File: merge.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (1133 lines) | stat: -rw-r--r-- 41,542 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
from __future__ import annotations

from collections import defaultdict
from collections.abc import Hashable, Iterable, Mapping, Sequence
from collections.abc import Set as AbstractSet
from typing import TYPE_CHECKING, Any, NamedTuple, Union

import pandas as pd

from xarray.core import dtypes
from xarray.core.duck_array_ops import lazy_array_equiv
from xarray.core.indexes import (
    Index,
    create_default_index_implicit,
    filter_indexes_from_coords,
    indexes_equal,
)
from xarray.core.utils import (
    Frozen,
    compat_dict_union,
    dict_equiv,
    emit_user_level_warning,
    equivalent,
)
from xarray.core.variable import Variable, as_variable, calculate_dimensions
from xarray.structure.alignment import deep_align
from xarray.util.deprecation_helpers import (
    _COMPAT_DEFAULT,
    _JOIN_DEFAULT,
    CombineKwargDefault,
)

if TYPE_CHECKING:
    from xarray.core.coordinates import Coordinates
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset
    from xarray.core.types import (
        CombineAttrsOptions,
        CompatOptions,
        DataVars,
        JoinOptions,
    )

    DimsLike = Union[Hashable, Sequence[Hashable]]
    ArrayLike = Any
    VariableLike = Union[
        ArrayLike,
        tuple[DimsLike, ArrayLike],
        tuple[DimsLike, ArrayLike, Mapping],
        tuple[DimsLike, ArrayLike, Mapping, Mapping],
    ]
    XarrayValue = Union[DataArray, Variable, VariableLike]
    DatasetLike = Union[Dataset, Coordinates, Mapping[Any, XarrayValue]]
    CoercibleValue = Union[XarrayValue, pd.Series, pd.DataFrame]
    CoercibleMapping = Union[Dataset, Mapping[Any, CoercibleValue]]


PANDAS_TYPES = (pd.Series, pd.DataFrame)

_VALID_COMPAT = Frozen(
    {
        "identical": 0,
        "equals": 1,
        "broadcast_equals": 2,
        "minimal": 3,
        "no_conflicts": 4,
        "override": 5,
    }
)


class Context:
    """object carrying the information of a call"""

    def __init__(self, func):
        self.func = func


def broadcast_dimension_size(variables: list[Variable]) -> dict[Hashable, int]:
    """Extract dimension sizes from a dictionary of variables.

    Raises ValueError if any dimensions have different sizes.
    """
    dims: dict[Hashable, int] = {}
    for var in variables:
        for dim, size in zip(var.dims, var.shape, strict=True):
            if dim in dims and size != dims[dim]:
                raise ValueError(f"index {dim!r} not aligned")
            dims[dim] = size
    return dims


class MergeError(ValueError):
    """Error class for merge failures due to incompatible arguments."""

    # inherits from ValueError for backward compatibility
    # TODO: move this to an xarray.exceptions module?


def unique_variable(
    name: Hashable,
    variables: list[Variable],
    compat: CompatOptions | CombineKwargDefault = "broadcast_equals",
    equals: bool | None = None,
) -> tuple[bool | None, Variable]:
    """Return the unique variable from a list of variables or raise MergeError.

    Parameters
    ----------
    name : hashable
        Name for this variable.
    variables : list of Variable
        List of Variable objects, all of which go by the same name in different
        inputs.
    compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
        Type of equality check to use.
    equals : None or bool, optional
        corresponding to result of compat test

    Returns
    -------
    Variable to use in the result.

    Raises
    ------
    MergeError: if any of the variables are not equal.
    """
    out = variables[0]

    if len(variables) == 1 or compat == "override":
        return equals, out

    combine_method = None

    if compat == "minimal":
        compat = "broadcast_equals"

    if compat == "broadcast_equals":
        dim_lengths = broadcast_dimension_size(variables)
        out = out.set_dims(dim_lengths)

    if compat == "no_conflicts":
        combine_method = "fillna"

    # we return the lazy equals, so we can warn about behaviour changes
    lazy_equals = equals
    if equals is None:
        compat_str = (
            compat._value if isinstance(compat, CombineKwargDefault) else compat
        )
        assert compat_str is not None
        # first check without comparing values i.e. no computes
        for var in variables[1:]:
            equals = getattr(out, compat_str)(var, equiv=lazy_array_equiv)
            if equals is not True:
                break

        lazy_equals = equals
        if equals is None:
            # now compare values with minimum number of computes
            out = out.compute()
            for var in variables[1:]:
                equals = getattr(out, compat_str)(var)
                if not equals:
                    break

    if not equals:
        raise MergeError(
            f"conflicting values for variable {name!r} on objects to be combined. "
            "You can skip this check by specifying compat='override'."
        )

    if combine_method:
        for var in variables[1:]:
            out = getattr(out, combine_method)(var)

    return lazy_equals, out


def _assert_compat_valid(compat):
    if not isinstance(compat, CombineKwargDefault) and compat not in _VALID_COMPAT:
        raise ValueError(f"compat={compat!r} invalid: must be {set(_VALID_COMPAT)}")


MergeElement = tuple[Variable, Index | None]


def _assert_prioritized_valid(
    grouped: dict[Hashable, list[MergeElement]],
    prioritized: Mapping[Any, MergeElement],
) -> None:
    """Make sure that elements given in prioritized will not corrupt any
    index given in grouped.
    """
    prioritized_names = set(prioritized)
    grouped_by_index: dict[int, list[Hashable]] = defaultdict(list)
    indexes: dict[int, Index] = {}

    for name, elements_list in grouped.items():
        for _, index in elements_list:
            if index is not None:
                grouped_by_index[id(index)].append(name)
                indexes[id(index)] = index

    # An index may be corrupted when the set of its corresponding coordinate name(s)
    # partially overlaps the set of names given in prioritized
    for index_id, index_coord_names in grouped_by_index.items():
        index_names = set(index_coord_names)
        common_names = index_names & prioritized_names
        if common_names and len(common_names) != len(index_names):
            common_names_str = ", ".join(f"{k!r}" for k in common_names)
            index_names_str = ", ".join(f"{k!r}" for k in index_coord_names)
            raise ValueError(
                f"cannot set or update variable(s) {common_names_str}, which would corrupt "
                f"the following index built from coordinates {index_names_str}:\n"
                f"{indexes[index_id]!r}"
            )


def merge_collected(
    grouped: dict[Any, list[MergeElement]],
    prioritized: Mapping[Any, MergeElement] | None = None,
    compat: CompatOptions | CombineKwargDefault = "minimal",
    combine_attrs: CombineAttrsOptions = "override",
    equals: dict[Any, bool] | None = None,
) -> tuple[dict[Hashable, Variable], dict[Hashable, Index]]:
    """Merge dicts of variables, while resolving conflicts appropriately.

    Parameters
    ----------
    grouped : mapping
    prioritized : mapping
    compat : str
        Type of equality check to use when checking for conflicts.
    combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
                    "override"} or callable, default: "override"
        A callable or a string indicating how to combine attrs of the objects being
        merged:

        - "drop": empty attrs on returned Dataset.
        - "identical": all attrs must be the same on every object.
        - "no_conflicts": attrs from all objects are combined, any that have
          the same name must also have the same value.
        - "drop_conflicts": attrs from all objects are combined, any that have
          the same name but different values are dropped.
        - "override": skip comparing and copy attrs from the first dataset to
          the result.

        If a callable, it must expect a sequence of ``attrs`` dicts and a context object
        as its only parameters.
    equals : mapping, optional
        corresponding to result of compat test

    Returns
    -------
    Dict with keys taken by the union of keys on list_of_mappings,
    and Variable values corresponding to those that should be found on the
    merged result.
    """
    if prioritized is None:
        prioritized = {}
    if equals is None:
        equals = {}

    _assert_compat_valid(compat)
    _assert_prioritized_valid(grouped, prioritized)

    merged_vars: dict[Hashable, Variable] = {}
    merged_indexes: dict[Hashable, Index] = {}
    index_cmp_cache: dict[tuple[int, int], bool | None] = {}

    for name, elements_list in grouped.items():
        if name in prioritized:
            variable, index = prioritized[name]
            merged_vars[name] = variable
            if index is not None:
                merged_indexes[name] = index
        else:
            attrs: dict[Any, Any] = {}
            indexed_elements = [
                (variable, index)
                for variable, index in elements_list
                if index is not None
            ]
            if indexed_elements:
                # TODO(shoyer): consider adjusting this logic. Are we really
                # OK throwing away variable without an index in favor of
                # indexed variables, without even checking if values match?
                variable, index = indexed_elements[0]
                for other_var, other_index in indexed_elements[1:]:
                    if not indexes_equal(
                        index, other_index, variable, other_var, index_cmp_cache
                    ):
                        raise MergeError(
                            f"conflicting values/indexes on objects to be combined for coordinate {name!r}\n"
                            f"first index: {index!r}\nsecond index: {other_index!r}\n"
                            f"first variable: {variable!r}\nsecond variable: {other_var!r}\n"
                        )
                if compat == "identical":
                    for other_variable, _ in indexed_elements[1:]:
                        if not dict_equiv(variable.attrs, other_variable.attrs):
                            raise MergeError(
                                "conflicting attribute values on combined "
                                f"variable {name!r}:\nfirst value: {variable.attrs!r}\nsecond value: {other_variable.attrs!r}"
                            )
                attrs = merge_attrs(
                    [var.attrs for var, _ in indexed_elements],
                    combine_attrs=combine_attrs,
                )
                merged_vars[name] = variable
                merged_indexes[name] = index
            else:
                variables = [variable for variable, _ in elements_list]
                try:
                    equals_this_var, merged_vars[name] = unique_variable(
                        name, variables, compat, equals.get(name)
                    )
                    # This is very likely to result in false positives, but there is no way
                    # to tell if the output will change without computing.
                    if (
                        isinstance(compat, CombineKwargDefault)
                        and compat == "no_conflicts"
                        and len(variables) > 1
                        and not equals_this_var
                    ):
                        emit_user_level_warning(
                            compat.warning_message(
                                "This is likely to lead to different results when "
                                "combining overlapping variables with the same name.",
                            ),
                            FutureWarning,
                        )
                except MergeError:
                    if compat != "minimal":
                        # we need more than "minimal" compatibility (for which
                        # we drop conflicting coordinates)
                        raise

                if name in merged_vars:
                    attrs = merge_attrs(
                        [var.attrs for var in variables], combine_attrs=combine_attrs
                    )

            if name in merged_vars and (merged_vars[name].attrs or attrs):
                # Ensure that assigning attrs does not affect the original input variable.
                merged_vars[name] = merged_vars[name].copy(deep=False)
                merged_vars[name].attrs = attrs

    return merged_vars, merged_indexes


def collect_variables_and_indexes(
    list_of_mappings: Iterable[DatasetLike],
    indexes: Mapping[Any, Any] | None = None,
) -> dict[Hashable, list[MergeElement]]:
    """Collect variables and indexes from list of mappings of xarray objects.

    Mappings can be Dataset or Coordinates objects, in which case both
    variables and indexes are extracted from it.

    It can also have values of one of the following types:
    - an xarray.Variable
    - a tuple `(dims, data[, attrs[, encoding]])` that can be converted in
      an xarray.Variable
    - or an xarray.DataArray

    If a mapping of indexes is given, those indexes are assigned to all variables
    with a matching key/name. For dimension variables with no matching index, a
    default (pandas) index is assigned. DataArray indexes that don't match mapping
    keys are also extracted.

    """
    from xarray.core.coordinates import Coordinates
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    if indexes is None:
        indexes = {}

    grouped: dict[Hashable, list[MergeElement]] = defaultdict(list)

    def append(name, variable, index):
        grouped[name].append((variable, index))

    def append_all(variables, indexes):
        for name, variable in variables.items():
            append(name, variable, indexes.get(name))

    for mapping in list_of_mappings:
        if isinstance(mapping, Coordinates | Dataset):
            append_all(mapping.variables, mapping.xindexes)
            continue

        for name, variable in mapping.items():
            if isinstance(variable, DataArray):
                coords_ = variable._coords.copy()  # use private API for speed
                indexes_ = dict(variable._indexes)
                # explicitly overwritten variables should take precedence
                coords_.pop(name, None)
                indexes_.pop(name, None)
                append_all(coords_, indexes_)

            variable = as_variable(variable, name=name, auto_convert=False)
            if name in indexes:
                append(name, variable, indexes[name])
            elif variable.dims == (name,):
                idx, idx_vars = create_default_index_implicit(variable)
                append_all(idx_vars, dict.fromkeys(idx_vars, idx))
            else:
                append(name, variable, None)

    return grouped


def collect_from_coordinates(
    list_of_coords: list[Coordinates],
) -> dict[Hashable, list[MergeElement]]:
    """Collect variables and indexes to be merged from Coordinate objects."""
    grouped: dict[Hashable, list[MergeElement]] = defaultdict(list)

    for coords in list_of_coords:
        variables = coords.variables
        indexes = coords.xindexes
        for name, variable in variables.items():
            grouped[name].append((variable, indexes.get(name)))

    return grouped


def merge_coordinates_without_align(
    objects: list[Coordinates],
    prioritized: Mapping[Any, MergeElement] | None = None,
    exclude_dims: AbstractSet = frozenset(),
    combine_attrs: CombineAttrsOptions = "override",
) -> tuple[dict[Hashable, Variable], dict[Hashable, Index]]:
    """Merge variables/indexes from coordinates without automatic alignments.

    This function is used for merging coordinate from pre-existing xarray
    objects.
    """
    collected = collect_from_coordinates(objects)

    if exclude_dims:
        filtered: dict[Hashable, list[MergeElement]] = {}
        for name, elements in collected.items():
            new_elements = [
                (variable, index)
                for variable, index in elements
                if exclude_dims.isdisjoint(variable.dims)
            ]
            if new_elements:
                filtered[name] = new_elements
    else:
        filtered = collected

    # TODO: indexes should probably be filtered in collected elements
    # before merging them
    merged_coords, merged_indexes = merge_collected(
        filtered, prioritized, combine_attrs=combine_attrs
    )
    merged_indexes = filter_indexes_from_coords(merged_indexes, set(merged_coords))

    return merged_coords, merged_indexes


def determine_coords(
    list_of_mappings: Iterable[DatasetLike],
) -> tuple[set[Hashable], set[Hashable]]:
    """Given a list of dicts with xarray object values, identify coordinates.

    Parameters
    ----------
    list_of_mappings : list of dict or list of Dataset
        Of the same form as the arguments to expand_variable_dicts.

    Returns
    -------
    coord_names : set of variable names
    noncoord_names : set of variable names
        All variable found in the input should appear in either the set of
        coordinate or non-coordinate names.
    """
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    coord_names: set[Hashable] = set()
    noncoord_names: set[Hashable] = set()

    for mapping in list_of_mappings:
        if isinstance(mapping, Dataset):
            coord_names.update(mapping.coords)
            noncoord_names.update(mapping.data_vars)
        else:
            for name, var in mapping.items():
                if isinstance(var, DataArray):
                    coords = set(var._coords)  # use private API for speed
                    # explicitly overwritten variables should take precedence
                    coords.discard(name)
                    coord_names.update(coords)

    return coord_names, noncoord_names


def coerce_pandas_values(objects: Iterable[CoercibleMapping]) -> list[DatasetLike]:
    """Convert pandas values found in a list of labeled objects.

    Parameters
    ----------
    objects : list of Dataset or mapping
        The mappings may contain any sort of objects coercible to
        xarray.Variables as keys, including pandas objects.

    Returns
    -------
    List of Dataset or dictionary objects. Any inputs or values in the inputs
    that were pandas objects have been converted into native xarray objects.
    """
    from xarray.core.coordinates import Coordinates
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    out: list[DatasetLike] = []
    for obj in objects:
        variables: DatasetLike
        if isinstance(obj, Dataset | Coordinates):
            variables = obj
        else:
            variables = {}
            if isinstance(obj, PANDAS_TYPES):
                obj = dict(obj.items())
            for k, v in obj.items():
                if isinstance(v, PANDAS_TYPES):
                    v = DataArray(v)
                variables[k] = v
        out.append(variables)
    return out


def _get_priority_vars_and_indexes(
    objects: Sequence[DatasetLike],
    priority_arg: int | None,
    compat: CompatOptions | CombineKwargDefault = "equals",
) -> dict[Hashable, MergeElement]:
    """Extract the priority variable from a list of mappings.

    We need this method because in some cases the priority argument itself
    might have conflicting values (e.g., if it is a dict with two DataArray
    values with conflicting coordinate values).

    Parameters
    ----------
    objects : sequence of dict-like of Variable
        Dictionaries in which to find the priority variables.
    priority_arg : int or None
        Integer object whose variable should take priority.
    compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
        String indicating how to compare non-concatenated variables of the same name for
        potential conflicts. This is passed down to merge.

        - "broadcast_equals": all values must be equal when variables are
          broadcast against each other to ensure common dimensions.
        - "equals": all values and dimensions must be the same.
        - "identical": all values, dimensions and attributes must be the
          same.
        - "no_conflicts": only values which are not null in both datasets
          must be equal. The returned dataset then contains the combination
          of all non-null values.
        - "override": skip comparing and pick variable from first dataset

    Returns
    -------
    A dictionary of variables and associated indexes (if any) to prioritize.
    """
    if priority_arg is None:
        return {}

    collected = collect_variables_and_indexes([objects[priority_arg]])
    variables, indexes = merge_collected(collected, compat=compat)
    grouped: dict[Hashable, MergeElement] = {}
    for name, variable in variables.items():
        grouped[name] = (variable, indexes.get(name))
    return grouped


def merge_coords(
    objects: Iterable[CoercibleMapping],
    compat: CompatOptions = "minimal",
    join: JoinOptions = "outer",
    priority_arg: int | None = None,
    indexes: Mapping[Any, Index] | None = None,
    fill_value: object = dtypes.NA,
) -> tuple[dict[Hashable, Variable], dict[Hashable, Index]]:
    """Merge coordinate variables.

    See merge_core below for argument descriptions. This works similarly to
    merge_core, except everything we don't worry about whether variables are
    coordinates or not.
    """
    _assert_compat_valid(compat)
    coerced = coerce_pandas_values(objects)
    aligned = deep_align(
        coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value
    )
    collected = collect_variables_and_indexes(aligned, indexes=indexes)
    prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)
    variables, out_indexes = merge_collected(collected, prioritized, compat=compat)
    return variables, out_indexes


def merge_attrs(variable_attrs, combine_attrs, context=None):
    """Combine attributes from different variables according to combine_attrs"""
    if not variable_attrs:
        # no attributes to merge
        return None

    if callable(combine_attrs):
        return combine_attrs(variable_attrs, context=context)
    elif combine_attrs == "drop":
        return {}
    elif combine_attrs == "override":
        return dict(variable_attrs[0])
    elif combine_attrs == "no_conflicts":
        result = dict(variable_attrs[0])
        for attrs in variable_attrs[1:]:
            try:
                result = compat_dict_union(result, attrs)
            except ValueError as e:
                raise MergeError(
                    "combine_attrs='no_conflicts', but some values are not "
                    f"the same. Merging {result} with {attrs}"
                ) from e
        return result
    elif combine_attrs == "drop_conflicts":
        result = {}
        dropped_keys = set()
        for attrs in variable_attrs:
            result.update(
                {
                    key: value
                    for key, value in attrs.items()
                    if key not in result and key not in dropped_keys
                }
            )
            result = {
                key: value
                for key, value in result.items()
                if key not in attrs or equivalent(attrs[key], value)
            }
            dropped_keys |= {key for key in attrs if key not in result}
        return result
    elif combine_attrs == "identical":
        result = dict(variable_attrs[0])
        for attrs in variable_attrs[1:]:
            if not dict_equiv(result, attrs):
                raise MergeError(
                    f"combine_attrs='identical', but attrs differ. First is {result} "
                    f", other is {attrs}."
                )
        return result
    else:
        raise ValueError(f"Unrecognised value for combine_attrs={combine_attrs}")


class _MergeResult(NamedTuple):
    variables: dict[Hashable, Variable]
    coord_names: set[Hashable]
    dims: dict[Hashable, int]
    indexes: dict[Hashable, Index]
    attrs: dict[Hashable, Any]


def merge_core(
    objects: Iterable[CoercibleMapping],
    compat: CompatOptions | CombineKwargDefault,
    join: JoinOptions | CombineKwargDefault,
    combine_attrs: CombineAttrsOptions = "override",
    priority_arg: int | None = None,
    explicit_coords: Iterable[Hashable] | None = None,
    indexes: Mapping[Any, Any] | None = None,
    fill_value: object = dtypes.NA,
    skip_align_args: list[int] | None = None,
) -> _MergeResult:
    """Core logic for merging labeled objects.

    This is not public API.

    Parameters
    ----------
    objects : list of mapping
        All values must be convertible to labeled arrays.
    compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
        Compatibility checks to use when merging variables.
    join : {"outer", "inner", "left", "right"}, optional
        How to combine objects with different indexes.
    combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
                     "override"} or callable, default: "override"
        How to combine attributes of objects
    priority_arg : int, optional
        Optional argument in `objects` that takes precedence over the others.
    explicit_coords : set, optional
        An explicit list of variables from `objects` that are coordinates.
    indexes : dict, optional
        Dictionary with values given by xarray.Index objects or anything that
        may be cast to pandas.Index objects.
    fill_value : scalar, optional
        Value to use for newly missing values
    skip_align_args : list of int, optional
        Optional arguments in `objects` that are not included in alignment.

    Returns
    -------
    variables : dict
        Dictionary of Variable objects.
    coord_names : set
        Set of coordinate names.
    dims : dict
        Dictionary mapping from dimension names to sizes.
    attrs : dict
        Dictionary of attributes
    """
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    _assert_compat_valid(compat)

    objects = list(objects)
    if skip_align_args is None:
        skip_align_args = []

    skip_align_objs = [(pos, objects.pop(pos)) for pos in skip_align_args]

    coerced = coerce_pandas_values(objects)
    aligned = deep_align(
        coerced,
        join=join,
        copy=False,
        indexes=indexes,
        fill_value=fill_value,
    )

    for pos, obj in skip_align_objs:
        aligned.insert(pos, obj)

    collected = collect_variables_and_indexes(aligned, indexes=indexes)
    prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat)
    variables, out_indexes = merge_collected(
        collected,
        prioritized,
        compat=compat,
        combine_attrs=combine_attrs,
    )

    dims = calculate_dimensions(variables)

    coord_names, noncoord_names = determine_coords(coerced)
    if compat == "minimal":
        # coordinates may be dropped in merged results
        coord_names.intersection_update(variables)
    if explicit_coords is not None:
        coord_names.update(explicit_coords)
    for dim in dims:
        if dim in variables:
            coord_names.add(dim)
    ambiguous_coords = coord_names.intersection(noncoord_names)
    if ambiguous_coords:
        raise MergeError(
            "unable to determine if these variables should be "
            f"coordinates or not in the merged result: {ambiguous_coords}"
        )

    attrs = merge_attrs(
        [var.attrs for var in coerced if isinstance(var, Dataset | DataArray)],
        combine_attrs,
    )

    return _MergeResult(variables, coord_names, dims, out_indexes, attrs)


def merge(
    objects: Iterable[DataArray | CoercibleMapping],
    compat: CompatOptions | CombineKwargDefault = _COMPAT_DEFAULT,
    join: JoinOptions | CombineKwargDefault = _JOIN_DEFAULT,
    fill_value: object = dtypes.NA,
    combine_attrs: CombineAttrsOptions = "override",
) -> Dataset:
    """Merge any number of xarray objects into a single Dataset as variables.

    Parameters
    ----------
    objects : iterable of Dataset or iterable of DataArray or iterable of dict-like
        Merge together all variables from these objects. If any of them are
        DataArray objects, they must have a name.
    compat : {"identical", "equals", "broadcast_equals", "no_conflicts", \
              "override", "minimal"}, default: "no_conflicts"
        String indicating how to compare variables of the same name for
        potential conflicts:

        - "identical": all values, dimensions and attributes must be the
          same.
        - "equals": all values and dimensions must be the same.
        - "broadcast_equals": all values must be equal when variables are
          broadcast against each other to ensure common dimensions.
        - "no_conflicts": only values which are not null in both datasets
          must be equal. The returned dataset then contains the combination
          of all non-null values.
        - "override": skip comparing and pick variable from first dataset
        - "minimal": drop conflicting coordinates

    join : {"outer", "inner", "left", "right", "exact", "override"}, default: "outer"
        String indicating how to combine differing indexes in objects.

        - "outer": use the union of object indexes
        - "inner": use the intersection of object indexes
        - "left": use indexes from the first object with each dimension
        - "right": use indexes from the last object with each dimension
        - "exact": instead of aligning, raise `ValueError` when indexes to be
          aligned are not equal
        - "override": if indexes are of same size, rewrite indexes to be
          those of the first object with that dimension. Indexes for the same
          dimension must have the same size in all objects.

    fill_value : scalar or dict-like, optional
        Value to use for newly missing values. If a dict-like, maps
        variable names to fill values. Use a data array's name to
        refer to its values.
    combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
                     "override"} or callable, default: "override"
        A callable or a string indicating how to combine attrs of the objects being
        merged:

        - "drop": empty attrs on returned Dataset.
        - "identical": all attrs must be the same on every object.
        - "no_conflicts": attrs from all objects are combined, any that have
          the same name must also have the same value.
        - "drop_conflicts": attrs from all objects are combined, any that have
          the same name but different values are dropped.
        - "override": skip comparing and copy attrs from the first dataset to
          the result.

        If a callable, it must expect a sequence of ``attrs`` dicts and a context object
        as its only parameters.

    Returns
    -------
    Dataset
        Dataset with combined variables from each object.

    Examples
    --------
    >>> x = xr.DataArray(
    ...     [[1.0, 2.0], [3.0, 5.0]],
    ...     dims=("lat", "lon"),
    ...     coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},
    ...     name="var1",
    ... )
    >>> y = xr.DataArray(
    ...     [[5.0, 6.0], [7.0, 8.0]],
    ...     dims=("lat", "lon"),
    ...     coords={"lat": [35.0, 42.0], "lon": [100.0, 150.0]},
    ...     name="var2",
    ... )
    >>> z = xr.DataArray(
    ...     [[0.0, 3.0], [4.0, 9.0]],
    ...     dims=("time", "lon"),
    ...     coords={"time": [30.0, 60.0], "lon": [100.0, 150.0]},
    ...     name="var3",
    ... )

    >>> x
    <xarray.DataArray 'var1' (lat: 2, lon: 2)> Size: 32B
    array([[1., 2.],
           [3., 5.]])
    Coordinates:
      * lat      (lat) float64 16B 35.0 40.0
      * lon      (lon) float64 16B 100.0 120.0

    >>> y
    <xarray.DataArray 'var2' (lat: 2, lon: 2)> Size: 32B
    array([[5., 6.],
           [7., 8.]])
    Coordinates:
      * lat      (lat) float64 16B 35.0 42.0
      * lon      (lon) float64 16B 100.0 150.0

    >>> z
    <xarray.DataArray 'var3' (time: 2, lon: 2)> Size: 32B
    array([[0., 3.],
           [4., 9.]])
    Coordinates:
      * time     (time) float64 16B 30.0 60.0
      * lon      (lon) float64 16B 100.0 150.0

    >>> xr.merge([x, y, z], join="outer")
    <xarray.Dataset> Size: 256B
    Dimensions:  (lat: 3, lon: 3, time: 2)
    Coordinates:
      * lat      (lat) float64 24B 35.0 40.0 42.0
      * lon      (lon) float64 24B 100.0 120.0 150.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
        var2     (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
        var3     (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0

    >>> xr.merge([x, y, z], compat="identical", join="outer")
    <xarray.Dataset> Size: 256B
    Dimensions:  (lat: 3, lon: 3, time: 2)
    Coordinates:
      * lat      (lat) float64 24B 35.0 40.0 42.0
      * lon      (lon) float64 24B 100.0 120.0 150.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
        var2     (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
        var3     (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0

    >>> xr.merge([x, y, z], compat="equals", join="outer")
    <xarray.Dataset> Size: 256B
    Dimensions:  (lat: 3, lon: 3, time: 2)
    Coordinates:
      * lat      (lat) float64 24B 35.0 40.0 42.0
      * lon      (lon) float64 24B 100.0 120.0 150.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
        var2     (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
        var3     (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0

    >>> xr.merge([x, y, z], compat="equals", join="outer", fill_value=-999.0)
    <xarray.Dataset> Size: 256B
    Dimensions:  (lat: 3, lon: 3, time: 2)
    Coordinates:
      * lat      (lat) float64 24B 35.0 40.0 42.0
      * lon      (lon) float64 24B 100.0 120.0 150.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 72B 1.0 2.0 -999.0 3.0 ... -999.0 -999.0 -999.0
        var2     (lat, lon) float64 72B 5.0 -999.0 6.0 -999.0 ... 7.0 -999.0 8.0
        var3     (time, lon) float64 48B 0.0 -999.0 3.0 4.0 -999.0 9.0

    >>> xr.merge([x, y, z], join="override")
    <xarray.Dataset> Size: 144B
    Dimensions:  (lat: 2, lon: 2, time: 2)
    Coordinates:
      * lat      (lat) float64 16B 35.0 40.0
      * lon      (lon) float64 16B 100.0 120.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 32B 1.0 2.0 3.0 5.0
        var2     (lat, lon) float64 32B 5.0 6.0 7.0 8.0
        var3     (time, lon) float64 32B 0.0 3.0 4.0 9.0

    >>> xr.merge([x, y, z], join="inner")
    <xarray.Dataset> Size: 64B
    Dimensions:  (lat: 1, lon: 1, time: 2)
    Coordinates:
      * lat      (lat) float64 8B 35.0
      * lon      (lon) float64 8B 100.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 8B 1.0
        var2     (lat, lon) float64 8B 5.0
        var3     (time, lon) float64 16B 0.0 4.0

    >>> xr.merge([x, y, z], compat="identical", join="inner")
    <xarray.Dataset> Size: 64B
    Dimensions:  (lat: 1, lon: 1, time: 2)
    Coordinates:
      * lat      (lat) float64 8B 35.0
      * lon      (lon) float64 8B 100.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 8B 1.0
        var2     (lat, lon) float64 8B 5.0
        var3     (time, lon) float64 16B 0.0 4.0

    >>> xr.merge([x, y, z], compat="broadcast_equals", join="outer")
    <xarray.Dataset> Size: 256B
    Dimensions:  (lat: 3, lon: 3, time: 2)
    Coordinates:
      * lat      (lat) float64 24B 35.0 40.0 42.0
      * lon      (lon) float64 24B 100.0 120.0 150.0
      * time     (time) float64 16B 30.0 60.0
    Data variables:
        var1     (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
        var2     (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
        var3     (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0

    >>> xr.merge([x, y, z], join="exact")
    Traceback (most recent call last):
    ...
    xarray.structure.alignment.AlignmentError: cannot align objects with join='exact' where ...

    Raises
    ------
    xarray.MergeError
        If any variables with the same name have conflicting values.

    See also
    --------
    concat
    combine_nested
    combine_by_coords
    """

    from xarray.core.coordinates import Coordinates
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    dict_like_objects = []
    for obj in objects:
        if not isinstance(obj, DataArray | Dataset | Coordinates | dict):
            raise TypeError(
                "objects must be an iterable containing only "
                "Dataset(s), DataArray(s), and dictionaries."
            )

        if isinstance(obj, DataArray):
            obj = obj.to_dataset(promote_attrs=True)
        elif isinstance(obj, Coordinates):
            obj = obj.to_dataset()
        dict_like_objects.append(obj)

    merge_result = merge_core(
        dict_like_objects,
        compat=compat,
        join=join,
        combine_attrs=combine_attrs,
        fill_value=fill_value,
    )
    return Dataset._construct_direct(**merge_result._asdict())


def dataset_merge_method(
    dataset: Dataset,
    other: CoercibleMapping,
    overwrite_vars: Hashable | Iterable[Hashable],
    compat: CompatOptions | CombineKwargDefault,
    join: JoinOptions | CombineKwargDefault,
    fill_value: Any,
    combine_attrs: CombineAttrsOptions,
) -> _MergeResult:
    """Guts of the Dataset.merge method."""
    # we are locked into supporting overwrite_vars for the Dataset.merge
    # method due for backwards compatibility
    # TODO: consider deprecating it?

    if not isinstance(overwrite_vars, str) and isinstance(overwrite_vars, Iterable):
        overwrite_vars = set(overwrite_vars)
    else:
        overwrite_vars = {overwrite_vars}

    if not overwrite_vars:
        objs = [dataset, other]
        priority_arg = None
    elif overwrite_vars == set(other):
        objs = [dataset, other]
        priority_arg = 1
    else:
        other_overwrite: dict[Hashable, CoercibleValue] = {}
        other_no_overwrite: dict[Hashable, CoercibleValue] = {}
        for k, v in other.items():
            if k in overwrite_vars:
                other_overwrite[k] = v
            else:
                other_no_overwrite[k] = v
        objs = [dataset, other_no_overwrite, other_overwrite]
        priority_arg = 2

    return merge_core(
        objs,
        compat=compat,
        join=join,
        priority_arg=priority_arg,
        fill_value=fill_value,
        combine_attrs=combine_attrs,
    )


def dataset_update_method(dataset: Dataset, other: CoercibleMapping) -> _MergeResult:
    """Guts of the Dataset.update method.

    This drops a duplicated coordinates from `other` if `other` is not an
    `xarray.Dataset`, e.g., if it's a dict with DataArray values (GH2068,
    GH2180).
    """
    from xarray.core.dataarray import DataArray
    from xarray.core.dataset import Dataset

    if not isinstance(other, Dataset):
        other = dict(other)
        for key, value in other.items():
            if isinstance(value, DataArray):
                # drop conflicting coordinates
                coord_names = [
                    c
                    for c in value.coords
                    if c not in value.dims and c in dataset.coords
                ]
                if coord_names:
                    other[key] = value.drop_vars(coord_names)

    return merge_core(
        [dataset, other],
        compat="broadcast_equals",
        join="outer",
        priority_arg=1,
        indexes=dataset.xindexes,
        combine_attrs="override",
    )


def merge_data_and_coords(data_vars: DataVars, coords) -> _MergeResult:
    """Used in Dataset.__init__."""
    from xarray.core.coordinates import Coordinates, create_coords_with_default_indexes

    if isinstance(coords, Coordinates):
        coords = coords.copy()
    else:
        coords = create_coords_with_default_indexes(coords, data_vars)

    # exclude coords from alignment (all variables in a Coordinates object should
    # already be aligned together) and use coordinates' indexes to align data_vars
    return merge_core(
        [data_vars, coords],
        compat="broadcast_equals",
        join="outer",
        combine_attrs="override",
        explicit_coords=tuple(coords),
        indexes=coords.xindexes,
        priority_arg=1,
        skip_align_args=[1],
    )