1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
"""Testing functions exposed to the user API"""
import functools
import warnings
from collections.abc import Hashable
import numpy as np
import pandas as pd
from xarray.core import duck_array_ops, formatting, utils
from xarray.core.coordinates import Coordinates
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
from xarray.core.datatree_mapping import map_over_datasets
from xarray.core.formatting import diff_datatree_repr
from xarray.core.indexes import Index, PandasIndex, PandasMultiIndex, default_indexes
from xarray.core.variable import IndexVariable, Variable
def ensure_warnings(func):
# sometimes tests elevate warnings to errors
# -> make sure that does not happen in the assert_* functions
@functools.wraps(func)
def wrapper(*args, **kwargs):
__tracebackhide__ = True
with warnings.catch_warnings():
# only remove filters that would "error"
warnings.filters = [f for f in warnings.filters if f[0] != "error"]
return func(*args, **kwargs)
return wrapper
def _decode_string_data(data):
if data.dtype.kind == "S":
return np.char.decode(data, "utf-8", "replace")
return data
def _data_allclose_or_equiv(arr1, arr2, rtol=1e-05, atol=1e-08, decode_bytes=True):
if any(arr.dtype.kind == "S" for arr in [arr1, arr2]) and decode_bytes:
arr1 = _decode_string_data(arr1)
arr2 = _decode_string_data(arr2)
exact_dtypes = ["M", "m", "O", "S", "U"]
if any(arr.dtype.kind in exact_dtypes for arr in [arr1, arr2]):
return duck_array_ops.array_equiv(arr1, arr2)
else:
return duck_array_ops.allclose_or_equiv(arr1, arr2, rtol=rtol, atol=atol)
@ensure_warnings
def assert_isomorphic(a: DataTree, b: DataTree):
"""
Two DataTrees are considered isomorphic if the set of paths to their
descendent nodes are the same.
Nothing about the data or attrs in each node is checked.
Isomorphism is a necessary condition for two trees to be used in a nodewise binary operation,
such as tree1 + tree2.
Parameters
----------
a : DataTree
The first object to compare.
b : DataTree
The second object to compare.
See Also
--------
DataTree.isomorphic
assert_equal
assert_identical
"""
__tracebackhide__ = True
assert isinstance(a, type(b))
if isinstance(a, DataTree):
assert a.isomorphic(b), diff_datatree_repr(a, b, "isomorphic")
else:
raise TypeError(f"{type(a)} not of type DataTree")
def maybe_transpose_dims(a, b, check_dim_order: bool):
"""Helper for assert_equal/allclose/identical"""
__tracebackhide__ = True
def _maybe_transpose_dims(a, b):
if not isinstance(a, Variable | DataArray | Dataset):
return b
if set(a.dims) == set(b.dims):
# Ensure transpose won't fail if a dimension is missing
# If this is the case, the difference will be caught by the caller
return b.transpose(*a.dims)
return b
if check_dim_order:
return b
if isinstance(a, DataTree):
return map_over_datasets(_maybe_transpose_dims, a, b)
return _maybe_transpose_dims(a, b)
@ensure_warnings
def assert_equal(a, b, check_dim_order: bool = True):
"""Like :py:func:`numpy.testing.assert_array_equal`, but for xarray
objects.
Raises an AssertionError if two objects are not equal. This will match
data values, dimensions and coordinates, but not names or attributes
(except for Dataset objects for which the variable names must match).
Arrays with NaN in the same location are considered equal.
For DataTree objects, assert_equal is mapped over all Datasets on each node,
with the DataTrees being equal if both are isomorphic and the corresponding
Datasets at each node are themselves equal.
Parameters
----------
a : xarray.Dataset, xarray.DataArray, xarray.Variable, xarray.Coordinates
or xarray.core.datatree.DataTree. The first object to compare.
b : xarray.Dataset, xarray.DataArray, xarray.Variable, xarray.Coordinates
or xarray.core.datatree.DataTree. The second object to compare.
check_dim_order : bool, optional, default is True
Whether dimensions must be in the same order.
See Also
--------
assert_identical, assert_allclose, Dataset.equals, DataArray.equals
numpy.testing.assert_array_equal
"""
__tracebackhide__ = True
assert type(a) is type(b) or (
isinstance(a, Coordinates) and isinstance(b, Coordinates)
)
b = maybe_transpose_dims(a, b, check_dim_order)
if isinstance(a, Variable | DataArray):
assert a.equals(b), formatting.diff_array_repr(a, b, "equals")
elif isinstance(a, Dataset):
assert a.equals(b), formatting.diff_dataset_repr(a, b, "equals")
elif isinstance(a, Coordinates):
assert a.equals(b), formatting.diff_coords_repr(a, b, "equals")
elif isinstance(a, DataTree):
assert a.equals(b), diff_datatree_repr(a, b, "equals")
else:
raise TypeError(f"{type(a)} not supported by assertion comparison")
@ensure_warnings
def assert_identical(a, b):
"""Like :py:func:`xarray.testing.assert_equal`, but also matches the
objects' names and attributes.
Raises an AssertionError if two objects are not identical.
For DataTree objects, assert_identical is mapped over all Datasets on each
node, with the DataTrees being identical if both are isomorphic and the
corresponding Datasets at each node are themselves identical.
Parameters
----------
a : xarray.Dataset, xarray.DataArray, xarray.Variable or xarray.Coordinates
The first object to compare.
b : xarray.Dataset, xarray.DataArray, xarray.Variable or xarray.Coordinates
The second object to compare.
See Also
--------
assert_equal, assert_allclose, Dataset.equals, DataArray.equals
"""
__tracebackhide__ = True
assert type(a) is type(b) or (
isinstance(a, Coordinates) and isinstance(b, Coordinates)
)
if isinstance(a, Variable):
assert a.identical(b), formatting.diff_array_repr(a, b, "identical")
elif isinstance(a, DataArray):
assert a.name == b.name, (
f"DataArray names are different. L: {a.name}, R: {b.name}"
)
assert a.identical(b), formatting.diff_array_repr(a, b, "identical")
elif isinstance(a, Dataset | Variable):
assert a.identical(b), formatting.diff_dataset_repr(a, b, "identical")
elif isinstance(a, Coordinates):
assert a.identical(b), formatting.diff_coords_repr(a, b, "identical")
elif isinstance(a, DataTree):
assert a.identical(b), diff_datatree_repr(a, b, "identical")
else:
raise TypeError(f"{type(a)} not supported by assertion comparison")
@ensure_warnings
def assert_allclose(
a, b, rtol=1e-05, atol=1e-08, decode_bytes=True, check_dim_order: bool = True
):
"""Like :py:func:`numpy.testing.assert_allclose`, but for xarray objects.
Raises an AssertionError if two objects are not equal up to desired
tolerance.
Parameters
----------
a : xarray.Dataset, xarray.DataArray or xarray.Variable
The first object to compare.
b : xarray.Dataset, xarray.DataArray or xarray.Variable
The second object to compare.
rtol : float, optional
Relative tolerance.
atol : float, optional
Absolute tolerance.
decode_bytes : bool, optional
Whether byte dtypes should be decoded to strings as UTF-8 or not.
This is useful for testing serialization methods on Python 3 that
return saved strings as bytes.
check_dim_order : bool, optional, default is True
Whether dimensions must be in the same order.
See Also
--------
assert_identical, assert_equal, numpy.testing.assert_allclose
"""
__tracebackhide__ = True
assert type(a) is type(b)
b = maybe_transpose_dims(a, b, check_dim_order)
equiv = functools.partial(
_data_allclose_or_equiv, rtol=rtol, atol=atol, decode_bytes=decode_bytes
)
equiv.__name__ = "allclose" # type: ignore[attr-defined]
def compat_variable(a, b):
a = getattr(a, "variable", a)
b = getattr(b, "variable", b)
return a.dims == b.dims and (a._data is b._data or equiv(a.data, b.data))
if isinstance(a, Variable):
allclose = compat_variable(a, b)
assert allclose, formatting.diff_array_repr(a, b, compat=equiv)
elif isinstance(a, DataArray):
allclose = utils.dict_equiv(
a.coords, b.coords, compat=compat_variable
) and compat_variable(a.variable, b.variable)
assert allclose, formatting.diff_array_repr(a, b, compat=equiv)
elif isinstance(a, Dataset):
allclose = a._coord_names == b._coord_names and utils.dict_equiv(
a.variables, b.variables, compat=compat_variable
)
assert allclose, formatting.diff_dataset_repr(a, b, compat=equiv)
elif isinstance(a, Coordinates):
allclose = utils.dict_equiv(a.variables, b.variables, compat=compat_variable)
assert allclose, formatting.diff_coords_repr(a, b, compat=equiv)
else:
raise TypeError(f"{type(a)} not supported by assertion comparison")
def _format_message(x, y, err_msg, verbose):
diff = x - y
abs_diff = max(abs(diff))
rel_diff = "not implemented"
n_diff = np.count_nonzero(diff)
n_total = diff.size
fraction = f"{n_diff} / {n_total}"
percentage = float(n_diff / n_total * 100)
parts = [
"Arrays are not equal",
err_msg,
f"Mismatched elements: {fraction} ({percentage:.0f}%)",
f"Max absolute difference: {abs_diff}",
f"Max relative difference: {rel_diff}",
]
if verbose:
parts += [
f" x: {x!r}",
f" y: {y!r}",
]
return "\n".join(parts)
@ensure_warnings
def assert_duckarray_allclose(
actual, desired, rtol=1e-07, atol=0, err_msg="", verbose=True
):
"""Like `np.testing.assert_allclose`, but for duckarrays."""
__tracebackhide__ = True
allclose = duck_array_ops.allclose_or_equiv(actual, desired, rtol=rtol, atol=atol)
assert allclose, _format_message(actual, desired, err_msg=err_msg, verbose=verbose)
@ensure_warnings
def assert_duckarray_equal(x, y, err_msg="", verbose=True):
"""Like `np.testing.assert_array_equal`, but for duckarrays"""
__tracebackhide__ = True
if not utils.is_duck_array(x) and not utils.is_scalar(x):
x = np.asarray(x)
if not utils.is_duck_array(y) and not utils.is_scalar(y):
y = np.asarray(y)
if (utils.is_duck_array(x) and utils.is_scalar(y)) or (
utils.is_scalar(x) and utils.is_duck_array(y)
):
equiv = duck_array_ops.array_all(x == y)
else:
equiv = duck_array_ops.array_equiv(x, y)
assert equiv, _format_message(x, y, err_msg=err_msg, verbose=verbose)
def assert_chunks_equal(a, b):
"""
Assert that chunksizes along chunked dimensions are equal.
Parameters
----------
a : xarray.Dataset or xarray.DataArray
The first object to compare.
b : xarray.Dataset or xarray.DataArray
The second object to compare.
"""
if isinstance(a, DataArray) != isinstance(b, DataArray):
raise TypeError("a and b have mismatched types")
left = a.unify_chunks()
right = b.unify_chunks()
assert left.chunks == right.chunks
def _assert_indexes_invariants_checks(
indexes, possible_coord_variables, dims, check_default=True
):
assert isinstance(indexes, dict), indexes
assert all(isinstance(v, Index) for v in indexes.values()), {
k: type(v) for k, v in indexes.items()
}
if check_default:
index_vars = {
k
for k, v in possible_coord_variables.items()
if isinstance(v, IndexVariable)
}
assert indexes.keys() <= index_vars, (set(indexes), index_vars)
# check pandas index wrappers vs. coordinate data adapters
for k, index in indexes.items():
if isinstance(index, PandasIndex):
pd_index = index.index
var = possible_coord_variables[k]
assert (index.dim,) == var.dims, (pd_index, var)
if k == index.dim:
# skip multi-index levels here (checked below)
assert index.coord_dtype == var.dtype, (index.coord_dtype, var.dtype)
assert isinstance(var._data.array, pd.Index), var._data.array
# TODO: check identity instead of equality?
assert pd_index.equals(var._data.array), (pd_index, var)
if isinstance(index, PandasMultiIndex):
pd_index = index.index
for name in index.index.names:
assert name in possible_coord_variables, (pd_index, index_vars)
var = possible_coord_variables[name]
assert (index.dim,) == var.dims, (pd_index, var)
assert index.level_coords_dtype[name] == var.dtype, (
index.level_coords_dtype[name],
var.dtype,
)
assert isinstance(var._data.array, pd.MultiIndex), var._data.array
assert pd_index.equals(var._data.array), (pd_index, var)
# check all all levels are in `indexes`
assert name in indexes, (name, set(indexes))
# index identity is used to find unique indexes in `indexes`
assert index is indexes[name], (pd_index, indexes[name].index)
if check_default:
defaults = default_indexes(possible_coord_variables, dims)
assert indexes.keys() == defaults.keys(), (set(indexes), set(defaults))
assert all(v.equals(defaults[k]) for k, v in indexes.items()), (
indexes,
defaults,
)
def _assert_variable_invariants(var: Variable, name: Hashable = None):
if name is None:
name_or_empty: tuple = ()
else:
name_or_empty = (name,)
assert isinstance(var._dims, tuple), name_or_empty + (var._dims,)
assert len(var._dims) == len(var._data.shape), name_or_empty + (
var._dims,
var._data.shape,
)
assert isinstance(var._encoding, type(None) | dict), name_or_empty + (
var._encoding,
)
assert isinstance(var._attrs, type(None) | dict), name_or_empty + (var._attrs,)
def _assert_dataarray_invariants(da: DataArray, check_default_indexes: bool):
assert isinstance(da._variable, Variable), da._variable
_assert_variable_invariants(da._variable)
assert isinstance(da._coords, dict), da._coords
assert all(isinstance(v, Variable) for v in da._coords.values()), da._coords
if check_default_indexes:
assert all(set(v.dims) <= set(da.dims) for v in da._coords.values()), (
da.dims,
{k: v.dims for k, v in da._coords.items()},
)
assert all(
isinstance(v, IndexVariable)
for (k, v) in da._coords.items()
if v.dims == (k,)
), {k: type(v) for k, v in da._coords.items()}
for k, v in da._coords.items():
_assert_variable_invariants(v, k)
if da._indexes is not None:
_assert_indexes_invariants_checks(
da._indexes, da._coords, da.dims, check_default=check_default_indexes
)
def _assert_dataset_invariants(ds: Dataset, check_default_indexes: bool):
assert isinstance(ds._variables, dict), type(ds._variables)
assert all(isinstance(v, Variable) for v in ds._variables.values()), ds._variables
for k, v in ds._variables.items():
_assert_variable_invariants(v, k)
assert isinstance(ds._coord_names, set), ds._coord_names
assert ds._coord_names <= ds._variables.keys(), (
ds._coord_names,
set(ds._variables),
)
assert type(ds._dims) is dict, ds._dims
assert all(isinstance(v, int) for v in ds._dims.values()), ds._dims
var_dims: set[Hashable] = set()
for v in ds._variables.values():
var_dims.update(v.dims)
assert ds._dims.keys() == var_dims, (set(ds._dims), var_dims)
assert all(
ds._dims[k] == v.sizes[k] for v in ds._variables.values() for k in v.sizes
), (ds._dims, {k: v.sizes for k, v in ds._variables.items()})
if check_default_indexes:
assert all(
isinstance(v, IndexVariable)
for (k, v) in ds._variables.items()
if v.dims == (k,)
), {k: type(v) for k, v in ds._variables.items() if v.dims == (k,)}
if ds._indexes is not None:
_assert_indexes_invariants_checks(
ds._indexes, ds._variables, ds._dims, check_default=check_default_indexes
)
assert isinstance(ds._encoding, type(None) | dict)
assert isinstance(ds._attrs, type(None) | dict)
def _assert_internal_invariants(
xarray_obj: DataArray | Dataset | Variable, check_default_indexes: bool
):
"""Validate that an xarray object satisfies its own internal invariants.
This exists for the benefit of xarray's own test suite, but may be useful
in external projects if they (ill-advisedly) create objects using xarray's
private APIs.
"""
if isinstance(xarray_obj, Variable):
_assert_variable_invariants(xarray_obj)
elif isinstance(xarray_obj, DataArray):
_assert_dataarray_invariants(
xarray_obj, check_default_indexes=check_default_indexes
)
elif isinstance(xarray_obj, Dataset):
_assert_dataset_invariants(
xarray_obj, check_default_indexes=check_default_indexes
)
elif isinstance(xarray_obj, Coordinates):
_assert_dataset_invariants(
xarray_obj.to_dataset(), check_default_indexes=check_default_indexes
)
else:
raise TypeError(
f"{type(xarray_obj)} is not a supported type for xarray invariant checks"
)
|