1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
|
from __future__ import annotations
import itertools
import textwrap
import warnings
from collections.abc import (
Callable,
Hashable,
Iterable,
Mapping,
MutableMapping,
Sequence,
)
from datetime import date, datetime
from inspect import getfullargspec
from typing import TYPE_CHECKING, Any, Literal, cast, overload
import numpy as np
import pandas as pd
from xarray.core.indexes import PandasMultiIndex
from xarray.core.options import OPTIONS
from xarray.core.utils import (
attempt_import,
is_scalar,
module_available,
)
from xarray.namedarray.pycompat import DuckArrayModule
nc_time_axis_available = module_available("nc_time_axis")
try:
import cftime
except ImportError:
cftime = None
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.colors import Normalize
from matplotlib.ticker import FuncFormatter
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import AspectOptions, ScaleOptions
try:
import matplotlib.pyplot as plt
except ImportError:
plt: Any = None # type: ignore[no-redef]
ROBUST_PERCENTILE = 2.0
# copied from seaborn
_MARKERSIZE_RANGE = (18.0, 36.0, 72.0)
_LINEWIDTH_RANGE = (1.5, 1.5, 6.0)
def _determine_extend(calc_data, vmin, vmax):
extend_min = calc_data.min() < vmin
extend_max = calc_data.max() > vmax
if extend_min and extend_max:
return "both"
elif extend_min:
return "min"
elif extend_max:
return "max"
else:
return "neither"
def _build_discrete_cmap(cmap, levels, extend, filled):
"""
Build a discrete colormap and normalization of the data.
"""
import matplotlib as mpl
if len(levels) == 1:
levels = [levels[0], levels[0]]
if not filled:
# non-filled contour plots
extend = "max"
if extend == "both":
ext_n = 2
elif extend in ["min", "max"]:
ext_n = 1
else:
ext_n = 0
n_colors = len(levels) + ext_n - 1
pal = _color_palette(cmap, n_colors)
new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend)
# copy the old cmap name, for easier testing
new_cmap.name = getattr(cmap, "name", cmap)
# copy colors to use for bad, under, and over values in case they have been
# set to non-default values
try:
# matplotlib<3.2 only uses bad color for masked values
bad = cmap(np.ma.masked_invalid([np.nan]))[0]
except TypeError:
# cmap was a str or list rather than a color-map object, so there are
# no bad, under or over values to check or copy
pass
else:
under = cmap(-np.inf)
over = cmap(np.inf)
new_cmap.set_bad(bad)
# Only update under and over if they were explicitly changed by the user
# (i.e. are different from the lowest or highest values in cmap). Otherwise
# leave unchanged so new_cmap uses its default values (its own lowest and
# highest values).
if under != cmap(0):
new_cmap.set_under(under)
if over != cmap(cmap.N - 1):
new_cmap.set_over(over)
return new_cmap, cnorm
def _color_palette(cmap, n_colors):
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
colors_i = np.linspace(0, 1.0, n_colors)
if isinstance(cmap, list | tuple):
# expand or truncate the list of colors to n_colors
cmap = list(itertools.islice(itertools.cycle(cmap), n_colors))
cmap = ListedColormap(cmap)
pal = cmap(colors_i)
elif isinstance(cmap, str):
# we have some sort of named palette
try:
# is this a matplotlib cmap?
cmap = plt.get_cmap(cmap)
pal = cmap(colors_i)
except ValueError:
# ValueError happens when mpl doesn't like a colormap, try seaborn
try:
from seaborn import color_palette
pal = color_palette(cmap, n_colors=n_colors)
except (ValueError, ImportError):
# or maybe we just got a single color as a string
cmap = ListedColormap([cmap] * n_colors)
pal = cmap(colors_i)
else:
# cmap better be a LinearSegmentedColormap (e.g. viridis)
pal = cmap(colors_i)
return pal
# _determine_cmap_params is adapted from Seaborn:
# https://github.com/mwaskom/seaborn/blob/v0.6/seaborn/matrix.py#L158
# Used under the terms of Seaborn's license, see licenses/SEABORN_LICENSE.
def _determine_cmap_params(
plot_data,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
filled=True,
norm=None,
_is_facetgrid=False,
):
"""
Use some heuristics to set good defaults for colorbar and range.
Parameters
----------
plot_data : Numpy array
Doesn't handle xarray objects
Returns
-------
cmap_params : dict
Use depends on the type of the plotting function
"""
if TYPE_CHECKING:
import matplotlib as mpl
else:
mpl = attempt_import("matplotlib")
if isinstance(levels, Iterable):
levels = sorted(levels)
calc_data = np.ravel(plot_data[np.isfinite(plot_data)])
# Handle all-NaN input data gracefully
if calc_data.size == 0:
# Arbitrary default for when all values are NaN
calc_data = np.array(0.0)
# Setting center=False prevents a divergent cmap
possibly_divergent = center is not False
# Set center to 0 so math below makes sense but remember its state
center_is_none = False
if center is None:
center = 0
center_is_none = True
# Setting both vmin and vmax prevents a divergent cmap
if (vmin is not None) and (vmax is not None):
possibly_divergent = False
# Setting vmin or vmax implies linspaced levels
user_minmax = (vmin is not None) or (vmax is not None)
# vlim might be computed below
vlim = None
# save state; needed later
vmin_was_none = vmin is None
vmax_was_none = vmax is None
if vmin is None:
if robust:
vmin = np.percentile(calc_data, ROBUST_PERCENTILE)
else:
vmin = calc_data.min()
elif possibly_divergent:
vlim = abs(vmin - center)
if vmax is None:
if robust:
vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE)
else:
vmax = calc_data.max()
elif possibly_divergent:
vlim = abs(vmax - center)
if possibly_divergent:
levels_are_divergent = (
isinstance(levels, Iterable) and levels[0] * levels[-1] < 0
)
# kwargs not specific about divergent or not: infer defaults from data
divergent = (vmin < 0 < vmax) or not center_is_none or levels_are_divergent
else:
divergent = False
# A divergent map should be symmetric around the center value
if divergent:
if vlim is None:
vlim = max(abs(vmin - center), abs(vmax - center))
vmin, vmax = -vlim, vlim
# Now add in the centering value and set the limits
vmin += center
vmax += center
# now check norm and harmonize with vmin, vmax
if norm is not None:
if norm.vmin is None:
norm.vmin = vmin
else:
if not vmin_was_none and vmin != norm.vmin:
raise ValueError("Cannot supply vmin and a norm with a different vmin.")
vmin = norm.vmin
if norm.vmax is None:
norm.vmax = vmax
else:
if not vmax_was_none and vmax != norm.vmax:
raise ValueError("Cannot supply vmax and a norm with a different vmax.")
vmax = norm.vmax
# if BoundaryNorm, then set levels
if isinstance(norm, mpl.colors.BoundaryNorm):
levels = norm.boundaries
# Choose default colormaps if not provided
if cmap is None:
if divergent:
cmap = OPTIONS["cmap_divergent"]
else:
cmap = OPTIONS["cmap_sequential"]
# Handle discrete levels
if levels is not None:
if is_scalar(levels):
if user_minmax:
levels = np.linspace(vmin, vmax, levels)
elif levels == 1:
levels = np.asarray([(vmin + vmax) / 2])
else:
# N in MaxNLocator refers to bins, not ticks
ticker = mpl.ticker.MaxNLocator(levels - 1)
levels = ticker.tick_values(vmin, vmax)
vmin, vmax = levels[0], levels[-1]
# GH3734
if vmin == vmax:
vmin, vmax = mpl.ticker.LinearLocator(2).tick_values(vmin, vmax)
if extend is None:
extend = _determine_extend(calc_data, vmin, vmax)
if (levels is not None) and (not isinstance(norm, mpl.colors.BoundaryNorm)):
cmap, newnorm = _build_discrete_cmap(cmap, levels, extend, filled)
norm = newnorm if norm is None else norm
# vmin & vmax needs to be None if norm is passed
# TODO: always return a norm with vmin and vmax
if norm is not None:
vmin = None
vmax = None
return dict(
vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=norm
)
def _infer_xy_labels_3d(
darray: DataArray | Dataset,
x: Hashable | None,
y: Hashable | None,
rgb: Hashable | None,
) -> tuple[Hashable, Hashable]:
"""
Determine x and y labels for showing RGB images.
Attempts to infer which dimension is RGB/RGBA by size and order of dims.
"""
assert rgb is None or rgb != x
assert rgb is None or rgb != y
# Start by detecting and reporting invalid combinations of arguments
assert darray.ndim == 3
not_none = [a for a in (x, y, rgb) if a is not None]
if len(set(not_none)) < len(not_none):
raise ValueError(
"Dimension names must be None or unique strings, but imshow was "
f"passed x={x!r}, y={y!r}, and rgb={rgb!r}."
)
for label in not_none:
if label not in darray.dims:
raise ValueError(f"{label!r} is not a dimension")
# Then calculate rgb dimension if certain and check validity
could_be_color = [
label
for label in darray.dims
if darray[label].size in (3, 4) and label not in (x, y)
]
if rgb is None and not could_be_color:
raise ValueError(
"A 3-dimensional array was passed to imshow(), but there is no "
"dimension that could be color. At least one dimension must be "
"of size 3 (RGB) or 4 (RGBA), and not given as x or y."
)
if rgb is None and len(could_be_color) == 1:
rgb = could_be_color[0]
if rgb is not None and darray[rgb].size not in (3, 4):
raise ValueError(
f"Cannot interpret dim {rgb!r} of size {darray[rgb].size} as RGB or RGBA."
)
# If rgb dimension is still unknown, there must be two or three dimensions
# in could_be_color. We therefore warn, and use a heuristic to break ties.
if rgb is None:
assert len(could_be_color) in (2, 3)
rgb = could_be_color[-1]
warnings.warn(
"Several dimensions of this array could be colors. Xarray "
f"will use the last possible dimension ({rgb!r}) to match "
"matplotlib.pyplot.imshow. You can pass names of x, y, "
"and/or rgb dimensions to override this guess.",
stacklevel=2,
)
assert rgb is not None
# Finally, we pick out the red slice and delegate to the 2D version:
return _infer_xy_labels(darray.isel({rgb: 0}), x, y)
def _infer_xy_labels(
darray: DataArray | Dataset,
x: Hashable | None,
y: Hashable | None,
imshow: bool = False,
rgb: Hashable | None = None,
) -> tuple[Hashable, Hashable]:
"""
Determine x and y labels. For use in _plot2d
darray must be a 2 dimensional data array, or 3d for imshow only.
"""
if (x is not None) and (x == y):
raise ValueError("x and y cannot be equal.")
if imshow and darray.ndim == 3:
return _infer_xy_labels_3d(darray, x, y, rgb)
if x is None and y is None:
if darray.ndim != 2:
raise ValueError("DataArray must be 2d")
y, x = darray.dims
elif x is None:
_assert_valid_xy(darray, y, "y")
x = darray.dims[0] if y == darray.dims[1] else darray.dims[1]
elif y is None:
_assert_valid_xy(darray, x, "x")
y = darray.dims[0] if x == darray.dims[1] else darray.dims[1]
else:
_assert_valid_xy(darray, x, "x")
_assert_valid_xy(darray, y, "y")
if darray._indexes.get(x, 1) is darray._indexes.get(y, 2) and isinstance(
darray._indexes[x], PandasMultiIndex
):
raise ValueError("x and y cannot be levels of the same MultiIndex")
return x, y
# TODO: Can by used to more than x or y, rename?
def _assert_valid_xy(
darray: DataArray | Dataset, xy: Hashable | None, name: str
) -> None:
"""
make sure x and y passed to plotting functions are valid
"""
# MultiIndex cannot be plotted; no point in allowing them here
multiindex_dims = {
idx.dim
for idx in darray.xindexes.get_unique()
if isinstance(idx, PandasMultiIndex)
}
valid_xy = (set(darray.dims) | set(darray.coords)) - multiindex_dims
if (xy is not None) and (xy not in valid_xy):
valid_xy_str = "', '".join(sorted(str(v) for v in valid_xy))
raise ValueError(
f"{name} must be one of None, '{valid_xy_str}'. Received '{xy}' instead."
)
def get_axis(
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
**subplot_kws: Any,
) -> Axes:
if TYPE_CHECKING:
import matplotlib as mpl
import matplotlib.pyplot as plt
else:
mpl = attempt_import("matplotlib")
plt = attempt_import("matplotlib.pyplot")
if figsize is not None:
if ax is not None:
raise ValueError("cannot provide both `figsize` and `ax` arguments")
if size is not None:
raise ValueError("cannot provide both `figsize` and `size` arguments")
_, ax = plt.subplots(figsize=figsize, subplot_kw=subplot_kws)
return ax
if size is not None:
if ax is not None:
raise ValueError("cannot provide both `size` and `ax` arguments")
if aspect is None or aspect == "auto":
width, height = mpl.rcParams["figure.figsize"]
faspect = width / height
elif aspect == "equal":
faspect = 1
else:
faspect = aspect
figsize = (size * faspect, size)
_, ax = plt.subplots(figsize=figsize, subplot_kw=subplot_kws)
return ax
if aspect is not None:
raise ValueError("cannot provide `aspect` argument without `size`")
if subplot_kws and ax is not None:
raise ValueError("cannot use subplot_kws with existing ax")
if ax is None:
ax = _maybe_gca(**subplot_kws)
return ax
def _maybe_gca(**subplot_kws: Any) -> Axes:
import matplotlib.pyplot as plt
# can call gcf unconditionally: either it exists or would be created by plt.axes
f = plt.gcf()
# only call gca if an active axes exists
if f.axes:
# can not pass kwargs to active axes
return plt.gca()
return plt.axes(**subplot_kws)
def _get_units_from_attrs(da: DataArray) -> str:
"""Extracts and formats the unit/units from a attributes."""
pint_array_type = DuckArrayModule("pint").type
units = " [{}]"
if isinstance(da.data, pint_array_type):
return units.format(str(da.data.units))
if "units" in da.attrs:
return units.format(da.attrs["units"])
if "unit" in da.attrs:
return units.format(da.attrs["unit"])
return ""
def label_from_attrs(da: DataArray | None, extra: str = "") -> str:
"""Makes informative labels if variable metadata (attrs) follows
CF conventions."""
if da is None:
return ""
name: str = "{}"
if "long_name" in da.attrs:
name = name.format(da.attrs["long_name"])
elif "standard_name" in da.attrs:
name = name.format(da.attrs["standard_name"])
elif da.name is not None:
name = name.format(da.name)
else:
name = ""
units = _get_units_from_attrs(da)
# Treat `name` differently if it's a latex sequence
if name.startswith("$") and (name.count("$") % 2 == 0):
return "$\n$".join(
textwrap.wrap(name + extra + units, 60, break_long_words=False)
)
else:
return "\n".join(textwrap.wrap(name + extra + units, 30))
def _interval_to_mid_points(array: Iterable[pd.Interval]) -> np.ndarray:
"""
Helper function which returns an array
with the Intervals' mid points.
"""
return np.array([x.mid for x in array])
def _interval_to_bound_points(array: Sequence[pd.Interval]) -> np.ndarray:
"""
Helper function which returns an array
with the Intervals' boundaries.
"""
array_boundaries = np.array([x.left for x in array])
array_boundaries = np.concatenate((array_boundaries, np.array([array[-1].right])))
return array_boundaries
def _interval_to_double_bound_points(
xarray: Iterable[pd.Interval], yarray: Iterable
) -> tuple[np.ndarray, np.ndarray]:
"""
Helper function to deal with a xarray consisting of pd.Intervals. Each
interval is replaced with both boundaries. I.e. the length of xarray
doubles. yarray is modified so it matches the new shape of xarray.
"""
xarray1 = np.array([x.left for x in xarray])
xarray2 = np.array([x.right for x in xarray])
xarray_out = np.array(
list(itertools.chain.from_iterable(zip(xarray1, xarray2, strict=True)))
)
yarray_out = np.array(
list(itertools.chain.from_iterable(zip(yarray, yarray, strict=True)))
)
return xarray_out, yarray_out
def _resolve_intervals_1dplot(
xval: np.ndarray, yval: np.ndarray, kwargs: dict
) -> tuple[np.ndarray, np.ndarray, str, str, dict]:
"""
Helper function to replace the values of x and/or y coordinate arrays
containing pd.Interval with their mid-points or - for step plots - double
points which double the length.
"""
x_suffix = ""
y_suffix = ""
# Is it a step plot? (see matplotlib.Axes.step)
if kwargs.get("drawstyle", "").startswith("steps-"):
remove_drawstyle = False
# Convert intervals to double points
x_is_interval = _valid_other_type(xval, pd.Interval)
y_is_interval = _valid_other_type(yval, pd.Interval)
if x_is_interval and y_is_interval:
raise TypeError("Can't step plot intervals against intervals.")
elif x_is_interval:
xval, yval = _interval_to_double_bound_points(xval, yval)
remove_drawstyle = True
elif y_is_interval:
yval, xval = _interval_to_double_bound_points(yval, xval)
remove_drawstyle = True
# Remove steps-* to be sure that matplotlib is not confused
if remove_drawstyle:
del kwargs["drawstyle"]
# Is it another kind of plot?
else:
# Convert intervals to mid points and adjust labels
if _valid_other_type(xval, pd.Interval):
xval = _interval_to_mid_points(xval)
x_suffix = "_center"
if _valid_other_type(yval, pd.Interval):
yval = _interval_to_mid_points(yval)
y_suffix = "_center"
# return converted arguments
return xval, yval, x_suffix, y_suffix, kwargs
def _resolve_intervals_2dplot(val, func_name):
"""
Helper function to replace the values of a coordinate array containing
pd.Interval with their mid-points or - for pcolormesh - boundaries which
increases length by 1.
"""
label_extra = ""
if _valid_other_type(val, pd.Interval):
if func_name == "pcolormesh":
val = _interval_to_bound_points(val)
else:
val = _interval_to_mid_points(val)
label_extra = "_center"
return val, label_extra
def _valid_other_type(
x: ArrayLike, types: type[object] | tuple[type[object], ...]
) -> bool:
"""
Do all elements of x have a type from types?
"""
return all(isinstance(el, types) for el in np.ravel(x))
def _valid_numpy_subdtype(x, numpy_types):
"""
Is any dtype from numpy_types superior to the dtype of x?
"""
# If any of the types given in numpy_types is understood as numpy.generic,
# all possible x will be considered valid. This is probably unwanted.
for t in numpy_types:
assert not np.issubdtype(np.generic, t)
return any(np.issubdtype(x.dtype, t) for t in numpy_types)
def _ensure_plottable(*args) -> None:
"""
Raise exception if there is anything in args that can't be plotted on an
axis by matplotlib.
"""
numpy_types: tuple[type[object], ...] = (
np.floating,
np.integer,
np.timedelta64,
np.datetime64,
np.bool_,
np.str_,
)
other_types: tuple[type[object], ...] = (datetime, date)
cftime_datetime_types: tuple[type[object], ...] = (
() if cftime is None else (cftime.datetime,)
)
other_types += cftime_datetime_types
for x in args:
if not (
_valid_numpy_subdtype(np.asarray(x), numpy_types)
or _valid_other_type(np.asarray(x), other_types)
):
raise TypeError(
"Plotting requires coordinates to be numeric, boolean, "
"or dates of type numpy.datetime64, "
"datetime.datetime, cftime.datetime or "
f"pandas.Interval. Received data of type {np.asarray(x).dtype} instead."
)
if _valid_other_type(np.asarray(x), cftime_datetime_types):
if nc_time_axis_available:
# Register cftime datetypes to matplotlib.units.registry,
# otherwise matplotlib will raise an error:
import nc_time_axis # noqa: F401
else:
raise ImportError(
"Plotting of arrays of cftime.datetime "
"objects or arrays indexed by "
"cftime.datetime objects requires the "
"optional `nc-time-axis` (v1.2.0 or later) "
"package."
)
def _is_numeric(arr):
numpy_types = [np.floating, np.integer]
return _valid_numpy_subdtype(arr, numpy_types)
def _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params):
cbar_kwargs.setdefault("extend", cmap_params["extend"])
if cbar_ax is None:
cbar_kwargs.setdefault("ax", ax)
else:
cbar_kwargs.setdefault("cax", cbar_ax)
# dont pass extend as kwarg if it is in the mappable
if hasattr(primitive, "extend"):
cbar_kwargs.pop("extend")
fig = ax.get_figure()
cbar = fig.colorbar(primitive, **cbar_kwargs)
return cbar
def _rescale_imshow_rgb(darray, vmin, vmax, robust):
assert robust or vmin is not None or vmax is not None
# Calculate vmin and vmax automatically for `robust=True`
if robust:
if vmax is None:
vmax = np.nanpercentile(darray, 100 - ROBUST_PERCENTILE)
if vmin is None:
vmin = np.nanpercentile(darray, ROBUST_PERCENTILE)
# If not robust and one bound is None, calculate the default other bound
# and check that an interval between them exists.
elif vmax is None:
vmax = 255 if np.issubdtype(darray.dtype, np.integer) else 1
if vmax < vmin:
raise ValueError(
f"vmin={vmin!r} is less than the default vmax ({vmax!r}) - you must supply "
"a vmax > vmin in this case."
)
elif vmin is None:
vmin = 0
if vmin > vmax:
raise ValueError(
f"vmax={vmax!r} is less than the default vmin (0) - you must supply "
"a vmin < vmax in this case."
)
# Scale interval [vmin .. vmax] to [0 .. 1], with darray as 64-bit float
# to avoid precision loss, integer over/underflow, etc with extreme inputs.
# After scaling, downcast to 32-bit float. This substantially reduces
# memory usage after we hand `darray` off to matplotlib.
darray = ((darray.astype("f8") - vmin) / (vmax - vmin)).astype("f4")
return np.minimum(np.maximum(darray, 0), 1)
def _update_axes(
ax: Axes,
xincrease: bool | None,
yincrease: bool | None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
) -> None:
"""
Update axes with provided parameters
"""
if xincrease is None:
pass
elif (xincrease and ax.xaxis_inverted()) or (
not xincrease and not ax.xaxis_inverted()
):
ax.invert_xaxis()
if yincrease is None:
pass
elif (yincrease and ax.yaxis_inverted()) or (
not yincrease and not ax.yaxis_inverted()
):
ax.invert_yaxis()
# The default xscale, yscale needs to be None.
# If we set a scale it resets the axes formatters,
# This means that set_xscale('linear') on a datetime axis
# will remove the date labels. So only set the scale when explicitly
# asked to. https://github.com/matplotlib/matplotlib/issues/8740
if xscale is not None:
ax.set_xscale(xscale)
if yscale is not None:
ax.set_yscale(yscale)
if xticks is not None:
ax.set_xticks(xticks)
if yticks is not None:
ax.set_yticks(yticks)
if xlim is not None:
ax.set_xlim(xlim)
if ylim is not None:
ax.set_ylim(ylim)
def _is_monotonic(coord, axis=0):
"""
>>> _is_monotonic(np.array([0, 1, 2]))
np.True_
>>> _is_monotonic(np.array([2, 1, 0]))
np.True_
>>> _is_monotonic(np.array([0, 2, 1]))
np.False_
"""
if coord.shape[axis] < 3:
return True
else:
n = coord.shape[axis]
delta_pos = coord.take(np.arange(1, n), axis=axis) >= coord.take(
np.arange(0, n - 1), axis=axis
)
delta_neg = coord.take(np.arange(1, n), axis=axis) <= coord.take(
np.arange(0, n - 1), axis=axis
)
return np.all(delta_pos) or np.all(delta_neg)
def _infer_interval_breaks(coord, axis=0, scale=None, check_monotonic=False):
"""
>>> _infer_interval_breaks(np.arange(5))
array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5])
>>> _infer_interval_breaks([[0, 1], [3, 4]], axis=1)
array([[-0.5, 0.5, 1.5],
[ 2.5, 3.5, 4.5]])
>>> _infer_interval_breaks(np.logspace(-2, 2, 5), scale="log")
array([3.16227766e-03, 3.16227766e-02, 3.16227766e-01, 3.16227766e+00,
3.16227766e+01, 3.16227766e+02])
"""
coord = np.asarray(coord)
if check_monotonic and not _is_monotonic(coord, axis=axis):
raise ValueError(
"The input coordinate is not sorted in increasing "
f"order along axis {axis}. This can lead to unexpected "
"results. Consider calling the `sortby` method on "
"the input DataArray. To plot data with categorical "
"axes, consider using the `heatmap` function from "
"the `seaborn` statistical plotting library."
)
# If logscale, compute the intervals in the logarithmic space
if scale == "log":
if (coord <= 0).any():
raise ValueError(
"Found negative or zero value in coordinates. "
"Coordinates must be positive on logscale plots."
)
coord = np.log10(coord)
deltas = 0.5 * np.diff(coord, axis=axis)
if deltas.size == 0:
deltas = np.array(0.0)
first = np.take(coord, [0], axis=axis) - np.take(deltas, [0], axis=axis)
last = np.take(coord, [-1], axis=axis) + np.take(deltas, [-1], axis=axis)
trim_last = tuple(
slice(None, -1) if n == axis else slice(None) for n in range(coord.ndim)
)
interval_breaks = np.concatenate(
[first, coord[trim_last] + deltas, last], axis=axis
)
if scale == "log":
# Recovert the intervals into the linear space
return np.power(10, interval_breaks)
return interval_breaks
def _process_cmap_cbar_kwargs(
func,
data,
cmap=None,
colors=None,
cbar_kwargs: Iterable[tuple[str, Any]] | Mapping[str, Any] | None = None,
levels=None,
_is_facetgrid=False,
**kwargs,
) -> tuple[dict[str, Any], dict[str, Any]]:
"""
Parameters
----------
func : plotting function
data : ndarray,
Data values
Returns
-------
cmap_params : dict
cbar_kwargs : dict
"""
if func.__name__ == "surface":
# Leave user to specify cmap settings for surface plots
kwargs["cmap"] = cmap
return {
k: kwargs.get(k)
for k in ["vmin", "vmax", "cmap", "extend", "levels", "norm"]
}, {}
cbar_kwargs = {} if cbar_kwargs is None else dict(cbar_kwargs)
if "contour" in func.__name__ and levels is None:
levels = 7 # this is the matplotlib default
# colors is mutually exclusive with cmap
if cmap and colors:
raise ValueError("Can't specify both cmap and colors.")
# colors is only valid when levels is supplied or the plot is of type
# contour or contourf
if colors and (("contour" not in func.__name__) and (levels is None)):
raise ValueError("Can only specify colors with contour or levels")
# we should not be getting a list of colors in cmap anymore
# is there a better way to do this test?
if isinstance(cmap, list | tuple):
raise ValueError(
"Specifying a list of colors in cmap is deprecated. "
"Use colors keyword instead."
)
cmap_kwargs = {
"plot_data": data,
"levels": levels,
"cmap": colors or cmap,
"filled": func.__name__ != "contour",
}
cmap_args = getfullargspec(_determine_cmap_params).args
cmap_kwargs.update((a, kwargs[a]) for a in cmap_args if a in kwargs)
if not _is_facetgrid:
cmap_params = _determine_cmap_params(**cmap_kwargs)
else:
cmap_params = {
k: cmap_kwargs[k]
for k in ["vmin", "vmax", "cmap", "extend", "levels", "norm"]
}
return cmap_params, cbar_kwargs
def _get_nice_quiver_magnitude(u, v):
import matplotlib as mpl
ticker = mpl.ticker.MaxNLocator(3)
mean = np.mean(np.hypot(u.to_numpy(), v.to_numpy()))
magnitude = ticker.tick_values(0, mean)[-2]
return magnitude
# Copied from matplotlib, tweaked so func can return strings.
# https://github.com/matplotlib/matplotlib/issues/19555
def legend_elements(
self, prop="colors", num="auto", fmt=None, func=lambda x: x, **kwargs
):
"""
Create legend handles and labels for a PathCollection.
Each legend handle is a `.Line2D` representing the Path that was drawn,
and each label is a string what each Path represents.
This is useful for obtaining a legend for a `~.Axes.scatter` plot;
e.g.::
scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())
creates three legend elements, one for each color with the numerical
values passed to *c* as the labels.
Also see the :ref:`automatedlegendcreation` example.
Parameters
----------
prop : {"colors", "sizes"}, default: "colors"
If "colors", the legend handles will show the different colors of
the collection. If "sizes", the legend will show the different
sizes. To set both, use *kwargs* to directly edit the `.Line2D`
properties.
num : int, None, "auto" (default), array-like, or `~.ticker.Locator`
Target number of elements to create.
If None, use all unique elements of the mappable array. If an
integer, target to use *num* elements in the normed range.
If *"auto"*, try to determine which option better suits the nature
of the data.
The number of created elements may slightly deviate from *num* due
to a `~.ticker.Locator` being used to find useful locations.
If a list or array, use exactly those elements for the legend.
Finally, a `~.ticker.Locator` can be provided.
fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
The format or formatter to use for the labels. If a string must be
a valid input for a `~.StrMethodFormatter`. If None (the default),
use a `~.ScalarFormatter`.
func : function, default: ``lambda x: x``
Function to calculate the labels. Often the size (or color)
argument to `~.Axes.scatter` will have been pre-processed by the
user using a function ``s = f(x)`` to make the markers visible;
e.g. ``size = np.log10(x)``. Providing the inverse of this
function here allows that pre-processing to be inverted, so that
the legend labels have the correct values; e.g. ``func = lambda
x: 10**x``.
**kwargs
Allowed keyword arguments are *color* and *size*. E.g. it may be
useful to set the color of the markers if *prop="sizes"* is used;
similarly to set the size of the markers if *prop="colors"* is
used. Any further parameters are passed onto the `.Line2D`
instance. This may be useful to e.g. specify a different
*markeredgecolor* or *alpha* for the legend handles.
Returns
-------
handles : list of `.Line2D`
Visual representation of each element of the legend.
labels : list of str
The string labels for elements of the legend.
"""
import matplotlib as mpl
mlines = mpl.lines
handles = []
labels = []
if prop == "colors":
arr = self.get_array()
if arr is None:
warnings.warn(
"Collection without array used. Make sure to "
"specify the values to be colormapped via the "
"`c` argument.",
stacklevel=2,
)
return handles, labels
_size = kwargs.pop("size", mpl.rcParams["lines.markersize"])
def _get_color_and_size(value):
return self.cmap(self.norm(value)), _size
elif prop == "sizes":
if isinstance(self, mpl.collections.LineCollection):
arr = self.get_linewidths()
else:
arr = self.get_sizes()
_color = kwargs.pop("color", "k")
def _get_color_and_size(value):
return _color, np.sqrt(value)
else:
raise ValueError(
"Valid values for `prop` are 'colors' or "
f"'sizes'. You supplied '{prop}' instead."
)
# Get the unique values and their labels:
values = np.unique(arr)
label_values = np.asarray(func(values))
label_values_are_numeric = np.issubdtype(label_values.dtype, np.number)
# Handle the label format:
if fmt is None and label_values_are_numeric:
fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True)
elif fmt is None and not label_values_are_numeric:
fmt = mpl.ticker.StrMethodFormatter("{x}")
elif isinstance(fmt, str):
fmt = mpl.ticker.StrMethodFormatter(fmt)
fmt.create_dummy_axis()
if num == "auto":
num = 9
if len(values) <= num:
num = None
if label_values_are_numeric:
label_values_min = label_values.min()
label_values_max = label_values.max()
fmt.axis.set_view_interval(label_values_min, label_values_max)
fmt.axis.set_data_interval(label_values_min, label_values_max)
if num is not None:
# Labels are numerical but larger than the target
# number of elements, reduce to target using matplotlibs
# ticker classes:
if isinstance(num, mpl.ticker.Locator):
loc = num
elif np.iterable(num):
loc = mpl.ticker.FixedLocator(num)
else:
num = int(num)
loc = mpl.ticker.MaxNLocator(
nbins=num, min_n_ticks=num - 1, steps=[1, 2, 2.5, 3, 5, 6, 8, 10]
)
# Get nicely spaced label_values:
label_values = loc.tick_values(label_values_min, label_values_max)
# Remove extrapolated label_values:
cond = (label_values >= label_values_min) & (
label_values <= label_values_max
)
label_values = label_values[cond]
# Get the corresponding values by creating a linear interpolant
# with small step size:
values_interp = np.linspace(values.min(), values.max(), 256)
label_values_interp = func(values_interp)
ix = np.argsort(label_values_interp)
values = np.interp(label_values, label_values_interp[ix], values_interp[ix])
elif num is not None and not label_values_are_numeric:
# Labels are not numerical so modifying label_values is not
# possible, instead filter the array with nicely distributed
# indexes:
if type(num) is int:
loc = mpl.ticker.LinearLocator(num)
else:
raise ValueError("`num` only supports integers for non-numeric labels.")
ind = loc.tick_values(0, len(label_values) - 1).astype(int)
label_values = label_values[ind]
values = values[ind]
# Some formatters requires set_locs:
if hasattr(fmt, "set_locs"):
fmt.set_locs(label_values)
# Default settings for handles, add or override with kwargs:
kw = dict(markeredgewidth=self.get_linewidths()[0], alpha=self.get_alpha())
kw.update(kwargs)
for val, lab in zip(values, label_values, strict=True):
color, size = _get_color_and_size(val)
if isinstance(self, mpl.collections.PathCollection):
kw.update(linestyle="", marker=self.get_paths()[0], markersize=size)
elif isinstance(self, mpl.collections.LineCollection):
kw.update(linestyle=self.get_linestyle()[0], linewidth=size)
h = mlines.Line2D([0], [0], color=color, **kw)
handles.append(h)
labels.append(fmt(lab))
return handles, labels
def _legend_add_subtitle(handles, labels, text):
"""Add a subtitle to legend handles."""
import matplotlib.pyplot as plt
if text and len(handles) > 1:
# Create a blank handle that's not visible, the
# invisibility will be used to discern which are subtitles
# or not:
blank_handle = plt.Line2D([], [], label=text)
blank_handle.set_visible(False)
# Subtitles are shown first:
handles = [blank_handle] + handles
labels = [text] + labels
return handles, labels
def _adjust_legend_subtitles(legend):
"""Make invisible-handle "subtitles" entries look more like titles."""
import matplotlib.pyplot as plt
# Legend title not in rcParams until 3.0
font_size = plt.rcParams.get("legend.title_fontsize", None)
hpackers = legend.findobj(plt.matplotlib.offsetbox.VPacker)[0].get_children()
hpackers = [v for v in hpackers if isinstance(v, plt.matplotlib.offsetbox.HPacker)]
for hpack in hpackers:
areas = hpack.get_children()
if len(areas) < 2:
continue
draw_area, text_area = areas
handles = draw_area.get_children()
# Assume that all artists that are not visible are
# subtitles:
if not all(artist.get_visible() for artist in handles):
# Remove the dummy marker which will bring the text
# more to the center:
draw_area.set_width(0)
for text in text_area.get_children():
if font_size is not None:
# The sutbtitles should have the same font size
# as normal legend titles:
text.set_size(font_size)
def _infer_meta_data(ds, x, y, hue, hue_style, add_guide, funcname):
dvars = set(ds.variables.keys())
error_msg = f" must be one of ({', '.join(sorted(str(v) for v in dvars))})"
if x not in dvars:
raise ValueError(f"Expected 'x' {error_msg}. Received {x} instead.")
if y not in dvars:
raise ValueError(f"Expected 'y' {error_msg}. Received {y} instead.")
if hue is not None and hue not in dvars:
raise ValueError(f"Expected 'hue' {error_msg}. Received {hue} instead.")
if hue:
hue_is_numeric = _is_numeric(ds[hue].values)
if hue_style is None:
hue_style = "continuous" if hue_is_numeric else "discrete"
if not hue_is_numeric and (hue_style == "continuous"):
raise ValueError(
f"Cannot create a colorbar for a non numeric coordinate: {hue}"
)
if add_guide is None or add_guide is True:
add_colorbar = hue_style == "continuous"
add_legend = hue_style == "discrete"
else:
add_colorbar = False
add_legend = False
else:
if add_guide is True and funcname not in ("quiver", "streamplot"):
raise ValueError("Cannot set add_guide when hue is None.")
add_legend = False
add_colorbar = False
if (add_guide or add_guide is None) and funcname == "quiver":
add_quiverkey = True
if hue:
add_colorbar = True
if not hue_style:
hue_style = "continuous"
elif hue_style != "continuous":
raise ValueError(
"hue_style must be 'continuous' or None for .plot.quiver or "
".plot.streamplot"
)
else:
add_quiverkey = False
if (add_guide or add_guide is None) and funcname == "streamplot" and hue:
add_colorbar = True
if not hue_style:
hue_style = "continuous"
elif hue_style != "continuous":
raise ValueError(
"hue_style must be 'continuous' or None for .plot.quiver or "
".plot.streamplot"
)
if hue_style is not None and hue_style not in ["discrete", "continuous"]:
raise ValueError("hue_style must be either None, 'discrete' or 'continuous'.")
if hue:
hue_label = label_from_attrs(ds[hue])
hue = ds[hue]
else:
hue_label = None
hue = None
return {
"add_colorbar": add_colorbar,
"add_legend": add_legend,
"add_quiverkey": add_quiverkey,
"hue_label": hue_label,
"hue_style": hue_style,
"xlabel": label_from_attrs(ds[x]),
"ylabel": label_from_attrs(ds[y]),
"hue": hue,
}
@overload
def _parse_size(
data: None,
norm: tuple[float | None, float | None, bool] | Normalize | None,
) -> None: ...
@overload
def _parse_size(
data: DataArray,
norm: tuple[float | None, float | None, bool] | Normalize | None,
) -> pd.Series: ...
# copied from seaborn
def _parse_size(
data: DataArray | None,
norm: tuple[float | None, float | None, bool] | Normalize | None,
) -> pd.Series | None:
import matplotlib as mpl
if data is None:
return None
flatdata = data.values.flatten()
if not _is_numeric(flatdata):
levels = np.unique(flatdata)
numbers = np.arange(1, 1 + len(levels))[::-1]
else:
levels = numbers = np.sort(np.unique(flatdata))
min_width, default_width, max_width = _MARKERSIZE_RANGE
# width_range = min_width, max_width
if norm is None:
norm = mpl.colors.Normalize()
elif isinstance(norm, tuple):
norm = mpl.colors.Normalize(*norm)
elif not isinstance(norm, mpl.colors.Normalize):
err = "``size_norm`` must be None, tuple, or Normalize object."
raise ValueError(err)
assert isinstance(norm, mpl.colors.Normalize)
norm.clip = True
if not norm.scaled():
norm(np.asarray(numbers))
# limits = norm.vmin, norm.vmax
scl = norm(numbers)
widths = np.asarray(min_width + scl * (max_width - min_width))
if scl.mask.any():
widths[scl.mask] = 0
sizes = dict(zip(levels, widths, strict=True))
return pd.Series(sizes)
class _Normalize(Sequence):
"""
Normalize numerical or categorical values to numerical values.
The class includes helper methods that simplifies transforming to
and from normalized values.
Parameters
----------
data : DataArray
DataArray to normalize.
width : Sequence of three numbers, optional
Normalize the data to these (min, default, max) values.
The default is None.
"""
_data: DataArray | None
_data_unique: np.ndarray
_data_unique_index: np.ndarray
_data_unique_inverse: np.ndarray
_data_is_numeric: bool
_width: tuple[float, float, float] | None
__slots__ = (
"_data",
"_data_is_numeric",
"_data_unique",
"_data_unique_index",
"_data_unique_inverse",
"_width",
)
def __init__(
self,
data: DataArray | None,
width: tuple[float, float, float] | None = None,
_is_facetgrid: bool = False,
) -> None:
self._data = data
self._width = width if not _is_facetgrid else None
pint_array_type = DuckArrayModule("pint").type
to_unique = (
data.to_numpy() # type: ignore[union-attr]
if isinstance(data if data is None else data.data, pint_array_type)
else data
)
data_unique, data_unique_inverse = np.unique(to_unique, return_inverse=True) # type: ignore[call-overload]
self._data_unique = data_unique
self._data_unique_index = np.arange(0, data_unique.size)
self._data_unique_inverse = data_unique_inverse
self._data_is_numeric = False if data is None else _is_numeric(data)
def __repr__(self) -> str:
with np.printoptions(precision=4, suppress=True, threshold=5):
return (
f"<_Normalize(data, width={self._width})>\n"
f"{self._data_unique} -> {self._values_unique}"
)
def __len__(self) -> int:
return len(self._data_unique)
def __getitem__(self, key):
return self._data_unique[key]
@property
def data(self) -> DataArray | None:
return self._data
@property
def data_is_numeric(self) -> bool:
"""
Check if data is numeric.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).data_is_numeric
False
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> _Normalize(a).data_is_numeric
True
>>> # TODO: Datetime should be numeric right?
>>> a = xr.DataArray(pd.date_range("2000-1-1", periods=4))
>>> _Normalize(a).data_is_numeric
False
# TODO: Timedelta should be numeric right?
>>> a = xr.DataArray(pd.timedelta_range("-1D", periods=4, freq="D"))
>>> _Normalize(a).data_is_numeric
True
"""
return self._data_is_numeric
@overload
def _calc_widths(self, y: np.ndarray) -> np.ndarray: ...
@overload
def _calc_widths(self, y: DataArray) -> DataArray: ...
def _calc_widths(self, y: np.ndarray | DataArray) -> np.ndarray | DataArray:
"""
Normalize the values so they're in between self._width.
"""
if self._width is None:
return y
xmin, xdefault, xmax = self._width
diff_maxy_miny = np.max(y) - np.min(y)
if diff_maxy_miny == 0:
# Use default with if y is constant:
widths = xdefault + 0 * y
else:
# Normalize in between xmin and xmax:
k = (y - np.min(y)) / diff_maxy_miny
widths = xmin + k * (xmax - xmin)
return widths
@overload
def _indexes_centered(self, x: np.ndarray) -> np.ndarray: ...
@overload
def _indexes_centered(self, x: DataArray) -> DataArray: ...
def _indexes_centered(self, x: np.ndarray | DataArray) -> np.ndarray | DataArray:
"""
Offset indexes to make sure being in the center of self.levels.
["a", "b", "c"] -> [1, 3, 5]
"""
return x * 2 + 1
@property
def values(self) -> DataArray | None:
"""
Return a normalized number array for the unique levels.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).values
<xarray.DataArray (dim_0: 5)> Size: 40B
array([3, 1, 1, 3, 5])
Dimensions without coordinates: dim_0
>>> _Normalize(a, width=(18, 36, 72)).values
<xarray.DataArray (dim_0: 5)> Size: 40B
array([45., 18., 18., 45., 72.])
Dimensions without coordinates: dim_0
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> _Normalize(a).values
<xarray.DataArray (dim_0: 6)> Size: 48B
array([0.5, 0. , 0. , 0.5, 2. , 3. ])
Dimensions without coordinates: dim_0
>>> _Normalize(a, width=(18, 36, 72)).values
<xarray.DataArray (dim_0: 6)> Size: 48B
array([27., 18., 18., 27., 54., 72.])
Dimensions without coordinates: dim_0
>>> _Normalize(a * 0, width=(18, 36, 72)).values
<xarray.DataArray (dim_0: 6)> Size: 48B
array([36., 36., 36., 36., 36., 36.])
Dimensions without coordinates: dim_0
"""
if self.data is None:
return None
val: DataArray
if self.data_is_numeric:
val = self.data
else:
arr = self._indexes_centered(self._data_unique_inverse)
val = self.data.copy(data=arr.reshape(self.data.shape))
return self._calc_widths(val)
@property
def _values_unique(self) -> np.ndarray | None:
"""
Return unique values.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a)._values_unique
array([1, 3, 5])
>>> _Normalize(a, width=(18, 36, 72))._values_unique
array([18., 45., 72.])
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> _Normalize(a)._values_unique
array([0. , 0.5, 2. , 3. ])
>>> _Normalize(a, width=(18, 36, 72))._values_unique
array([18., 27., 54., 72.])
"""
if self.data is None:
return None
val: np.ndarray
if self.data_is_numeric:
val = self._data_unique
else:
val = self._indexes_centered(self._data_unique_index)
return self._calc_widths(val)
@property
def ticks(self) -> np.ndarray | None:
"""
Return ticks for plt.colorbar if the data is not numeric.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).ticks
array([1, 3, 5])
"""
val: np.ndarray | None
if self.data_is_numeric:
val = None
else:
val = self._indexes_centered(self._data_unique_index)
return val
@property
def levels(self) -> np.ndarray:
"""
Return discrete levels that will evenly bound self.values.
["a", "b", "c"] -> [0, 2, 4, 6]
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).levels
array([0, 2, 4, 6])
"""
return (
np.append(self._data_unique_index, np.max(self._data_unique_index) + 1) * 2
)
@property
def _lookup(self) -> pd.Series:
if self._values_unique is None:
raise ValueError("self.data can't be None.")
return pd.Series(dict(zip(self._values_unique, self._data_unique, strict=True)))
def _lookup_arr(self, x) -> np.ndarray:
# Use reindex to be less sensitive to float errors. reindex only
# works with sorted index.
# Return as numpy array since legend_elements
# seems to require that:
return self._lookup.sort_index().reindex(x, method="nearest").to_numpy()
@property
def format(self) -> FuncFormatter:
"""
Return a FuncFormatter that maps self.values elements back to
the original value as a string. Useful with plt.colorbar.
Examples
--------
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> aa = _Normalize(a, width=(0, 0.5, 1))
>>> aa._lookup
0.000000 0.0
0.166667 0.5
0.666667 2.0
1.000000 3.0
dtype: float64
>>> aa.format(1)
'3.0'
"""
import matplotlib.pyplot as plt
def _func(x: Any, pos: Any | None = None):
return f"{self._lookup_arr([x])[0]}"
return plt.FuncFormatter(_func)
@property
def func(self) -> Callable[[Any, Any | None], Any]:
"""
Return a lambda function that maps self.values elements back to
the original value as a numpy array. Useful with ax.legend_elements.
Examples
--------
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> aa = _Normalize(a, width=(0, 0.5, 1))
>>> aa._lookup
0.000000 0.0
0.166667 0.5
0.666667 2.0
1.000000 3.0
dtype: float64
>>> aa.func([0.16, 1])
array([0.5, 3. ])
"""
def _func(x: Any, pos: Any | None = None):
return self._lookup_arr(x)
return _func
def _determine_guide(
hueplt_norm: _Normalize,
sizeplt_norm: _Normalize,
add_colorbar: bool | None = None,
add_legend: bool | None = None,
plotfunc_name: str | None = None,
) -> tuple[bool, bool]:
if plotfunc_name == "hist":
return False, False
if (add_colorbar) and hueplt_norm.data is None:
raise KeyError("Cannot create a colorbar when hue is None.")
if add_colorbar is None:
if hueplt_norm.data is not None:
add_colorbar = True
else:
add_colorbar = False
if add_legend and hueplt_norm.data is None and sizeplt_norm.data is None:
raise KeyError("Cannot create a legend when hue and markersize is None.")
if add_legend is None:
if (
not add_colorbar
and (hueplt_norm.data is not None and hueplt_norm.data_is_numeric is False)
) or sizeplt_norm.data is not None:
add_legend = True
else:
add_legend = False
return add_colorbar, add_legend
def _add_legend(
hueplt_norm: _Normalize,
sizeplt_norm: _Normalize,
primitive,
legend_ax,
plotfunc: str,
):
primitive = primitive if isinstance(primitive, list) else [primitive]
handles, labels = [], []
for huesizeplt, prop in [
(hueplt_norm, "colors"),
(sizeplt_norm, "sizes"),
]:
if huesizeplt.data is not None:
# Get legend handles and labels that displays the
# values correctly. Order might be different because
# legend_elements uses np.unique instead of pd.unique,
# FacetGrid.add_legend might have troubles with this:
hdl, lbl = [], []
for p in primitive:
hdl_, lbl_ = legend_elements(p, prop, num="auto", func=huesizeplt.func)
hdl += hdl_
lbl += lbl_
# Only save unique values:
u, ind = np.unique(lbl, return_index=True)
ind = np.argsort(ind)
lbl = cast(list, u[ind].tolist())
hdl = cast(list, np.array(hdl)[ind].tolist())
# Add a subtitle:
hdl, lbl = _legend_add_subtitle(hdl, lbl, label_from_attrs(huesizeplt.data))
handles += hdl
labels += lbl
legend = legend_ax.legend(handles, labels, framealpha=0.5)
_adjust_legend_subtitles(legend)
return legend
def _guess_coords_to_plot(
darray: DataArray,
coords_to_plot: MutableMapping[str, Hashable | None],
kwargs: dict,
default_guess: tuple[str, ...] = ("x",),
# TODO: Can this be normalized, plt.cbook.normalize_kwargs?
ignore_guess_kwargs: tuple[tuple[str, ...], ...] = ((),),
) -> MutableMapping[str, Hashable]:
"""
Guess what coords to plot if some of the values in coords_to_plot are None which
happens when the user has not defined all available ways of visualizing
the data.
Parameters
----------
darray : DataArray
The DataArray to check for available coords.
coords_to_plot : MutableMapping[str, Hashable]
Coords defined by the user to plot.
kwargs : dict
Extra kwargs that will be sent to matplotlib.
default_guess : Iterable[str], optional
Default values and order to retrieve dims if values in dims_plot is
missing, default: ("x", "hue", "size").
ignore_guess_kwargs : tuple[tuple[str, ...], ...]
Matplotlib arguments to ignore.
Examples
--------
>>> ds = xr.tutorial.scatter_example_dataset(seed=42)
>>> # Only guess x by default:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": None},
... kwargs={},
... )
{'x': 'x', 'z': None, 'hue': None, 'size': None}
>>> # Guess all plot dims with other default values:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": None},
... kwargs={},
... default_guess=("x", "hue", "size"),
... ignore_guess_kwargs=((), ("c", "color"), ("s",)),
... )
{'x': 'x', 'z': None, 'hue': 'y', 'size': 'z'}
>>> # Don't guess ´size´, since the matplotlib kwarg ´s´ has been defined:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": None},
... kwargs={"s": 5},
... default_guess=("x", "hue", "size"),
... ignore_guess_kwargs=((), ("c", "color"), ("s",)),
... )
{'x': 'x', 'z': None, 'hue': 'y', 'size': None}
>>> # Prioritize ´size´ over ´s´:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": "x"},
... kwargs={"s": 5},
... default_guess=("x", "hue", "size"),
... ignore_guess_kwargs=((), ("c", "color"), ("s",)),
... )
{'x': 'y', 'z': None, 'hue': 'z', 'size': 'x'}
"""
coords_to_plot_exist = {k: v for k, v in coords_to_plot.items() if v is not None}
available_coords = tuple(
k for k in darray.coords.keys() if k not in coords_to_plot_exist.values()
)
# If dims_plot[k] isn't defined then fill with one of the available dims, unless
# one of related mpl kwargs has been used. This should have similar behaviour as
# * plt.plot(x, y) -> Multiple lines with different colors if y is 2d.
# * plt.plot(x, y, color="red") -> Multiple red lines if y is 2d.
for k, dim, ign_kws in zip(
default_guess, available_coords, ignore_guess_kwargs, strict=False
):
if coords_to_plot.get(k, None) is None and all(
kwargs.get(ign_kw) is None for ign_kw in ign_kws
):
coords_to_plot[k] = dim
for k, dim in coords_to_plot.items():
_assert_valid_xy(darray, dim, k)
return coords_to_plot
def _set_concise_date(ax: Axes, axis: Literal["x", "y", "z"] = "x") -> None:
"""
Use ConciseDateFormatter which is meant to improve the
strings chosen for the ticklabels, and to minimize the
strings used in those tick labels as much as possible.
https://matplotlib.org/stable/gallery/ticks/date_concise_formatter.html
Parameters
----------
ax : Axes
Figure axes.
axis : Literal["x", "y", "z"], optional
Which axis to make concise. The default is "x".
"""
import matplotlib.dates as mdates
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
_axis = getattr(ax, f"{axis}axis")
_axis.set_major_locator(locator)
_axis.set_major_formatter(formatter)
|