File: concat.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (878 lines) | stat: -rw-r--r-- 35,318 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
from __future__ import annotations

from collections.abc import Hashable, Iterable
from typing import TYPE_CHECKING, Any, Literal, Union, overload

import numpy as np
import pandas as pd

from xarray.core import dtypes, utils
from xarray.core.coordinates import Coordinates
from xarray.core.duck_array_ops import lazy_array_equiv
from xarray.core.indexes import Index, PandasIndex
from xarray.core.types import T_DataArray, T_Dataset, T_Variable
from xarray.core.utils import emit_user_level_warning
from xarray.core.variable import Variable
from xarray.core.variable import concat as concat_vars
from xarray.structure.alignment import align, reindex_variables
from xarray.structure.merge import (
    _VALID_COMPAT,
    collect_variables_and_indexes,
    merge_attrs,
    merge_collected,
)
from xarray.util.deprecation_helpers import (
    _COMPAT_CONCAT_DEFAULT,
    _COORDS_DEFAULT,
    _DATA_VARS_DEFAULT,
    _JOIN_DEFAULT,
    CombineKwargDefault,
)

if TYPE_CHECKING:
    from xarray.core.types import (
        CombineAttrsOptions,
        CompatOptions,
        ConcatOptions,
        JoinOptions,
    )

    T_DataVars = Union[ConcatOptions, Iterable[Hashable], None]


# TODO: replace dim: Any by 1D array_likes
@overload
def concat(
    objs: Iterable[T_Dataset],
    dim: Hashable | T_Variable | T_DataArray | pd.Index | Any,
    data_vars: T_DataVars | CombineKwargDefault = _DATA_VARS_DEFAULT,
    coords: ConcatOptions | Iterable[Hashable] | CombineKwargDefault = _COORDS_DEFAULT,
    compat: CompatOptions | CombineKwargDefault = _COMPAT_CONCAT_DEFAULT,
    positions: Iterable[Iterable[int]] | None = None,
    fill_value: object = dtypes.NA,
    join: JoinOptions | CombineKwargDefault = _JOIN_DEFAULT,
    combine_attrs: CombineAttrsOptions = "override",
    create_index_for_new_dim: bool = True,
) -> T_Dataset: ...


@overload
def concat(
    objs: Iterable[T_DataArray],
    dim: Hashable | T_Variable | T_DataArray | pd.Index | Any,
    data_vars: T_DataVars | CombineKwargDefault = _DATA_VARS_DEFAULT,
    coords: ConcatOptions | Iterable[Hashable] | CombineKwargDefault = _COORDS_DEFAULT,
    compat: CompatOptions | CombineKwargDefault = _COMPAT_CONCAT_DEFAULT,
    positions: Iterable[Iterable[int]] | None = None,
    fill_value: object = dtypes.NA,
    join: JoinOptions | CombineKwargDefault = _JOIN_DEFAULT,
    combine_attrs: CombineAttrsOptions = "override",
    create_index_for_new_dim: bool = True,
) -> T_DataArray: ...


def concat(
    objs,
    dim,
    data_vars: T_DataVars | CombineKwargDefault = _DATA_VARS_DEFAULT,
    coords: ConcatOptions | Iterable[Hashable] | CombineKwargDefault = _COORDS_DEFAULT,
    compat: CompatOptions | CombineKwargDefault = _COMPAT_CONCAT_DEFAULT,
    positions=None,
    fill_value=dtypes.NA,
    join: JoinOptions | CombineKwargDefault = _JOIN_DEFAULT,
    combine_attrs: CombineAttrsOptions = "override",
    create_index_for_new_dim: bool = True,
):
    """Concatenate xarray objects along a new or existing dimension.

    Parameters
    ----------
    objs : sequence of Dataset and DataArray
        xarray objects to concatenate together. Each object is expected to
        consist of variables and coordinates with matching shapes except for
        along the concatenated dimension.
    dim : Hashable or Variable or DataArray or pandas.Index
        Name of the dimension to concatenate along. This can either be a new
        dimension name, in which case it is added along axis=0, or an existing
        dimension name, in which case the location of the dimension is
        unchanged. If dimension is provided as a Variable, DataArray or Index, its name
        is used as the dimension to concatenate along and the values are added
        as a coordinate.
    data_vars : {"minimal", "different", "all", None} or list of Hashable, optional
        These data variables will be concatenated together:
          * "minimal": Only data variables in which the dimension already
            appears are included.
          * "different": Data variables which are not equal (ignoring
            attributes) across all datasets are also concatenated (as well as
            all for which dimension already appears). Beware: this option may
            load the data payload of data variables into memory if they are not
            already loaded.
          * "all": All data variables will be concatenated.
          * None: Means ``"all"`` if ``dim`` is not present in any of the ``objs``,
            and ``"minimal"`` if ``dim`` is present in any of ``objs``.
          * list of dims: The listed data variables will be concatenated, in
            addition to the "minimal" data variables.

        If objects are DataArrays, data_vars must be "all".
    coords : {"minimal", "different", "all"} or list of Hashable, optional
        These coordinate variables will be concatenated together:
          * "minimal": Only coordinates in which the dimension already appears
            are included. If concatenating over a dimension _not_
            present in any of the objects, then all data variables will
            be concatenated along that new dimension.
          * "different": Coordinates which are not equal (ignoring attributes)
            across all datasets are also concatenated (as well as all for which
            dimension already appears). Beware: this option may load the data
            payload of coordinate variables into memory if they are not already
            loaded.
          * "all": All coordinate variables will be concatenated, except
            those corresponding to other dimensions.
          * list of Hashable: The listed coordinate variables will be concatenated,
            in addition to the "minimal" coordinates.
    compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
        String indicating how to compare non-concatenated variables of the same name for
        potential conflicts. This is passed down to merge.

        - "broadcast_equals": all values must be equal when variables are
          broadcast against each other to ensure common dimensions.
        - "equals": all values and dimensions must be the same.
        - "identical": all values, dimensions and attributes must be the
          same.
        - "no_conflicts": only values which are not null in both datasets
          must be equal. The returned dataset then contains the combination
          of all non-null values.
        - "override": skip comparing and pick variable from first dataset
    positions : None or list of integer arrays, optional
        List of integer arrays which specifies the integer positions to which
        to assign each dataset along the concatenated dimension. If not
        supplied, objects are concatenated in the provided order.
    fill_value : scalar or dict-like, optional
        Value to use for newly missing values. If a dict-like, maps
        variable names to fill values. Use a data array's name to
        refer to its values.
    join : {"outer", "inner", "left", "right", "exact"}, optional
        String indicating how to combine differing indexes
        (excluding dim) in objects

        - "outer": use the union of object indexes
        - "inner": use the intersection of object indexes
        - "left": use indexes from the first object with each dimension
        - "right": use indexes from the last object with each dimension
        - "exact": instead of aligning, raise `ValueError` when indexes to be
          aligned are not equal
        - "override": if indexes are of same size, rewrite indexes to be
          those of the first object with that dimension. Indexes for the same
          dimension must have the same size in all objects.
    combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
                     "override"} or callable, default: "override"
        A callable or a string indicating how to combine attrs of the objects being
        merged:

        - "drop": empty attrs on returned Dataset.
        - "identical": all attrs must be the same on every object.
        - "no_conflicts": attrs from all objects are combined, any that have
          the same name must also have the same value.
        - "drop_conflicts": attrs from all objects are combined, any that have
          the same name but different values are dropped.
        - "override": skip comparing and copy attrs from the first dataset to
          the result.

        If a callable, it must expect a sequence of ``attrs`` dicts and a context object
        as its only parameters.
    create_index_for_new_dim : bool, default: True
        Whether to create a new ``PandasIndex`` object when the objects being concatenated contain scalar variables named ``dim``.

    Returns
    -------
    concatenated : type of objs

    See also
    --------
    merge

    Examples
    --------
    >>> da = xr.DataArray(
    ...     np.arange(6).reshape(2, 3), [("x", ["a", "b"]), ("y", [10, 20, 30])]
    ... )
    >>> da
    <xarray.DataArray (x: 2, y: 3)> Size: 48B
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
      * x        (x) <U1 8B 'a' 'b'
      * y        (y) int64 24B 10 20 30

    >>> xr.concat([da.isel(y=slice(0, 1)), da.isel(y=slice(1, None))], dim="y")
    <xarray.DataArray (x: 2, y: 3)> Size: 48B
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
      * x        (x) <U1 8B 'a' 'b'
      * y        (y) int64 24B 10 20 30

    >>> xr.concat([da.isel(x=0), da.isel(x=1)], "x", coords="minimal")
    <xarray.DataArray (x: 2, y: 3)> Size: 48B
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
      * x        (x) <U1 8B 'a' 'b'
      * y        (y) int64 24B 10 20 30

    >>> xr.concat([da.isel(x=0), da.isel(x=1)], "new_dim", coords="all")
    <xarray.DataArray (new_dim: 2, y: 3)> Size: 48B
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
        x        (new_dim) <U1 8B 'a' 'b'
      * y        (y) int64 24B 10 20 30
    Dimensions without coordinates: new_dim

    >>> xr.concat(
    ...     [da.isel(x=0), da.isel(x=1)],
    ...     pd.Index([-90, -100], name="new_dim"),
    ...     coords="all",
    ... )
    <xarray.DataArray (new_dim: 2, y: 3)> Size: 48B
    array([[0, 1, 2],
           [3, 4, 5]])
    Coordinates:
        x        (new_dim) <U1 8B 'a' 'b'
      * y        (y) int64 24B 10 20 30
      * new_dim  (new_dim) int64 16B -90 -100

    # Concatenate a scalar variable along a new dimension of the same name with and without creating a new index

    >>> ds = xr.Dataset(coords={"x": 0})
    >>> xr.concat([ds, ds], dim="x")
    <xarray.Dataset> Size: 16B
    Dimensions:  (x: 2)
    Coordinates:
      * x        (x) int64 16B 0 0
    Data variables:
        *empty*

    >>> xr.concat([ds, ds], dim="x").indexes
    Indexes:
        x        Index([0, 0], dtype='int64', name='x')

    >>> xr.concat([ds, ds], dim="x", create_index_for_new_dim=False).indexes
    Indexes:
        *empty*
    """
    # TODO: add ignore_index arguments copied from pandas.concat
    # TODO: support concatenating scalar coordinates even if the concatenated
    # dimension already exists
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    try:
        first_obj, objs = utils.peek_at(objs)
    except StopIteration as err:
        raise ValueError("must supply at least one object to concatenate") from err

    if not isinstance(compat, CombineKwargDefault) and compat not in set(
        _VALID_COMPAT
    ) - {"minimal"}:
        raise ValueError(
            f"compat={compat!r} invalid: must be 'broadcast_equals', 'equals', 'identical', 'no_conflicts' or 'override'"
        )

    if isinstance(first_obj, DataArray):
        return _dataarray_concat(
            objs,
            dim=dim,
            data_vars=data_vars,
            coords=coords,
            compat=compat,
            positions=positions,
            fill_value=fill_value,
            join=join,
            combine_attrs=combine_attrs,
            create_index_for_new_dim=create_index_for_new_dim,
        )
    elif isinstance(first_obj, Dataset):
        return _dataset_concat(
            objs,
            dim=dim,
            data_vars=data_vars,
            coords=coords,
            compat=compat,
            positions=positions,
            fill_value=fill_value,
            join=join,
            combine_attrs=combine_attrs,
            create_index_for_new_dim=create_index_for_new_dim,
        )
    else:
        raise TypeError(
            "can only concatenate xarray Dataset and DataArray "
            f"objects, got {type(first_obj)}"
        )


def _calc_concat_dim_index(
    dim_or_data: Hashable | Any,
) -> tuple[Hashable, PandasIndex | None]:
    """Infer the dimension name and 1d index / coordinate variable (if appropriate)
    for concatenating along the new dimension.

    """
    from xarray.core.dataarray import DataArray

    dim: Hashable | None

    if utils.hashable(dim_or_data):
        dim = dim_or_data
        index = None
    else:
        if not isinstance(dim_or_data, DataArray | Variable):
            dim = getattr(dim_or_data, "name", None)
            if dim is None:
                dim = "concat_dim"
        else:
            (dim,) = dim_or_data.dims
        coord_dtype = getattr(dim_or_data, "dtype", None)
        index = PandasIndex(dim_or_data, dim, coord_dtype=coord_dtype)

    return dim, index


def _calc_concat_over(
    datasets: list[T_Dataset],
    dim: Hashable,
    all_dims: set[Hashable],
    data_vars: T_DataVars | CombineKwargDefault,
    coords: ConcatOptions | Iterable[Hashable] | CombineKwargDefault,
    compat: CompatOptions | CombineKwargDefault,
) -> tuple[set[Hashable], dict[Hashable, bool], list[int], set[Hashable]]:
    """
    Determine which dataset variables need to be concatenated in the result,
    """
    # variables to be concatenated
    concat_over = set()
    # variables checked for equality
    equals: dict[Hashable, bool] = {}
    # skip merging these variables.
    #   if concatenating over a dimension 'x' that is associated with an index over 2 variables,
    #   'x' and 'y', then we assert join="equals" on `y` and don't need to merge it.
    #   that assertion happens in the align step prior to this function being called
    skip_merge: set[Hashable] = set()

    if dim in all_dims:
        concat_over_existing_dim = True
        concat_over.add(dim)
    else:
        concat_over_existing_dim = False

    if data_vars == "minimal" and coords == "minimal" and not concat_over_existing_dim:
        raise ValueError(
            "Cannot specify both data_vars='minimal' and coords='minimal' when "
            "concatenating over a new dimension."
        )

    if data_vars is None or (
        isinstance(data_vars, CombineKwargDefault) and data_vars._value is None
    ):
        data_vars = "minimal" if concat_over_existing_dim else "all"

    concat_dim_lengths = []
    for ds in datasets:
        if concat_over_existing_dim and dim not in ds.dims and dim in ds:
            ds = ds.set_coords(dim)
        concat_over.update(k for k, v in ds.variables.items() if dim in v.dims)
        for _, idx_vars in ds.xindexes.group_by_index():
            if any(dim in v.dims for v in idx_vars.values()):
                skip_merge.update(idx_vars.keys())
        concat_dim_lengths.append(ds.sizes.get(dim, 1))

    def process_subset_opt(
        opt: ConcatOptions | Iterable[Hashable] | CombineKwargDefault,
        subset: Literal["coords", "data_vars"],
    ) -> None:
        original = set(concat_over)
        compat_str = (
            compat._value if isinstance(compat, CombineKwargDefault) else compat
        )
        assert compat_str is not None
        if isinstance(opt, str | CombineKwargDefault):
            if opt == "different":
                if isinstance(compat, CombineKwargDefault) and compat != "override":
                    if not isinstance(opt, CombineKwargDefault):
                        emit_user_level_warning(
                            compat.warning_message(
                                "This change will result in the following ValueError: "
                                f"Cannot specify both {subset}='different' and compat='override'.",
                                recommend_set_options=False,
                            ),
                            FutureWarning,
                        )

                if compat == "override":
                    raise ValueError(
                        f"Cannot specify both {subset}='different' and compat='override'."
                        + (
                            compat.error_message()
                            if isinstance(compat, CombineKwargDefault)
                            else ""
                        )
                    )
                # all nonindexes that are not the same in each dataset
                for k in getattr(datasets[0], subset):
                    if k not in concat_over:
                        equal = None

                        variables = [
                            ds.variables[k] for ds in datasets if k in ds.variables
                        ]

                        if len(variables) == 1:
                            # coords="different" doesn't make sense when only one object
                            # contains a particular variable.
                            break
                        elif len(variables) != len(datasets) and opt == "different":
                            raise ValueError(
                                f"{k!r} not present in all datasets and coords='different'. "
                                f"Either add {k!r} to datasets where it is missing or "
                                "specify coords='minimal'."
                            )

                        # first check without comparing values i.e. no computes
                        for var in variables[1:]:
                            equal = getattr(variables[0], compat_str)(
                                var, equiv=lazy_array_equiv
                            )
                            if equal is not True:
                                # exit early if we know these are not equal or that
                                # equality cannot be determined i.e. one or all of
                                # the variables wraps a numpy array
                                break

                        if equal is False:
                            concat_over.add(k)

                        elif equal is None:
                            # Compare the variable of all datasets vs. the one
                            # of the first dataset. Perform the minimum amount of
                            # loads in order to avoid multiple loads from disk
                            # while keeping the RAM footprint low.
                            v_lhs = datasets[0].variables[k].load()
                            # We'll need to know later on if variables are equal.
                            computed = []
                            for ds_rhs in datasets[1:]:
                                v_rhs = ds_rhs.variables[k].compute()
                                computed.append(v_rhs)
                                if not getattr(v_lhs, compat_str)(v_rhs):
                                    concat_over.add(k)
                                    equals[k] = False
                                    # computed variables are not to be re-computed
                                    # again in the future
                                    for ds, v in zip(
                                        datasets[1:], computed, strict=False
                                    ):
                                        ds.variables[k].data = v.data
                                    break
                            else:
                                equal = True
                        if TYPE_CHECKING:
                            assert equal is not None
                        equals[k] = equal

            elif opt == "all":
                concat_over.update(
                    set().union(
                        *[set(getattr(d, subset)) - set(d.dims) for d in datasets]
                    )
                )
            elif opt == "minimal":
                pass
            else:
                raise ValueError(f"unexpected value for {subset}: {opt}")

            if (
                isinstance(opt, CombineKwargDefault)
                and opt._value is not None
                and original != concat_over
                and concat_over_existing_dim
            ):
                warnings.append(
                    opt.warning_message(
                        "This is likely to lead to different results when multiple datasets "
                        "have matching variables with overlapping values.",
                    )
                )
        else:
            valid_vars = tuple(getattr(datasets[0], subset))
            invalid_vars = [k for k in opt if k not in valid_vars]
            if invalid_vars:
                if subset == "coords":
                    raise ValueError(
                        f"the variables {invalid_vars} in coords are not "
                        f"found in the coordinates of the first dataset {valid_vars}"
                    )
                else:
                    # note: data_vars are not listed in the error message here,
                    # because there may be lots of them
                    raise ValueError(
                        f"the variables {invalid_vars} in data_vars are not "
                        f"found in the data variables of the first dataset"
                    )
            concat_over.update(opt)

    warnings: list[str] = []
    process_subset_opt(data_vars, "data_vars")
    process_subset_opt(coords, "coords")

    for warning in warnings:
        emit_user_level_warning(warning, FutureWarning)

    return concat_over, equals, concat_dim_lengths, skip_merge


# determine dimensional coordinate names and a dict mapping name to DataArray
def _parse_datasets(
    datasets: list[T_Dataset],
) -> tuple[
    set[Hashable],
    dict[Hashable, Variable],
    dict[Hashable, int],
    set[Hashable],
    set[Hashable],
    list[Hashable],
]:
    dims: set[Hashable] = set()
    all_coord_names: set[Hashable] = set()
    data_vars: set[Hashable] = set()  # list of data_vars
    dim_coords: dict[Hashable, Variable] = {}  # maps dim name to variable
    dims_sizes: dict[Hashable, int] = {}  # shared dimension sizes to expand variables
    variables_order: dict[Hashable, Variable] = {}  # variables in order of appearance

    for ds in datasets:
        dims_sizes.update(ds.sizes)
        all_coord_names.update(ds.coords)
        data_vars.update(ds.data_vars)
        variables_order.update(ds.variables)

        # preserves ordering of dimensions
        for dim in ds.dims:
            if dim in dims:
                continue

            if dim in ds.coords and dim not in dim_coords:
                dim_coords[dim] = ds.coords[dim].variable
        dims = dims | set(ds.dims)

    return (
        dims,
        dim_coords,
        dims_sizes,
        all_coord_names,
        data_vars,
        list(variables_order),
    )


def _dataset_concat(
    datasets: Iterable[T_Dataset],
    dim: str | T_Variable | T_DataArray | pd.Index,
    data_vars: T_DataVars | CombineKwargDefault,
    coords: ConcatOptions | Iterable[Hashable] | CombineKwargDefault,
    compat: CompatOptions | CombineKwargDefault,
    positions: Iterable[Iterable[int]] | None,
    fill_value: Any,
    join: JoinOptions | CombineKwargDefault,
    combine_attrs: CombineAttrsOptions,
    create_index_for_new_dim: bool,
) -> T_Dataset:
    """
    Concatenate a sequence of datasets along a new or existing dimension
    """
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    datasets = list(datasets)

    if not all(isinstance(dataset, Dataset) for dataset in datasets):
        raise TypeError(
            "The elements in the input list need to be either all 'Dataset's or all 'DataArray's"
        )

    if isinstance(dim, DataArray):
        dim_var = dim.variable
    elif isinstance(dim, Variable):
        dim_var = dim
    else:
        dim_var = None

    dim_name, index = _calc_concat_dim_index(dim)

    # Make sure we're working on a copy (we'll be loading variables)
    datasets = [ds.copy() for ds in datasets]
    datasets = list(
        align(
            *datasets, join=join, copy=False, exclude=[dim_name], fill_value=fill_value
        )
    )

    all_dims, dim_coords, dims_sizes, coord_names, data_names, vars_order = (
        _parse_datasets(datasets)
    )
    indexed_dim_names = set(dim_coords)

    both_data_and_coords = coord_names & data_names
    if both_data_and_coords:
        raise ValueError(
            f"{both_data_and_coords!r} is a coordinate in some datasets but not others."
        )
    # we don't want the concat dimension in the result dataset yet
    dim_coords.pop(dim_name, None)
    dims_sizes.pop(dim_name, None)

    # case where concat dimension is a coordinate or data_var but not a dimension
    if (
        dim_name in coord_names or dim_name in data_names
    ) and dim_name not in indexed_dim_names:
        datasets = [
            ds.expand_dims(dim_name, create_index_for_new_dim=create_index_for_new_dim)
            for ds in datasets
        ]
        all_dims.add(dim_name)
        # This isn't being used any more, but keeping it up to date
        # just in case we decide to use it later.
        indexed_dim_names.add(dim_name)

    # determine which variables to concatenate
    concat_over, equals, concat_dim_lengths, skip_merge = _calc_concat_over(
        datasets, dim_name, all_dims, data_vars, coords, compat
    )

    # determine which variables to merge, and then merge them according to compat
    variables_to_merge = (coord_names | data_names) - concat_over - skip_merge

    result_vars = {}
    result_indexes = {}

    if variables_to_merge:
        grouped = {
            k: v
            for k, v in collect_variables_and_indexes(datasets).items()
            if k in variables_to_merge
        }
        merged_vars, merged_indexes = merge_collected(
            grouped, compat=compat, equals=equals
        )
        result_vars.update(merged_vars)
        result_indexes.update(merged_indexes)

    result_vars.update(dim_coords)

    # assign attrs and encoding from first dataset
    result_attrs = merge_attrs([ds.attrs for ds in datasets], combine_attrs)
    result_encoding = datasets[0].encoding

    # check that global attributes are fixed across all datasets if necessary
    if compat == "identical":
        for ds in datasets[1:]:
            if not utils.dict_equiv(ds.attrs, result_attrs):
                raise ValueError("Dataset global attributes not equal.")

    # we've already verified everything is consistent; now, calculate
    # shared dimension sizes so we can expand the necessary variables
    def ensure_common_dims(vars, concat_dim_lengths):
        # ensure each variable with the given name shares the same
        # dimensions and the same shape for all of them except along the
        # concat dimension
        common_dims = tuple(utils.OrderedSet(d for v in vars for d in v.dims))
        if dim_name not in common_dims:
            common_dims = (dim_name,) + common_dims
        for var, dim_len in zip(vars, concat_dim_lengths, strict=True):
            if var.dims != common_dims:
                common_shape = tuple(dims_sizes.get(d, dim_len) for d in common_dims)
                var = var.set_dims(common_dims, common_shape)
            yield var

    # get the indexes to concatenate together, create a PandasIndex
    # for any scalar coordinate variable found with ``name`` matching ``dim``.
    # TODO: depreciate concat a mix of scalar and dimensional indexed coordinates?
    # TODO: (benbovy - explicit indexes): check index types and/or coordinates
    # of all datasets?
    def get_indexes(name):
        for ds in datasets:
            if name in ds._indexes:
                yield ds._indexes[name]
            elif name == dim_name:
                var = ds._variables[name]
                if not var.dims:
                    data = var.set_dims(dim_name).values
                    if create_index_for_new_dim:
                        yield PandasIndex(data, dim_name, coord_dtype=var.dtype)

    # create concatenation index, needed for later reindexing
    file_start_indexes = np.append(0, np.cumsum(concat_dim_lengths))
    concat_index = np.arange(file_start_indexes[-1])
    concat_index_size = concat_index.size
    variable_index_mask = np.ones(concat_index_size, dtype=bool)

    # stack up each variable and/or index to fill-out the dataset (in order)
    # n.b. this loop preserves variable order, needed for groupby.
    ndatasets = len(datasets)
    for name in vars_order:
        if name in concat_over and name not in result_indexes:
            variables = []
            # Initialize the mask to all True then set False if any name is missing in
            # the datasets:
            variable_index_mask.fill(True)
            var_concat_dim_length = []
            for i, ds in enumerate(datasets):
                if name in ds.variables:
                    variables.append(ds[name].variable)
                    var_concat_dim_length.append(concat_dim_lengths[i])
                else:
                    # raise if coordinate not in all datasets
                    if name in coord_names:
                        raise ValueError(
                            f"coordinate {name!r} not present in all datasets."
                        )

                    # Mask out the indexes without the name:
                    start = file_start_indexes[i]
                    end = file_start_indexes[i + 1]
                    variable_index_mask[slice(start, end)] = False

            variable_index = concat_index[variable_index_mask]
            vars = ensure_common_dims(variables, var_concat_dim_length)

            # Try to concatenate the indexes, concatenate the variables when no index
            # is found on all datasets.
            indexes: list[Index] = list(get_indexes(name))
            if indexes:
                if len(indexes) < ndatasets:
                    raise ValueError(
                        f"{name!r} must have either an index or no index in all datasets, "
                        f"found {len(indexes)}/{len(datasets)} datasets with an index."
                    )
                combined_idx = indexes[0].concat(indexes, dim_name, positions)
                if name in datasets[0]._indexes:
                    idx_vars = datasets[0].xindexes.get_all_coords(name)
                else:
                    # index created from a scalar coordinate
                    idx_vars = {name: datasets[0][name].variable}
                result_indexes.update(dict.fromkeys(idx_vars, combined_idx))
                combined_idx_vars = combined_idx.create_variables(idx_vars)
                for k, v in combined_idx_vars.items():
                    v.attrs = merge_attrs(
                        [ds.variables[k].attrs for ds in datasets],
                        combine_attrs=combine_attrs,
                    )
                    result_vars[k] = v
            else:
                combined_var = concat_vars(
                    vars, dim_name, positions, combine_attrs=combine_attrs
                )
                # reindex if variable is not present in all datasets
                if len(variable_index) < concat_index_size:
                    combined_var = reindex_variables(
                        variables={name: combined_var},
                        dim_pos_indexers={
                            dim_name: pd.Index(variable_index).get_indexer(concat_index)
                        },
                        fill_value=fill_value,
                    )[name]
                result_vars[name] = combined_var

        elif name in result_vars:
            # preserves original variable order
            result_vars[name] = result_vars.pop(name)

    absent_coord_names = coord_names - set(result_vars)
    if absent_coord_names:
        raise ValueError(
            f"Variables {absent_coord_names!r} are coordinates in some datasets but not others."
        )

    result_data_vars = {}
    coord_vars = {}
    for name, result_var in result_vars.items():
        if name in coord_names:
            coord_vars[name] = result_var
        else:
            result_data_vars[name] = result_var

    if index is not None:
        if dim_var is not None:
            index_vars = index.create_variables({dim_name: dim_var})
        else:
            index_vars = index.create_variables()

        coord_vars[dim_name] = index_vars[dim_name]
        result_indexes[dim_name] = index

    coords_obj = Coordinates(coord_vars, indexes=result_indexes)

    result = type(datasets[0])(result_data_vars, coords=coords_obj, attrs=result_attrs)
    result.encoding = result_encoding

    return result


def _dataarray_concat(
    arrays: Iterable[T_DataArray],
    dim: str | T_Variable | T_DataArray | pd.Index,
    data_vars: T_DataVars | CombineKwargDefault,
    coords: ConcatOptions | Iterable[Hashable] | CombineKwargDefault,
    compat: CompatOptions | CombineKwargDefault,
    positions: Iterable[Iterable[int]] | None,
    fill_value: object,
    join: JoinOptions | CombineKwargDefault,
    combine_attrs: CombineAttrsOptions,
    create_index_for_new_dim: bool,
) -> T_DataArray:
    from xarray.core.dataarray import DataArray

    arrays = list(arrays)

    if not all(isinstance(array, DataArray) for array in arrays):
        raise TypeError(
            "The elements in the input list need to be either all 'Dataset's or all 'DataArray's"
        )

    # Allow passing `all` or `None` even though we always use `data_vars='all'`
    # when passing off to `_dataset_concat`.
    if not isinstance(data_vars, CombineKwargDefault) and data_vars not in [
        "all",
        None,
    ]:
        raise ValueError(
            "data_vars is not a valid argument when concatenating DataArray objects"
        )

    datasets = []
    for n, arr in enumerate(arrays):
        if n == 0:
            name = arr.name
        elif name != arr.name:
            if compat == "identical":
                raise ValueError("array names not identical")
            else:
                arr = arr.rename(name)
        datasets.append(arr._to_temp_dataset())

    ds = _dataset_concat(
        datasets,
        dim=dim,
        data_vars="all",
        coords=coords,
        compat=compat,
        positions=positions,
        fill_value=fill_value,
        join=join,
        combine_attrs=combine_attrs,
        create_index_for_new_dim=create_index_for_new_dim,
    )

    merged_attrs = merge_attrs([da.attrs for da in arrays], combine_attrs)

    result = arrays[0]._from_temp_dataset(ds, name)
    result.attrs = merged_attrs

    return result