost grid positions in the bottom row.
"""
data: T_DataArrayOrSet
name_dicts: np.ndarray
fig: Figure
axs: np.ndarray
row_names: list[np.ndarray]
col_names: list[np.ndarray]
figlegend: Legend | None
quiverkey: QuiverKey | None
cbar: Colorbar | None
_single_group: bool | Hashable
_nrow: int
_row_var: Hashable | None
_ncol: int
_col_var: Hashable | None
_col_wrap: int | None
row_labels: list[Annotation | None]
col_labels: list[Annotation | None]
_x_var: None
_y_var: None
_hue_var: DataArray | None
_cmap_extend: Any | None
_mappables: list[ScalarMappable]
_finalized: bool
def __init__(
self,
data: T_DataArrayOrSet,
col: Hashable | None = None,
row: Hashable | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
figsize: Iterable[float] | None = None,
aspect: float = 1,
size: float = 3,
subplot_kws: dict[str, Any] | None = None,
) -> None:
"""
Parameters
----------
data : DataArray or Dataset
DataArray or Dataset to be plotted.
row, col : str
Dimension names that define subsets of the data, which will be drawn
on separate facets in the grid.
col_wrap : int, optional
"Wrap" the grid the for the column variable after this number of columns,
adding rows if ``col_wrap`` is less than the number of facets.
sharex : bool, optional
If true, the facets will share *x* axes.
sharey : bool, optional
If true, the facets will share *y* axes.
figsize : Iterable of float or None, optional
A tuple (width, height) of the figure in inches.
If set, overrides ``size`` and ``aspect``.
aspect : scalar, default: 1
Aspect ratio of each facet, so that ``aspect * size`` gives the
width of each facet in inches.
size : scalar, default: 3
Height (in inches) of each facet. See also: ``aspect``.
subplot_kws : dict, optional
Dictionary of keyword arguments for Matplotlib subplots
(:py:func:`matplotlib.pyplot.subplots`).
"""
import matplotlib.pyplot as plt
# Handle corner case of nonunique coordinates
rep_col = col is not None and not data[col].to_index().is_unique
rep_row = row is not None and not data[row].to_index().is_unique
if rep_col or rep_row:
raise ValueError(
"Coordinates used for faceting cannot "
"contain repeated (nonunique) values."
)
# single_group is the grouping variable, if there is exactly one
single_group: bool | Hashable
if col and row:
single_group = False
nrow = len(data[row])
ncol = len(data[col])
nfacet = nrow * ncol
if col_wrap is not None:
warnings.warn(
"Ignoring col_wrap since both col and row were passed", stacklevel=2
)
elif row and not col:
single_group = row
elif not row and col:
single_group = col
else:
raise ValueError("Pass a coordinate name as an argument for row or col")
# Compute grid shape
if single_group:
nfacet = len(data[single_group])
if col:
# idea - could add heuristic for nice shapes like 3x4
ncol = nfacet
if row:
ncol = 1
if col_wrap is not None:
# Overrides previous settings
ncol = col_wrap
nrow = int(np.ceil(nfacet / ncol))
# Set the subplot kwargs
subplot_kws = {} if subplot_kws is None else subplot_kws
if figsize is None:
# Calculate the base figure size with extra horizontal space for a
# colorbar
cbar_space = 1
figsize = (ncol * size * aspect + cbar_space, nrow * size)
fig, axs = plt.subplots(
nrow,
ncol,
sharex=sharex,
sharey=sharey,
squeeze=False,
figsize=figsize,
subplot_kw=subplot_kws,
)
# Set up the lists of names for the row and column facet variables
col_names = list(data[col].to_numpy()) if col else []
row_names = list(data[row].to_numpy()) if row else []
if single_group:
full: list[dict[Hashable, Any] | None] = [
{single_group: x} for x in data[single_group].to_numpy()
]
empty: list[dict[Hashable, Any] | None] = [
None for x in range(nrow * ncol - len(full))
]
name_dict_list = full + empty
else:
rowcols = itertools.product(row_names, col_names)
name_dict_list = [{row: r, col: c} for r, c in rowcols]
name_dicts = np.array(name_dict_list).reshape(nrow, ncol)
# Set up the class attributes
# ---------------------------
# First the public API
self.data = data
self.name_dicts = name_dicts
self.fig = fig
self.axs = axs
self.row_names = row_names
self.col_names = col_names
# guides
self.figlegend = None
self.quiverkey = None
self.cbar = None
# Next the private variables
self._single_group = single_group
self._nrow = nrow
self._row_var = row
self._ncol = ncol
self._col_var = col
self._col_wrap = col_wrap
self.row_labels = [None] * nrow
self.col_labels = [None] * ncol
self._x_var = None
self._y_var = None
self._hue_var = None
self._cmap_extend = None
self._mappables = []
self._finalized = False
@property
def axes(self) -> np.ndarray:
warnings.warn(
(
"self.axes is deprecated since 2022.11 in order to align with "
"matplotlibs plt.subplots, use self.axs instead."
),
DeprecationWarning,
stacklevel=2,
)
return self.axs
@axes.setter
def axes(self, axs: np.ndarray) -> None:
warnings.warn(
(
"self.axes is deprecated since 2022.11 in order to align with "
"matplotlibs plt.subplots, use self.axs instead."
),
DeprecationWarning,
stacklevel=2,
)
self.axs = axs
@property
def _left_axes(self) -> np.ndarray:
return self.axs[:, 0]
@property
def _bottom_axes(self) -> np.ndarray:
return self.axs[-1, :]
def map_dataarray(
self: T_FacetGrid,
func: Callable,
x: Hashable | None,
y: Hashable | None,
**kwargs: Any,
) -> T_FacetGrid:
"""
Apply a plotting function to a 2d facet's subset of the data.
This is more convenient and less general than ``FacetGrid.map``
Parameters
----------
func : callable
A plotting function with the same signature as a 2d xarray
plotting method such as `xarray.plot.imshow`
x, y : string
Names of the coordinates to plot on x, y axes
**kwargs
additional keyword arguments to func
Returns
-------
self : FacetGrid object
"""
if kwargs.get("cbar_ax") is not None:
raise ValueError("cbar_ax not supported by FacetGrid.")
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
func, self.data.to_numpy(), **kwargs
)
self._cmap_extend = cmap_params.get("extend")
# Order is important
func_kwargs = {
k: v
for k, v in kwargs.items()
if k not in {"cmap", "colors", "cbar_kwargs", "levels"}
}
func_kwargs.update(cmap_params)
# to avoid redundant calling, colorbar and labelling is instead handled
# by `_finalize_grid` at the end
func_kwargs["add_colorbar"] = False
if func.__name__ != "surface":
func_kwargs["add_labels"] = False
# Get x, y labels for the first subplot
x, y = _infer_xy_labels(
darray=self.data.loc[self.name_dicts.flat[0]],
x=x,
y=y,
imshow=func.__name__ == "imshow",
rgb=kwargs.get("rgb"),
)
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# None is the sentinel value
if d is not None:
subset = self.data.loc[d]
mappable = func(
subset, x=x, y=y, ax=ax, **func_kwargs, _is_facetgrid=True
)
self._mappables.append(mappable)
xlabel = label_from_attrs(self.data[x])
ylabel = label_from_attrs(self.data[y])
self._finalize_grid(xlabel, ylabel)
if kwargs.get("add_colorbar", True):
self.add_colorbar(**cbar_kwargs)
return self
def map_plot1d(
self: T_FacetGrid,
func: Callable,
x: Hashable | None,
y: Hashable | None,
*,
z: Hashable | None = None,
hue: Hashable | None = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
**kwargs: Any,
) -> T_FacetGrid:
"""
Apply a plotting function to a 1d facet's subset of the data.
This is more convenient and less general than ``FacetGrid.map``
Parameters
----------
func :
A plotting function with the same signature as a 1d xarray
plotting method such as `xarray.plot.scatter`
x, y :
Names of the coordinates to plot on x, y axes
**kwargs
additional keyword arguments to func
Returns
-------
self : FacetGrid object
"""
# Copy data to allow converting categoricals to integers and storing
# them in self.data. It is not possible to copy in the init
# unfortunately as there are tests that relies on self.data being
# mutable (test_names_appear_somewhere()). Maybe something to deprecate
# not sure how much that is used outside these tests.
self.data = self.data.copy()
if kwargs.get("cbar_ax") is not None:
raise ValueError("cbar_ax not supported by FacetGrid.")
if func.__name__ == "scatter":
size_ = kwargs.pop("_size", markersize)
size_r = _MARKERSIZE_RANGE
else:
size_ = kwargs.pop("_size", linewidth)
size_r = _LINEWIDTH_RANGE
# Guess what coords to use if some of the values in coords_to_plot are None:
coords_to_plot: MutableMapping[str, Hashable | None] = dict(
x=x, z=z, hue=hue, size=size_
)
coords_to_plot = _guess_coords_to_plot(self.data, coords_to_plot, kwargs)
# Handle hues:
hue = coords_to_plot["hue"]
hueplt = self.data.coords[hue] if hue else None # TODO: _infer_line_data2 ?
hueplt_norm = _Normalize(hueplt)
self._hue_var = hueplt
cbar_kwargs = kwargs.pop("cbar_kwargs", {})
if hueplt_norm.data is not None:
if not hueplt_norm.data_is_numeric:
# TODO: Ticks seems a little too hardcoded, since it will always
# show all the values. But maybe it's ok, since plotting hundreds
# of categorical data isn't that meaningful anyway.
cbar_kwargs.update(format=hueplt_norm.format, ticks=hueplt_norm.ticks)
kwargs.update(levels=hueplt_norm.levels)
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
func,
cast("DataArray", hueplt_norm.values).data,
cbar_kwargs=cbar_kwargs,
**kwargs,
)
self._cmap_extend = cmap_params.get("extend")
else:
cmap_params = {}
# Handle sizes:
size_ = coords_to_plot["size"]
sizeplt = self.data.coords[size_] if size_ else None
sizeplt_norm = _Normalize(data=sizeplt, width=size_r)
if sizeplt_norm.data is not None:
self.data[size_] = sizeplt_norm.values
# Add kwargs that are sent to the plotting function, # order is important ???
func_kwargs = {
k: v
for k, v in kwargs.items()
if k not in {"cmap", "colors", "cbar_kwargs", "levels"}
}
func_kwargs.update(cmap_params)
# Annotations will be handled later, skip those parts in the plotfunc:
func_kwargs["add_colorbar"] = False
func_kwargs["add_legend"] = False
func_kwargs["add_title"] = False
add_labels_ = np.zeros(self.axs.shape + (3,), dtype=bool)
if kwargs.get("z") is not None:
# 3d plots looks better with all labels. 3d plots can't sharex either so it
# is easy to get lost while rotating the plots:
add_labels_[:] = True
else:
# Subplots should have labels on the left and bottom edges only:
add_labels_[-1, :, 0] = True # x
add_labels_[:, 0, 1] = True # y
# add_labels_[:, :, 2] = True # z
# Set up the lists of names for the row and column facet variables:
if self._single_group:
full = tuple(
{self._single_group: x}
for x in range(self.data[self._single_group].size)
)
empty = tuple(None for x in range(self._nrow * self._ncol - len(full)))
name_d = full + empty
else:
rowcols = itertools.product(
range(self.data[self._row_var].size),
range(self.data[self._col_var].size),
)
name_d = tuple({self._row_var: r, self._col_var: c} for r, c in rowcols)
name_dicts = np.array(name_d).reshape(self._nrow, self._ncol)
# Plot the data for each subplot:
for add_lbls, d, ax in zip(
add_labels_.reshape((self.axs.size, -1)),
name_dicts.flat,
self.axs.flat,
strict=True,
):
func_kwargs["add_labels"] = add_lbls
# None is the sentinel value
if d is not None:
subset = self.data.isel(d)
mappable = func(
subset,
x=x,
y=y,
ax=ax,
hue=hue,
_size=size_,
**func_kwargs,
_is_facetgrid=True,
)
self._mappables.append(mappable)
# Add titles and some touch ups:
self._finalize_grid()
self._set_lims()
add_colorbar, add_legend = _determine_guide(
hueplt_norm,
sizeplt_norm,
kwargs.get("add_colorbar"),
kwargs.get("add_legend"),
# kwargs.get("add_guide", None),
# kwargs.get("hue_style", None),
)
if add_legend:
use_legend_elements = func.__name__ != "hist"
if use_legend_elements:
self.add_legend(
use_legend_elements=use_legend_elements,
hueplt_norm=hueplt_norm if not add_colorbar else _Normalize(None),
sizeplt_norm=sizeplt_norm,
primitive=self._mappables,
legend_ax=self.fig,
plotfunc=func.__name__,
)
else:
self.add_legend(use_legend_elements=use_legend_elements)
if add_colorbar:
# Colorbar is after legend so it correctly fits the plot:
if "label" not in cbar_kwargs:
cbar_kwargs["label"] = label_from_attrs(hueplt_norm.data)
self.add_colorbar(**cbar_kwargs)
return self
def map_dataarray_line(
self: T_FacetGrid,
func: Callable,
x: Hashable | None,
y: Hashable | None,
hue: Hashable | None,
add_legend: bool = True,
_labels=None,
**kwargs: Any,
) -> T_FacetGrid:
from xarray.plot.dataarray_plot import _infer_line_data
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# None is the sentinel value
if d is not None:
subset = self.data.loc[d]
mappable = func(
subset,
x=x,
y=y,
ax=ax,
hue=hue,
add_legend=False,
_labels=False,
**kwargs,
)
self._mappables.append(mappable)
xplt, yplt, hueplt, huelabel = _infer_line_data(
darray=self.data.loc[self.name_dicts.flat[0]], x=x, y=y, hue=hue
)
xlabel = label_from_attrs(xplt)
ylabel = label_from_attrs(yplt)
self._hue_var = hueplt
self._finalize_grid(xlabel, ylabel)
if add_legend and hueplt is not None and huelabel is not None:
self.add_legend(label=huelabel)
return self
def map_dataset(
self: T_FacetGrid,
func: Callable,
x: Hashable | None = None,
y: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
add_guide: bool | None = None,
**kwargs: Any,
) -> T_FacetGrid:
from xarray.plot.dataset_plot import _infer_meta_data
kwargs["add_guide"] = False
if kwargs.get("markersize"):
kwargs["size_mapping"] = _parse_size(
self.data[kwargs["markersize"]], kwargs.pop("size_norm", None)
)
meta_data = _infer_meta_data(
self.data, x, y, hue, hue_style, add_guide, funcname=func.__name__
)
kwargs["meta_data"] = meta_data
if hue and meta_data["hue_style"] == "continuous":
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
func, self.data[hue].to_numpy(), **kwargs
)
kwargs["meta_data"]["cmap_params"] = cmap_params
kwargs["meta_data"]["cbar_kwargs"] = cbar_kwargs
kwargs["_is_facetgrid"] = True
if func.__name__ == "quiver" and "scale" not in kwargs:
raise ValueError("Please provide scale.")
# TODO: come up with an algorithm for reasonable scale choice
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# None is the sentinel value
if d is not None:
subset = self.data.loc[d]
maybe_mappable = func(
ds=subset, x=x, y=y, hue=hue, hue_style=hue_style, ax=ax, **kwargs
)
# TODO: this is needed to get legends to work.
# but maybe_mappable is a list in that case :/
self._mappables.append(maybe_mappable)
self._finalize_grid(meta_data["xlabel"], meta_data["ylabel"])
if hue:
hue_label = meta_data.pop("hue_label", None)
self._hue_label = hue_label
if meta_data["add_legend"]:
self._hue_var = meta_data["hue"]
self.add_legend(label=hue_label)
elif meta_data["add_colorbar"]:
self.add_colorbar(label=hue_label, **cbar_kwargs)
if meta_data["add_quiverkey"]:
self.add_quiverkey(kwargs["u"], kwargs["v"])
return self
def _finalize_grid(self, *axlabels: Hashable) -> None:
"""Finalize the annotations and layout."""
if not self._finalized:
self.set_axis_labels(*axlabels)
self.set_titles()
self.fig.tight_layout()
for ax, namedict in zip(self.axs.flat, self.name_dicts.flat, strict=True):
if namedict is None:
ax.set_visible(False)
self._finalized = True
def _adjust_fig_for_guide(self, guide) -> None:
# Draw the plot to set the bounding boxes correctly
if hasattr(self.fig.canvas, "get_renderer"):
renderer = self.fig.canvas.get_renderer()
else:
raise RuntimeError("MPL backend has no renderer")
self.fig.draw(renderer)
# Calculate and set the new width of the figure so the legend fits
guide_width = guide.get_window_extent(renderer).width / self.fig.dpi
figure_width = self.fig.get_figwidth()
total_width = figure_width + guide_width
self.fig.set_figwidth(total_width)
# Draw the plot again to get the new transformations
self.fig.draw(renderer)
# Now calculate how much space we need on the right side
guide_width = guide.get_window_extent(renderer).width / self.fig.dpi
space_needed = guide_width / total_width + 0.02
# margin = .01
# _space_needed = margin + space_needed
right = 1 - space_needed
# Place the subplot axes to give space for the legend
self.fig.subplots_adjust(right=right)
def add_legend(
self,
*,
label: str | None = None,
use_legend_elements: bool = False,
**kwargs: Any,
) -> None:
if use_legend_elements:
self.figlegend = _add_legend(**kwargs)
else:
assert self._hue_var is not None
self.figlegend = self.fig.legend(
handles=self._mappables[-1],
labels=list(self._hue_var.to_numpy()),
title=label if label is not None else label_from_attrs(self._hue_var),
loc=kwargs.pop("loc", "center right"),
**kwargs,
)
self._adjust_fig_for_guide(self.figlegend)
def add_colorbar(self, **kwargs: Any) -> None:
"""Draw a colorbar."""
kwargs = kwargs.copy()
if self._cmap_extend is not None:
kwargs.setdefault("extend", self._cmap_extend)
# dont pass extend as kwarg if it is in the mappable
if hasattr(self._mappables[-1], "extend"):
kwargs.pop("extend", None)
if "label" not in kwargs:
from xarray import DataArray
assert isinstance(self.data, DataArray)
kwargs.setdefault("label", label_from_attrs(self.data))
self.cbar = self.fig.colorbar(
self._mappables[-1], ax=list(self.axs.flat), **kwargs
)
def add_quiverkey(self, u: Hashable, v: Hashable, **kwargs: Any) -> None:
kwargs = kwargs.copy()
magnitude = _get_nice_quiver_magnitude(self.data[u], self.data[v])
units = self.data[u].attrs.get("units", "")
self.quiverkey = self.axs.flat[-1].quiverkey(
self._mappables[-1],
X=0.8,
Y=0.9,
U=magnitude,
label=f"{magnitude}\n{units}",
labelpos="E",
coordinates="figure",
)
# TODO: does not work because self.quiverkey.get_window_extent(renderer) = 0
# https://github.com/matplotlib/matplotlib/issues/18530
# self._adjust_fig_for_guide(self.quiverkey.text)
def _get_largest_lims(self) -> dict[str, tuple[float, float]]:
"""
Get largest limits in the facetgrid.
Returns
-------
lims_largest : dict[str, tuple[float, float]]
Dictionary with the largest limits along each axis.
Examples
--------
>>> ds = xr.tutorial.scatter_example_dataset(seed=42)
>>> fg = ds.plot.scatter(x="A", y="B", hue="y", row="x", col="w")
>>> round(fg._get_largest_lims()["x"][0], 3)
np.float64(-0.334)
"""
lims_largest: dict[str, tuple[float, float]] = dict(
x=(np.inf, -np.inf), y=(np.inf, -np.inf), z=(np.inf, -np.inf)
)
for axis in ("x", "y", "z"):
# Find the plot with the largest xlim values:
lower, upper = lims_largest[axis]
for ax in self.axs.flat:
get_lim: Callable[[], tuple[float, float]] | None = getattr(
ax, f"get_{axis}lim", None
)
if get_lim:
lower_new, upper_new = get_lim()
lower, upper = (min(lower, lower_new), max(upper, upper_new))
lims_largest[axis] = (lower, upper)
return lims_largest
def _set_lims(
self,
x: tuple[float, float] | None = None,
y: tuple[float, float] | None = None,
z: tuple[float, float] | None = None,
) -> None:
"""
Set the same limits for all the subplots in the facetgrid.
Parameters
----------
x : tuple[float, float] or None, optional
x axis limits.
y : tuple[float, float] or None, optional
y axis limits.
z : tuple[float, float] or None, optional
z axis limits.
Examples
--------
>>> ds = xr.tutorial.scatter_example_dataset(seed=42)
>>> fg = ds.plot.scatter(x="A", y="B", hue="y", row="x", col="w")
>>> fg._set_lims(x=(-0.3, 0.3), y=(0, 2), z=(0, 4))
>>> fg.axs[0, 0].get_xlim(), fg.axs[0, 0].get_ylim()
((np.float64(-0.3), np.float64(0.3)), (np.float64(0.0), np.float64(2.0)))
"""
lims_largest = self._get_largest_lims()
# Set limits:
for ax in self.axs.flat:
for (axis, data_limit), parameter_limit in zip(
lims_largest.items(), (x, y, z), strict=True
):
set_lim = getattr(ax, f"set_{axis}lim", None)
if set_lim:
set_lim(data_limit if parameter_limit is None else parameter_limit)
def set_axis_labels(self, *axlabels: Hashable) -> None:
"""Set axis labels on the left column and bottom row of the grid."""
from xarray.core.dataarray import DataArray
for var, axis in zip(axlabels, ["x", "y", "z"], strict=False):
if var is not None:
if isinstance(var, DataArray):
getattr(self, f"set_{axis}labels")(label_from_attrs(var))
else:
getattr(self, f"set_{axis}labels")(str(var))
def _set_labels(
self, axis: str, axes: Iterable, label: str | None = None, **kwargs
) -> None:
if label is None:
label = label_from_attrs(self.data[getattr(self, f"_{axis}_var")])
for ax in axes:
getattr(ax, f"set_{axis}label")(label, **kwargs)
def set_xlabels(self, label: str | None = None, **kwargs: Any) -> None:
"""Label the x axis on the bottom row of the grid."""
self._set_labels("x", self._bottom_axes, label, **kwargs)
def set_ylabels(self, label: str | None = None, **kwargs: Any) -> None:
"""Label the y axis on the left column of the grid."""
self._set_labels("y", self._left_axes, label, **kwargs)
def set_zlabels(self, label: str | None = None, **kwargs: Any) -> None:
"""Label the z axis."""
self._set_labels("z", self._left_axes, label, **kwargs)
def set_titles(
self,
template: str = "{coord} = {value}",
maxchar: int = 30,
size=None,
**kwargs,
) -> None:
"""
Draw titles either above each facet or on the grid margins.
Parameters
----------
template : str, default: "{coord} = {value}"
Template for plot titles containing {coord} and {value}
maxchar : int, default: 30
Truncate titles at maxchar
**kwargs : keyword args
additional arguments to matplotlib.text
Returns
-------
self: FacetGrid object
"""
import matplotlib as mpl
if size is None:
size = mpl.rcParams["axes.labelsize"]
nicetitle = functools.partial(_nicetitle, maxchar=maxchar, template=template)
if self._single_group:
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# Only label the ones with data
if d is not None:
coord, value = list(d.items()).pop()
title = nicetitle(coord, value)
ax.set_title(title, size=size, **kwargs)
else:
# The row titles on the right edge of the grid
for index, (ax, row_name, handle) in enumerate(
zip(self.axs[:, -1], self.row_names, self.row_labels, strict=True)
):
title = nicetitle(coord=self._row_var, value=row_name)
if not handle:
self.row_labels[index] = ax.annotate(
title,
xy=(1.02, 0.5),
xycoords="axes fraction",
rotation=270,
ha="left",
va="center",
**kwargs,
)
else:
handle.set_text(title)
handle.update(kwargs)
# The column titles on the top row
for index, (ax, col_name, handle) in enumerate(
zip(self.axs[0, :], self.col_names, self.col_labels, strict=True)
):
title = nicetitle(coord=self._col_var, value=col_name)
if not handle:
self.col_labels[index] = ax.set_title(title, size=size, **kwargs)
else:
handle.set_text(title)
handle.update(kwargs)
def set_ticks(
self,
max_xticks: int = _NTICKS,
max_yticks: int = _NTICKS,
fontsize: str | int = _FONTSIZE,
) -> None:
"""
Set and control tick behavior.
Parameters
----------
max_xticks, max_yticks : int, optional
Maximum number of labeled ticks to plot on x, y axes
fontsize : string or int
Font size as used by matplotlib text
Returns
-------
self : FacetGrid object
"""
from matplotlib.ticker import MaxNLocator
# Both are necessary
x_major_locator = MaxNLocator(nbins=max_xticks)
y_major_locator = MaxNLocator(nbins=max_yticks)
for ax in self.axs.flat:
ax.xaxis.set_major_locator(x_major_locator)
ax.yaxis.set_major_locator(y_major_locator)
for tick in itertools.chain(
ax.xaxis.get_major_ticks(), ax.yaxis.get_major_ticks()
):
tick.label1.set_fontsize(fontsize)
def map(
self: T_FacetGrid, func: Callable, *args: Hashable, **kwargs: Any
) -> T_FacetGrid:
"""
Apply a plotting function to each facet's subset of the data.
Parameters
----------
func : callable
A plotting function that takes data and keyword arguments. It
must plot to the currently active matplotlib Axes and take a
`color` keyword argument. If faceting on the `hue` dimension,
it must also take a `label` keyword argument.
*args : Hashable
Column names in self.data that identify variables with data to
plot. The data for each variable is passed to `func` in the
order the variables are specified in the call.
**kwargs : keyword arguments
All keyword arguments are passed to the plotting function.
Returns
-------
self : FacetGrid object
"""
import matplotlib.pyplot as plt
for ax, namedict in zip(self.axs.flat, self.name_dicts.flat, strict=True):
if namedict is not None:
data = self.data.loc[namedict]
plt.sca(ax)
innerargs = [data[a].to_numpy() for a in args]
maybe_mappable = func(*innerargs, **kwargs)
# TODO: better way to verify that an artist is mappable?
# https://stackoverflow.com/questions/33023036/is-it-possible-to-detect-if-a-matplotlib-artist-is-a-mappable-suitable-for-use-w#33023522
if maybe_mappable and hasattr(maybe_mappable, "autoscale_None"):
self._mappables.append(maybe_mappable)
self._finalize_grid(*args[:2])
return self
def _easy_facetgrid(
data: T_DataArrayOrSet,
plotfunc: Callable,
kind: Literal["line", "dataarray", "dataset", "plot1d"],
x: Hashable | None = None,
y: Hashable | None = None,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: float | None = None,
size: float | None = None,
subplot_kws: dict[str, Any] | None = None,
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArrayOrSet]:
"""
Convenience method to call xarray.plot.FacetGrid from 2d plotting methods
kwargs are the arguments to 2d plotting method
"""
if ax is not None:
raise ValueError("Can't use axes when making faceted plots.")
if aspect is None:
aspect = 1
if size is None:
size = 3
elif figsize is not None:
raise ValueError("cannot provide both `figsize` and `size` arguments")
if kwargs.get("z") is not None:
# 3d plots doesn't support sharex, sharey, reset to mpl defaults:
sharex = False
sharey = False
g = FacetGrid(
data=data,
col=col,
row=row,
col_wrap=col_wrap,
sharex=sharex,
sharey=sharey,
figsize=figsize,
aspect=aspect,
size=size,
subplot_kws=subplot_kws,
)
if kind == "line":
return g.map_dataarray_line(plotfunc, x, y, **kwargs)
if kind == "dataarray":
return g.map_dataarray(plotfunc, x, y, **kwargs)
if kind == "plot1d":
return g.map_plot1d(plotfunc, x, y, **kwargs)
if kind == "dataset":
return g.map_dataset(plotfunc, x, y, **kwargs)
raise ValueError(
f"kind must be one of `line`, `dataarray`, `dataset` or `plot1d`, got {kind}"
)
|