1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
from __future__ import annotations
import importlib
import platform
import string
import warnings
from contextlib import contextmanager, nullcontext
from unittest import mock # noqa: F401
import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_array_equal # noqa: F401
from packaging.version import Version
from pandas.testing import assert_frame_equal # noqa: F401
import xarray.testing
from xarray import Dataset
from xarray.coding.times import _STANDARD_CALENDARS as _STANDARD_CALENDARS_UNSORTED
from xarray.core.duck_array_ops import allclose_or_equiv # noqa: F401
from xarray.core.extension_array import PandasExtensionArray
from xarray.core.options import set_options
from xarray.core.variable import IndexVariable
from xarray.testing import ( # noqa: F401
assert_chunks_equal,
assert_duckarray_allclose,
assert_duckarray_equal,
)
from xarray.tests.arrays import ( # noqa: F401
ConcatenatableArray,
DuckArrayWrapper,
FirstElementAccessibleArray,
InaccessibleArray,
UnexpectedDataAccess,
)
# import mpl and change the backend before other mpl imports
try:
import matplotlib as mpl
# Order of imports is important here.
# Using a different backend makes Travis CI work
mpl.use("Agg")
except ImportError:
pass
# https://github.com/pydata/xarray/issues/7322
warnings.filterwarnings("ignore", "'urllib3.contrib.pyopenssl' module is deprecated")
warnings.filterwarnings("ignore", "Deprecated call to `pkg_resources.declare_namespace")
warnings.filterwarnings("ignore", "pkg_resources is deprecated as an API")
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
arm_xfail = pytest.mark.xfail(
platform.machine() == "aarch64" or "arm" in platform.machine(),
reason="expected failure on ARM",
)
def assert_writeable(ds):
readonly = [
name
for name, var in ds.variables.items()
if not isinstance(var, IndexVariable)
and not isinstance(
var.data, PandasExtensionArray | pd.api.extensions.ExtensionArray
)
and not var.data.flags.writeable
]
assert not readonly, readonly
def _importorskip(
modname: str, minversion: str | None = None
) -> tuple[bool, pytest.MarkDecorator]:
try:
mod = importlib.import_module(modname)
has = True
if minversion is not None:
v = getattr(mod, "__version__", "999")
if Version(v) < Version(minversion):
raise ImportError("Minimum version not satisfied")
except ImportError:
has = False
reason = f"requires {modname}"
if minversion is not None:
reason += f">={minversion}"
func = pytest.mark.skipif(not has, reason=reason)
return has, func
has_matplotlib, requires_matplotlib = _importorskip("matplotlib")
has_scipy, requires_scipy = _importorskip("scipy")
has_scipy_ge_1_13, requires_scipy_ge_1_13 = _importorskip("scipy", "1.13")
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="'cgi' is deprecated and slated for removal in Python 3.13",
category=DeprecationWarning,
)
has_pydap, requires_pydap = _importorskip("pydap.client")
has_netCDF4, requires_netCDF4 = _importorskip("netCDF4")
with warnings.catch_warnings():
# see https://github.com/pydata/xarray/issues/8537
warnings.filterwarnings(
"ignore",
message="h5py is running against HDF5 1.14.3",
category=UserWarning,
)
has_h5netcdf, requires_h5netcdf = _importorskip("h5netcdf")
has_cftime, requires_cftime = _importorskip("cftime")
has_dask, requires_dask = _importorskip("dask")
has_dask_ge_2024_08_1, requires_dask_ge_2024_08_1 = _importorskip(
"dask", minversion="2024.08.1"
)
has_dask_ge_2024_11_0, requires_dask_ge_2024_11_0 = _importorskip("dask", "2024.11.0")
has_dask_ge_2025_1_0, requires_dask_ge_2025_1_0 = _importorskip("dask", "2025.1.0")
if has_dask_ge_2025_1_0:
has_dask_expr = True
requires_dask_expr = pytest.mark.skipif(not has_dask_expr, reason="should not skip")
else:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="The current Dask DataFrame implementation is deprecated.",
category=DeprecationWarning,
)
has_dask_expr, requires_dask_expr = _importorskip("dask_expr")
has_bottleneck, requires_bottleneck = _importorskip("bottleneck")
has_rasterio, requires_rasterio = _importorskip("rasterio")
has_zarr, requires_zarr = _importorskip("zarr")
has_zarr_v3, requires_zarr_v3 = _importorskip("zarr", "3.0.0")
has_zarr_v3_dtypes, requires_zarr_v3_dtypes = _importorskip("zarr", "3.1.0")
has_zarr_v3_async_oindex, requires_zarr_v3_async_oindex = _importorskip("zarr", "3.1.2")
if has_zarr_v3:
import zarr
# manual update by checking attrs for now
# TODO: use version specifier
# installing from git main is giving me a lower version than the
# most recently released zarr
has_zarr_v3_dtypes = hasattr(zarr.core, "dtype")
has_zarr_v3_async_oindex = hasattr(zarr.AsyncArray, "oindex")
requires_zarr_v3_dtypes = pytest.mark.skipif(
not has_zarr_v3_dtypes, reason="requires zarr>3.1.0"
)
requires_zarr_v3_async_oindex = pytest.mark.skipif(
not has_zarr_v3_async_oindex, reason="requires zarr>3.1.1"
)
has_fsspec, requires_fsspec = _importorskip("fsspec")
has_iris, requires_iris = _importorskip("iris")
has_numbagg, requires_numbagg = _importorskip("numbagg")
has_pyarrow, requires_pyarrow = _importorskip("pyarrow")
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="is_categorical_dtype is deprecated and will be removed in a future version.",
category=DeprecationWarning,
)
# seaborn uses the deprecated `pandas.is_categorical_dtype`
has_seaborn, requires_seaborn = _importorskip("seaborn")
has_sparse, requires_sparse = _importorskip("sparse")
has_cupy, requires_cupy = _importorskip("cupy")
has_cartopy, requires_cartopy = _importorskip("cartopy")
has_pint, requires_pint = _importorskip("pint")
has_numexpr, requires_numexpr = _importorskip("numexpr")
has_flox, requires_flox = _importorskip("flox")
has_netcdf, requires_netcdf = _importorskip("netcdf")
has_pandas_ge_2_2, requires_pandas_ge_2_2 = _importorskip("pandas", "2.2")
has_pandas_3, requires_pandas_3 = _importorskip("pandas", "3.0.0.dev0")
# some special cases
has_scipy_or_netCDF4 = has_scipy or has_netCDF4
requires_scipy_or_netCDF4 = pytest.mark.skipif(
not has_scipy_or_netCDF4, reason="requires scipy or netCDF4"
)
has_numbagg_or_bottleneck = has_numbagg or has_bottleneck
requires_numbagg_or_bottleneck = pytest.mark.skipif(
not has_numbagg_or_bottleneck, reason="requires numbagg or bottleneck"
)
has_numpy_2, requires_numpy_2 = _importorskip("numpy", "2.0.0")
has_flox_0_9_12, requires_flox_0_9_12 = _importorskip("flox", "0.9.12")
has_array_api_strict, requires_array_api_strict = _importorskip("array_api_strict")
parametrize_zarr_format = pytest.mark.parametrize(
"zarr_format",
[
pytest.param(2, id="zarr_format=2"),
pytest.param(
3,
marks=pytest.mark.skipif(
not has_zarr_v3,
reason="zarr-python v2 cannot understand the zarr v3 format",
),
id="zarr_format=3",
),
],
)
def _importorskip_h5netcdf_ros3(has_h5netcdf: bool):
if not has_h5netcdf:
return has_h5netcdf, pytest.mark.skipif(
not has_h5netcdf, reason="requires h5netcdf"
)
import h5py
h5py_with_ros3 = h5py.get_config().ros3
return h5py_with_ros3, pytest.mark.skipif(
not h5py_with_ros3,
reason="requires h5netcdf>=1.3.0 and h5py with ros3 support",
)
has_h5netcdf_ros3, requires_h5netcdf_ros3 = _importorskip_h5netcdf_ros3(has_h5netcdf)
has_netCDF4_1_6_2_or_above, requires_netCDF4_1_6_2_or_above = _importorskip(
"netCDF4", "1.6.2"
)
has_h5netcdf_1_4_0_or_above, requires_h5netcdf_1_4_0_or_above = _importorskip(
"h5netcdf", "1.4.0.dev"
)
has_netCDF4_1_7_0_or_above, requires_netCDF4_1_7_0_or_above = _importorskip(
"netCDF4", "1.7.0"
)
# change some global options for tests
set_options(warn_for_unclosed_files=True)
if has_dask:
import dask
class CountingScheduler:
"""Simple dask scheduler counting the number of computes.
Reference: https://stackoverflow.com/questions/53289286/"""
def __init__(self, max_computes=0):
self.total_computes = 0
self.max_computes = max_computes
def __call__(self, dsk, keys, **kwargs):
self.total_computes += 1
if self.total_computes > self.max_computes:
raise RuntimeError(
f"Too many computes. Total: {self.total_computes} > max: {self.max_computes}."
)
return dask.get(dsk, keys, **kwargs)
def raise_if_dask_computes(max_computes=0):
# return a dummy context manager so that this can be used for non-dask objects
if not has_dask:
return nullcontext()
scheduler = CountingScheduler(max_computes)
return dask.config.set(scheduler=scheduler)
flaky = pytest.mark.flaky
network = pytest.mark.network
class ReturnItem:
def __getitem__(self, key):
return key
class IndexerMaker:
def __init__(self, indexer_cls):
self._indexer_cls = indexer_cls
def __getitem__(self, key):
if not isinstance(key, tuple):
key = (key,)
return self._indexer_cls(key)
def source_ndarray(array):
"""Given an ndarray, return the base object which holds its memory, or the
object itself.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "DatetimeIndex.base")
warnings.filterwarnings("ignore", "TimedeltaIndex.base")
base = getattr(array, "base", np.asarray(array).base)
if base is None:
base = array
return base
def format_record(record) -> str:
"""Format warning record like `FutureWarning('Function will be deprecated...')`"""
return f"{str(record.category)[8:-2]}('{record.message}'))"
@contextmanager
def assert_no_warnings():
with warnings.catch_warnings(record=True) as record:
yield record
assert len(record) == 0, (
f"Got {len(record)} unexpected warning(s): {[format_record(r) for r in record]}"
)
# Internal versions of xarray's test functions that validate additional
# invariants
def assert_equal(a, b, check_default_indexes=True):
__tracebackhide__ = True
xarray.testing.assert_equal(a, b)
xarray.testing._assert_internal_invariants(a, check_default_indexes)
xarray.testing._assert_internal_invariants(b, check_default_indexes)
def assert_identical(a, b, check_default_indexes=True):
__tracebackhide__ = True
xarray.testing.assert_identical(a, b)
xarray.testing._assert_internal_invariants(a, check_default_indexes)
xarray.testing._assert_internal_invariants(b, check_default_indexes)
def assert_allclose(a, b, check_default_indexes=True, **kwargs):
__tracebackhide__ = True
xarray.testing.assert_allclose(a, b, **kwargs)
xarray.testing._assert_internal_invariants(a, check_default_indexes)
xarray.testing._assert_internal_invariants(b, check_default_indexes)
_DEFAULT_TEST_DIM_SIZES = (8, 9, 10)
def create_test_data(
seed: int = 12345,
add_attrs: bool = True,
dim_sizes: tuple[int, int, int] = _DEFAULT_TEST_DIM_SIZES,
use_extension_array: bool = False,
) -> Dataset:
rs = np.random.default_rng(seed)
_vars = {
"var1": ["dim1", "dim2"],
"var2": ["dim1", "dim2"],
"var3": ["dim3", "dim1"],
}
_dims = {"dim1": dim_sizes[0], "dim2": dim_sizes[1], "dim3": dim_sizes[2]}
obj = Dataset()
obj["dim2"] = ("dim2", 0.5 * np.arange(_dims["dim2"]))
if _dims["dim3"] > 26:
raise RuntimeError(
f"Not enough letters for filling this dimension size ({_dims['dim3']})"
)
obj["dim3"] = ("dim3", list(string.ascii_lowercase[0 : _dims["dim3"]]))
obj["time"] = (
"time",
pd.date_range(
"2000-01-01",
periods=20,
unit="ns",
),
)
for v, dims in sorted(_vars.items()):
data = rs.normal(size=tuple(_dims[d] for d in dims))
obj[v] = (dims, data)
if add_attrs:
obj[v].attrs = {"foo": "variable"}
if use_extension_array:
obj["var4"] = (
"dim1",
pd.Categorical(
rs.choice(
list(string.ascii_lowercase[: rs.integers(1, 5)]),
size=dim_sizes[0],
)
),
)
if has_pyarrow:
obj["var5"] = (
"dim1",
pd.array(
rs.integers(1, 10, size=dim_sizes[0]).tolist(),
dtype="int64[pyarrow]",
),
)
if dim_sizes == _DEFAULT_TEST_DIM_SIZES:
numbers_values = np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 3], dtype="int64")
else:
numbers_values = rs.integers(0, 3, _dims["dim3"], dtype="int64")
obj.coords["numbers"] = ("dim3", numbers_values)
obj.encoding = {"foo": "bar"}
assert_writeable(obj)
return obj
_STANDARD_CALENDAR_NAMES = sorted(_STANDARD_CALENDARS_UNSORTED)
_NON_STANDARD_CALENDAR_NAMES = {
"noleap",
"365_day",
"360_day",
"julian",
"all_leap",
"366_day",
}
_NON_STANDARD_CALENDARS = [
pytest.param(cal, marks=requires_cftime)
for cal in sorted(_NON_STANDARD_CALENDAR_NAMES)
]
_STANDARD_CALENDARS = [
pytest.param(cal, marks=requires_cftime if cal != "standard" else ())
for cal in _STANDARD_CALENDAR_NAMES
]
_ALL_CALENDARS = sorted(_STANDARD_CALENDARS + _NON_STANDARD_CALENDARS)
_CFTIME_CALENDARS = [
pytest.param(*p.values, marks=requires_cftime) for p in _ALL_CALENDARS
]
def _all_cftime_date_types():
import cftime
return {
"noleap": cftime.DatetimeNoLeap,
"365_day": cftime.DatetimeNoLeap,
"360_day": cftime.Datetime360Day,
"julian": cftime.DatetimeJulian,
"all_leap": cftime.DatetimeAllLeap,
"366_day": cftime.DatetimeAllLeap,
"gregorian": cftime.DatetimeGregorian,
"proleptic_gregorian": cftime.DatetimeProlepticGregorian,
}
|