File: strategies.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (512 lines) | stat: -rw-r--r-- 17,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import datetime
import warnings
from collections.abc import Hashable, Iterable, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Protocol, overload

import hypothesis.extra.numpy as npst
import numpy as np
from hypothesis.errors import InvalidArgument

import xarray as xr
from xarray.core.types import T_DuckArray
from xarray.core.utils import attempt_import

if TYPE_CHECKING:
    from xarray.core.types import _DTypeLikeNested, _ShapeLike


if TYPE_CHECKING:
    import hypothesis.strategies as st
else:
    st = attempt_import("hypothesis.strategies")

__all__ = [
    "attrs",
    "dimension_names",
    "dimension_sizes",
    "names",
    "pandas_index_dtypes",
    "supported_dtypes",
    "unique_subset_of",
    "variables",
]


class ArrayStrategyFn(Protocol[T_DuckArray]):
    def __call__(
        self,
        *,
        shape: "_ShapeLike",
        dtype: "_DTypeLikeNested",
    ) -> st.SearchStrategy[T_DuckArray]: ...


def supported_dtypes() -> st.SearchStrategy[np.dtype]:
    """
    Generates only those numpy dtypes which xarray can handle.

    Use instead of hypothesis.extra.numpy.scalar_dtypes in order to exclude weirder dtypes such as unicode, byte_string, array, or nested dtypes.
    Also excludes datetimes, which dodges bugs with pandas non-nanosecond datetime overflows.  Checks only native endianness.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    # TODO should this be exposed publicly?
    # We should at least decide what the set of numpy dtypes that xarray officially supports is.
    return (
        npst.integer_dtypes(endianness="=")
        | npst.unsigned_integer_dtypes(endianness="=")
        | npst.floating_dtypes(endianness="=")
        | npst.complex_number_dtypes(endianness="=")
        # | npst.datetime64_dtypes()
        # | npst.timedelta64_dtypes()
        # | npst.unicode_string_dtypes()
    )


def pandas_index_dtypes() -> st.SearchStrategy[np.dtype]:
    """
    Dtypes supported by pandas indexes.
    Restrict datetime64 and timedelta64 to ns frequency till Xarray relaxes that.
    """
    return (
        npst.integer_dtypes(endianness="=", sizes=(32, 64))
        | npst.unsigned_integer_dtypes(endianness="=", sizes=(32, 64))
        | npst.floating_dtypes(endianness="=", sizes=(32, 64))
        # TODO: unset max_period
        | npst.datetime64_dtypes(endianness="=", max_period="ns")
        # TODO: set max_period="D"
        | npst.timedelta64_dtypes(endianness="=", max_period="ns")
        | npst.unicode_string_dtypes(endianness="=")
    )


# TODO Generalize to all valid unicode characters once formatting bugs in xarray's reprs are fixed + docs can handle it.
_readable_characters = st.characters(
    categories=["L", "N"], max_codepoint=0x017F
)  # only use characters within the "Latin Extended-A" subset of unicode


def names() -> st.SearchStrategy[str]:
    """
    Generates arbitrary string names for dimensions / variables.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    return st.text(
        _readable_characters,
        min_size=1,
        max_size=5,
    )


def dimension_names(
    *,
    name_strategy=None,
    min_dims: int = 0,
    max_dims: int = 3,
) -> st.SearchStrategy[list[Hashable]]:
    """
    Generates an arbitrary list of valid dimension names.

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    name_strategy
        Strategy for making names. Useful if we need to share this.
    min_dims
        Minimum number of dimensions in generated list.
    max_dims
        Maximum number of dimensions in generated list.
    """
    if name_strategy is None:
        name_strategy = names()

    return st.lists(
        elements=name_strategy,
        min_size=min_dims,
        max_size=max_dims,
        unique=True,
    )


def dimension_sizes(
    *,
    dim_names: st.SearchStrategy[Hashable] = names(),  # noqa: B008
    min_dims: int = 0,
    max_dims: int = 3,
    min_side: int = 1,
    max_side: int | None = None,
) -> st.SearchStrategy[Mapping[Hashable, int]]:
    """
    Generates an arbitrary mapping from dimension names to lengths.

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    dim_names: strategy generating strings, optional
        Strategy for generating dimension names.
        Defaults to the `names` strategy.
    min_dims: int, optional
        Minimum number of dimensions in generated list.
        Default is 1.
    max_dims: int, optional
        Maximum number of dimensions in generated list.
        Default is 3.
    min_side: int, optional
        Minimum size of a dimension.
        Default is 1.
    max_side: int, optional
        Minimum size of a dimension.
        Default is `min_length` + 5.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """

    if max_side is None:
        max_side = min_side + 3

    return st.dictionaries(
        keys=dim_names,
        values=st.integers(min_value=min_side, max_value=max_side),
        min_size=min_dims,
        max_size=max_dims,
    )


_readable_strings = st.text(
    _readable_characters,
    max_size=5,
)
_attr_keys = _readable_strings
_small_arrays = npst.arrays(
    shape=npst.array_shapes(
        max_side=2,
        max_dims=2,
    ),
    dtype=npst.scalar_dtypes()
    | npst.byte_string_dtypes()
    | npst.unicode_string_dtypes(),
)
_attr_values = st.none() | st.booleans() | _readable_strings | _small_arrays

simple_attrs = st.dictionaries(_attr_keys, _attr_values)


def attrs() -> st.SearchStrategy[Mapping[Hashable, Any]]:
    """
    Generates arbitrary valid attributes dictionaries for xarray objects.

    The generated dictionaries can potentially be recursive.

    Requires the hypothesis package to be installed.

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    return st.recursive(
        st.dictionaries(_attr_keys, _attr_values),
        lambda children: st.dictionaries(_attr_keys, children),
        max_leaves=3,
    )


ATTRS = attrs()


@st.composite
def variables(
    draw: st.DrawFn,
    *,
    array_strategy_fn: ArrayStrategyFn | None = None,
    dims: st.SearchStrategy[Sequence[Hashable] | Mapping[Hashable, int]] | None = None,
    dtype: st.SearchStrategy[np.dtype] | None = None,
    attrs: st.SearchStrategy[Mapping] = ATTRS,
) -> xr.Variable:
    """
    Generates arbitrary xarray.Variable objects.

    Follows the basic signature of the xarray.Variable constructor, but allows passing alternative strategies to
    generate either numpy-like array data or dimensions. Also allows specifying the shape or dtype of the wrapped array
    up front.

    Passing nothing will generate a completely arbitrary Variable (containing a numpy array).

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    array_strategy_fn: Callable which returns a strategy generating array-likes, optional
        Callable must only accept shape and dtype kwargs, and must generate results consistent with its input.
        If not passed the default is to generate a small numpy array with one of the supported_dtypes.
    dims: Strategy for generating the dimensions, optional
        Can either be a strategy for generating a sequence of string dimension names,
        or a strategy for generating a mapping of string dimension names to integer lengths along each dimension.
        If provided as a mapping the array shape will be passed to array_strategy_fn.
        Default is to generate arbitrary dimension names for each axis in data.
    dtype: Strategy which generates np.dtype objects, optional
        Will be passed in to array_strategy_fn.
        Default is to generate any scalar dtype using supported_dtypes.
        Be aware that this default set of dtypes includes some not strictly allowed by the array API standard.
    attrs: Strategy which generates dicts, optional
        Default is to generate a nested attributes dictionary containing arbitrary strings, booleans, integers, Nones,
        and numpy arrays.

    Returns
    -------
    variable_strategy
        Strategy for generating xarray.Variable objects.

    Raises
    ------
    ValueError
        If a custom array_strategy_fn returns a strategy which generates an example array inconsistent with the shape
        & dtype input passed to it.

    Examples
    --------
    Generate completely arbitrary Variable objects backed by a numpy array:

    >>> variables().example()  # doctest: +SKIP
    <xarray.Variable (żō: 3)>
    array([43506,   -16,  -151], dtype=int32)
    >>> variables().example()  # doctest: +SKIP
    <xarray.Variable (eD: 4, ğŻżÂĕ: 2, T: 2)>
    array([[[-10000000., -10000000.],
            [-10000000., -10000000.]],
           [[-10000000., -10000000.],
            [        0., -10000000.]],
           [[        0., -10000000.],
            [-10000000.,        inf]],
           [[       -0., -10000000.],
            [-10000000.,        -0.]]], dtype=float32)
    Attributes:
        śřĴ:      {'ĉ': {'iĥf': array([-30117,  -1740], dtype=int16)}}

    Generate only Variable objects with certain dimension names:

    >>> variables(dims=st.just(["a", "b"])).example()  # doctest: +SKIP
    <xarray.Variable (a: 5, b: 3)>
    array([[       248, 4294967295, 4294967295],
           [2412855555, 3514117556, 4294967295],
           [       111, 4294967295, 4294967295],
           [4294967295, 1084434988,      51688],
           [     47714,        252,      11207]], dtype=uint32)

    Generate only Variable objects with certain dimension names and lengths:

    >>> variables(dims=st.just({"a": 2, "b": 1})).example()  # doctest: +SKIP
    <xarray.Variable (a: 2, b: 1)>
    array([[-1.00000000e+007+3.40282347e+038j],
           [-2.75034266e-225+2.22507386e-311j]])

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    if dtype is None:
        dtype = supported_dtypes()

    if not isinstance(dims, st.SearchStrategy) and dims is not None:
        raise InvalidArgument(
            f"dims must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(dims)}. "
            "To specify fixed contents, use hypothesis.strategies.just()."
        )
    if not isinstance(dtype, st.SearchStrategy) and dtype is not None:
        raise InvalidArgument(
            f"dtype must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(dtype)}. "
            "To specify fixed contents, use hypothesis.strategies.just()."
        )
    if not isinstance(attrs, st.SearchStrategy) and attrs is not None:
        raise InvalidArgument(
            f"attrs must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(attrs)}. "
            "To specify fixed contents, use hypothesis.strategies.just()."
        )

    _array_strategy_fn: ArrayStrategyFn
    if array_strategy_fn is None:
        # For some reason if I move the default value to the function signature definition mypy incorrectly says the ignore is no longer necessary, making it impossible to satisfy mypy
        _array_strategy_fn = npst.arrays  # type: ignore[assignment]  # npst.arrays has extra kwargs that we aren't using later
    elif not callable(array_strategy_fn):
        raise InvalidArgument(
            "array_strategy_fn must be a Callable that accepts the kwargs dtype and shape and returns a hypothesis "
            "strategy which generates corresponding array-like objects."
        )
    else:
        _array_strategy_fn = (
            array_strategy_fn  # satisfy mypy that this new variable cannot be None
        )

    _dtype = draw(dtype)

    if dims is not None:
        # generate dims first then draw data to match
        _dims = draw(dims)
        if isinstance(_dims, Sequence):
            dim_names = list(_dims)
            valid_shapes = npst.array_shapes(min_dims=len(_dims), max_dims=len(_dims))
            _shape = draw(valid_shapes)
            array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
        elif isinstance(_dims, Mapping | dict):
            # should be a mapping of form {dim_names: lengths}
            dim_names, _shape = list(_dims.keys()), tuple(_dims.values())
            array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
        else:
            raise InvalidArgument(
                f"Invalid type returned by dims strategy - drew an object of type {type(dims)}"
            )
    else:
        # nothing provided, so generate everything consistently
        # We still generate the shape first here just so that we always pass shape to array_strategy_fn
        _shape = draw(npst.array_shapes())
        array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
        dim_names = draw(dimension_names(min_dims=len(_shape), max_dims=len(_shape)))

    _data = draw(array_strategy)

    if _data.shape != _shape:
        raise ValueError(
            "array_strategy_fn returned an array object with a different shape than it was passed."
            f"Passed {_shape}, but returned {_data.shape}."
            "Please either specify a consistent shape via the dims kwarg or ensure the array_strategy_fn callable "
            "obeys the shape argument passed to it."
        )
    if _data.dtype != _dtype:
        raise ValueError(
            "array_strategy_fn returned an array object with a different dtype than it was passed."
            f"Passed {_dtype}, but returned {_data.dtype}"
            "Please either specify a consistent dtype via the dtype kwarg or ensure the array_strategy_fn callable "
            "obeys the dtype argument passed to it."
        )

    return xr.Variable(dims=dim_names, data=_data, attrs=draw(attrs))


@overload
def unique_subset_of(
    objs: Sequence[Hashable],
    *,
    min_size: int = 0,
    max_size: int | None = None,
) -> st.SearchStrategy[Sequence[Hashable]]: ...


@overload
def unique_subset_of(
    objs: Mapping[Hashable, Any],
    *,
    min_size: int = 0,
    max_size: int | None = None,
) -> st.SearchStrategy[Mapping[Hashable, Any]]: ...


@st.composite
def unique_subset_of(
    draw: st.DrawFn,
    objs: Sequence[Hashable] | Mapping[Hashable, Any],
    *,
    min_size: int = 0,
    max_size: int | None = None,
) -> Sequence[Hashable] | Mapping[Hashable, Any]:
    """
    Return a strategy which generates a unique subset of the given objects.

    Each entry in the output subset will be unique (if input was a sequence) or have a unique key (if it was a mapping).

    Requires the hypothesis package to be installed.

    Parameters
    ----------
    objs: Union[Sequence[Hashable], Mapping[Hashable, Any]]
        Objects from which to sample to produce the subset.
    min_size: int, optional
        Minimum size of the returned subset. Default is 0.
    max_size: int, optional
        Maximum size of the returned subset. Default is the full length of the input.
        If set to 0 the result will be an empty mapping.

    Returns
    -------
    unique_subset_strategy
        Strategy generating subset of the input.

    Examples
    --------
    >>> unique_subset_of({"x": 2, "y": 3}).example()  # doctest: +SKIP
    {'y': 3}
    >>> unique_subset_of(["x", "y"]).example()  # doctest: +SKIP
    ['x']

    See Also
    --------
    :ref:`testing.hypothesis`_
    """
    if not isinstance(objs, Iterable):
        raise TypeError(
            f"Object to sample from must be an Iterable or a Mapping, but received type {type(objs)}"
        )

    if len(objs) == 0:
        raise ValueError("Can't sample from a length-zero object.")

    keys = list(objs.keys()) if isinstance(objs, Mapping) else objs

    subset_keys = draw(
        st.lists(
            st.sampled_from(keys),
            unique=True,
            min_size=min_size,
            max_size=max_size,
        )
    )

    return (
        {k: objs[k] for k in subset_keys} if isinstance(objs, Mapping) else subset_keys
    )


class CFTimeStrategy(st.SearchStrategy):
    def __init__(self, min_value, max_value):
        super().__init__()
        self.min_value = min_value
        self.max_value = max_value

    def do_draw(self, data):
        unit_microsecond = datetime.timedelta(microseconds=1)
        timespan_microseconds = (self.max_value - self.min_value) // unit_microsecond
        result = data.draw_integer(0, timespan_microseconds)
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", message=".*date/calendar/year zero.*")
            return self.min_value + datetime.timedelta(microseconds=result)


class CFTimeStrategyISO8601(st.SearchStrategy):
    def __init__(self):
        from xarray.tests.test_coding_times import _all_cftime_date_types

        super().__init__()
        self.date_types = _all_cftime_date_types()
        self.calendars = list(self.date_types)

    def do_draw(self, data):
        calendar = data.draw(st.sampled_from(self.calendars))
        date_type = self.date_types[calendar]
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", message=".*date/calendar/year zero.*")
            daysinmonth = date_type(99999, 12, 1).daysinmonth
            min_value = date_type(-99999, 1, 1)
            max_value = date_type(99999, 12, daysinmonth, 23, 59, 59, 999999)
            strategy = CFTimeStrategy(min_value, max_value)
            return strategy.do_draw(data)