1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
from __future__ import annotations
import pytest
import xarray as xr
from xarray.testing import assert_equal
np = pytest.importorskip("numpy", minversion="1.22")
xp = pytest.importorskip("array_api_strict")
from array_api_strict._array_object import Array # isort:skip # type: ignore[no-redef]
@pytest.fixture
def arrays() -> tuple[xr.DataArray, xr.DataArray]:
np_arr = xr.DataArray(
np.array([[1.0, 2.0, 3.0], [4.0, 5.0, np.nan]]),
dims=("x", "y"),
coords={"x": [10, 20]},
)
xp_arr = xr.DataArray(
xp.asarray([[1.0, 2.0, 3.0], [4.0, 5.0, np.nan]]),
dims=("x", "y"),
coords={"x": [10, 20]},
)
assert isinstance(xp_arr.data, Array)
return np_arr, xp_arr
def test_arithmetic(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr + 7
actual = xp_arr + 7
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_aggregation(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.sum()
actual = xp_arr.sum()
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_aggregation_skipna(arrays) -> None:
np_arr, xp_arr = arrays
expected = np_arr.sum(skipna=False)
actual = xp_arr.sum(skipna=False)
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
# casting nan warns
@pytest.mark.filterwarnings("ignore:invalid value encountered in cast")
def test_astype(arrays) -> None:
np_arr, xp_arr = arrays
expected = np_arr.astype(np.int64)
actual = xp_arr.astype(xp.int64)
assert actual.dtype == xp.int64
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_broadcast(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
np_arr2 = xr.DataArray(np.array([1.0, 2.0]), dims="x")
xp_arr2 = xr.DataArray(xp.asarray([1.0, 2.0]), dims="x")
expected = xr.broadcast(np_arr, np_arr2)
actual = xr.broadcast(xp_arr, xp_arr2)
assert len(actual) == len(expected)
for a, e in zip(actual, expected, strict=True):
assert isinstance(a.data, Array)
assert_equal(a, e)
def test_broadcast_during_arithmetic(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
np_arr2 = xr.DataArray(np.array([1.0, 2.0]), dims="x")
xp_arr2 = xr.DataArray(xp.asarray([1.0, 2.0]), dims="x")
expected = np_arr * np_arr2
actual = xp_arr * xp_arr2
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
expected = np_arr2 * np_arr
actual = xp_arr2 * xp_arr
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_concat(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = xr.concat((np_arr, np_arr), dim="x")
actual = xr.concat((xp_arr, xp_arr), dim="x")
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_indexing(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr[:, 0]
actual = xp_arr[:, 0]
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_properties(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.data.nbytes
assert np_arr.nbytes == expected
assert xp_arr.nbytes == expected
def test_reorganizing_operation(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.transpose()
actual = xp_arr.transpose()
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_stack(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.stack(z=("x", "y"))
actual = xp_arr.stack(z=("x", "y"))
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_unstack(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.stack(z=("x", "y")).unstack()
actual = xp_arr.stack(z=("x", "y")).unstack()
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
def test_where() -> None:
np_arr = xr.DataArray(np.array([1, 0]), dims="x")
xp_arr = xr.DataArray(xp.asarray([1, 0]), dims="x")
expected = xr.where(np_arr, 1, 0)
actual = xr.where(xp_arr, 1, 0)
assert isinstance(actual.data, Array)
assert_equal(actual, expected)
|