File: test_backends.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (7595 lines) | stat: -rw-r--r-- 300,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
from __future__ import annotations

import asyncio
import contextlib
import gzip
import itertools
import math
import os.path
import pickle
import platform
import re
import shutil
import sys
import tempfile
import uuid
import warnings
from collections import ChainMap
from collections.abc import Generator, Iterator, Mapping
from contextlib import ExitStack
from importlib import import_module
from io import BytesIO
from pathlib import Path
from typing import TYPE_CHECKING, Any, Final, Literal, cast
from unittest.mock import patch

import numpy as np
import pandas as pd
import pytest
from packaging.version import Version
from pandas.errors import OutOfBoundsDatetime

import xarray as xr
import xarray.testing as xrt
from xarray import (
    DataArray,
    Dataset,
    backends,
    load_dataarray,
    load_dataset,
    open_dataarray,
    open_dataset,
    open_mfdataset,
    save_mfdataset,
)
from xarray.backends.common import robust_getitem
from xarray.backends.h5netcdf_ import H5netcdfBackendEntrypoint
from xarray.backends.netcdf3 import _nc3_dtype_coercions
from xarray.backends.netCDF4_ import (
    NetCDF4BackendEntrypoint,
    _extract_nc4_variable_encoding,
)
from xarray.backends.pydap_ import PydapDataStore
from xarray.backends.scipy_ import ScipyBackendEntrypoint
from xarray.backends.zarr import ZarrStore
from xarray.coders import CFDatetimeCoder, CFTimedeltaCoder
from xarray.coding.cftime_offsets import date_range
from xarray.coding.strings import check_vlen_dtype, create_vlen_dtype
from xarray.coding.variables import SerializationWarning
from xarray.conventions import encode_dataset_coordinates
from xarray.core import indexing
from xarray.core.indexes import PandasIndex
from xarray.core.options import set_options
from xarray.core.types import PDDatetimeUnitOptions
from xarray.core.utils import module_available
from xarray.namedarray.pycompat import array_type
from xarray.structure.alignment import AlignmentError
from xarray.tests import (
    assert_allclose,
    assert_array_equal,
    assert_equal,
    assert_identical,
    assert_no_warnings,
    has_dask,
    has_h5netcdf_1_4_0_or_above,
    has_netCDF4,
    has_numpy_2,
    has_scipy,
    has_zarr,
    has_zarr_v3,
    has_zarr_v3_async_oindex,
    has_zarr_v3_dtypes,
    mock,
    network,
    parametrize_zarr_format,
    requires_cftime,
    requires_dask,
    requires_fsspec,
    requires_h5netcdf,
    requires_h5netcdf_1_4_0_or_above,
    requires_h5netcdf_ros3,
    requires_iris,
    requires_netcdf,
    requires_netCDF4,
    requires_netCDF4_1_6_2_or_above,
    requires_netCDF4_1_7_0_or_above,
    requires_pydap,
    requires_scipy,
    requires_scipy_or_netCDF4,
    requires_zarr,
    requires_zarr_v3,
)
from xarray.tests.test_coding_times import (
    _ALL_CALENDARS,
    _NON_STANDARD_CALENDARS,
    _STANDARD_CALENDARS,
)
from xarray.tests.test_dataset import (
    create_append_string_length_mismatch_test_data,
    create_append_test_data,
    create_test_data,
)

with contextlib.suppress(ImportError):
    import netCDF4 as nc4

try:
    import dask
    import dask.array as da
except ImportError:
    pass


if has_zarr:
    import zarr
    import zarr.codecs

    if has_zarr_v3:
        from zarr.storage import MemoryStore as KVStore
        from zarr.storage import WrapperStore

        ZARR_FORMATS = [2, 3]
    else:
        ZARR_FORMATS = [2]
        try:
            from zarr import (  # type: ignore[attr-defined,no-redef,unused-ignore]
                KVStoreV3 as KVStore,
            )
        except ImportError:
            KVStore = None  # type: ignore[assignment,misc,unused-ignore]

        WrapperStore = object  # type: ignore[assignment,misc,unused-ignore]
else:
    KVStore = None  # type: ignore[assignment,misc,unused-ignore]
    WrapperStore = object  # type: ignore[assignment,misc,unused-ignore]
    ZARR_FORMATS = []


@pytest.fixture(scope="module", params=ZARR_FORMATS)
def default_zarr_format(request) -> Generator[None, None]:
    if has_zarr_v3:
        with zarr.config.set(default_zarr_format=request.param):
            yield
    else:
        yield


def skip_if_zarr_format_3(reason: str):
    if has_zarr_v3 and zarr.config["default_zarr_format"] == 3:
        pytest.skip(reason=f"Unsupported with zarr_format=3: {reason}")


def skip_if_zarr_format_2(reason: str):
    if not has_zarr_v3 or (zarr.config["default_zarr_format"] == 2):
        pytest.skip(reason=f"Unsupported with zarr_format=2: {reason}")


ON_WINDOWS = sys.platform == "win32"
default_value = object()
dask_array_type = array_type("dask")

if TYPE_CHECKING:
    from xarray.backends.api import T_NetcdfEngine, T_NetcdfTypes


def open_example_dataset(name, *args, **kwargs) -> Dataset:
    return open_dataset(
        os.path.join(os.path.dirname(__file__), "data", name), *args, **kwargs
    )


def open_example_mfdataset(names, *args, **kwargs) -> Dataset:
    return open_mfdataset(
        [os.path.join(os.path.dirname(__file__), "data", name) for name in names],
        *args,
        **kwargs,
    )


def create_masked_and_scaled_data(dtype: np.dtype) -> Dataset:
    x = np.array([np.nan, np.nan, 10, 10.1, 10.2], dtype=dtype)
    encoding = {
        "_FillValue": -1,
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
        "dtype": "i2",
    }
    return Dataset({"x": ("t", x, {}, encoding)})


def create_encoded_masked_and_scaled_data(dtype: np.dtype) -> Dataset:
    attributes = {
        "_FillValue": -1,
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    return Dataset(
        {"x": ("t", np.array([-1, -1, 0, 1, 2], dtype=np.int16), attributes)}
    )


def create_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
    encoding = {
        "_FillValue": -1,
        "_Unsigned": "true",
        "dtype": "i1",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    x = np.array([10.0, 10.1, 22.7, 22.8, np.nan], dtype=dtype)
    return Dataset({"x": ("t", x, {}, encoding)})


def create_encoded_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
    # These are values as written to the file: the _FillValue will
    # be represented in the signed form.
    attributes = {
        "_FillValue": -1,
        "_Unsigned": "true",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    # Create unsigned data corresponding to [0, 1, 127, 128, 255] unsigned
    sb = np.asarray([0, 1, 127, -128, -1], dtype="i1")
    return Dataset({"x": ("t", sb, attributes)})


def create_bad_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
    encoding = {
        "_FillValue": 255,
        "_Unsigned": True,
        "dtype": "i1",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    x = np.array([10.0, 10.1, 22.7, 22.8, np.nan], dtype=dtype)
    return Dataset({"x": ("t", x, {}, encoding)})


def create_bad_encoded_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
    # These are values as written to the file: the _FillValue will
    # be represented in the signed form.
    attributes = {
        "_FillValue": -1,
        "_Unsigned": True,
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    # Create signed data corresponding to [0, 1, 127, 128, 255] unsigned
    sb = np.asarray([0, 1, 127, -128, -1], dtype="i1")
    return Dataset({"x": ("t", sb, attributes)})


def create_signed_masked_scaled_data(dtype: np.dtype) -> Dataset:
    encoding = {
        "_FillValue": -127,
        "_Unsigned": "false",
        "dtype": "i1",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    x = np.array([-1.0, 10.1, 22.7, np.nan], dtype=dtype)
    return Dataset({"x": ("t", x, {}, encoding)})


def create_encoded_signed_masked_scaled_data(dtype: np.dtype) -> Dataset:
    # These are values as written to the file: the _FillValue will
    # be represented in the signed form.
    attributes = {
        "_FillValue": -127,
        "_Unsigned": "false",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    # Create signed data corresponding to [0, 1, 127, 128, 255] unsigned
    sb = np.asarray([-110, 1, 127, -127], dtype="i1")
    return Dataset({"x": ("t", sb, attributes)})


def create_unsigned_false_masked_scaled_data(dtype: np.dtype) -> Dataset:
    encoding = {
        "_FillValue": 255,
        "_Unsigned": "false",
        "dtype": "u1",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    x = np.array([-1.0, 10.1, 22.7, np.nan], dtype=dtype)
    return Dataset({"x": ("t", x, {}, encoding)})


def create_encoded_unsigned_false_masked_scaled_data(dtype: np.dtype) -> Dataset:
    # These are values as written to the file: the _FillValue will
    # be represented in the unsigned form.
    attributes = {
        "_FillValue": 255,
        "_Unsigned": "false",
        "add_offset": dtype.type(10),
        "scale_factor": dtype.type(0.1),
    }
    # Create unsigned data corresponding to [-110, 1, 127, 255] signed
    sb = np.asarray([146, 1, 127, 255], dtype="u1")
    return Dataset({"x": ("t", sb, attributes)})


def create_boolean_data() -> Dataset:
    attributes = {"units": "-"}
    return Dataset(
        {
            "x": (
                ("t", "x"),
                [[False, True, False, True], [True, False, False, True]],
                attributes,
            )
        }
    )


class TestCommon:
    def test_robust_getitem(self) -> None:
        class UnreliableArrayFailure(Exception):
            pass

        class UnreliableArray:
            def __init__(self, array, failures=1):
                self.array = array
                self.failures = failures

            def __getitem__(self, key):
                if self.failures > 0:
                    self.failures -= 1
                    raise UnreliableArrayFailure
                return self.array[key]

        array = UnreliableArray([0])
        with pytest.raises(UnreliableArrayFailure):
            array[0]
        assert array[0] == 0

        actual = robust_getitem(array, 0, catch=UnreliableArrayFailure, initial_delay=0)
        assert actual == 0


class NetCDF3Only:
    netcdf3_formats: tuple[T_NetcdfTypes, ...] = ("NETCDF3_CLASSIC", "NETCDF3_64BIT")

    @pytest.mark.asyncio
    @pytest.mark.skip(reason="NetCDF backends don't support async loading")
    async def test_load_async(self) -> None:
        pass

    @requires_scipy
    def test_dtype_coercion_error(self) -> None:
        """Failing dtype coercion should lead to an error"""
        for dtype, format in itertools.product(
            _nc3_dtype_coercions, self.netcdf3_formats
        ):
            if dtype == "bool":
                # coerced upcast (bool to int8) ==> can never fail
                continue

            # Using the largest representable value, create some data that will
            # no longer compare equal after the coerced downcast
            maxval = np.iinfo(dtype).max
            x = np.array([0, 1, 2, maxval], dtype=dtype)
            ds = Dataset({"x": ("t", x, {})})

            with create_tmp_file(allow_cleanup_failure=False) as path:
                with pytest.raises(ValueError, match="could not safely cast"):
                    ds.to_netcdf(path, format=format)


class DatasetIOBase:
    engine: T_NetcdfEngine | None = None
    file_format: T_NetcdfTypes | None = None

    def create_store(self):
        raise NotImplementedError()

    @contextlib.contextmanager
    def roundtrip(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file(allow_cleanup_failure=allow_cleanup_failure) as path:
            self.save(data, path, **save_kwargs)
            with self.open(path, **open_kwargs) as ds:
                yield ds

    @contextlib.contextmanager
    def roundtrip_append(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file(allow_cleanup_failure=allow_cleanup_failure) as path:
            for i, key in enumerate(data.variables):
                mode = "a" if i > 0 else "w"
                self.save(data[[key]], path, mode=mode, **save_kwargs)
            with self.open(path, **open_kwargs) as ds:
                yield ds

    # The save/open methods may be overwritten below
    def save(self, dataset, path, **kwargs):
        return dataset.to_netcdf(
            path, engine=self.engine, format=self.file_format, **kwargs
        )

    @contextlib.contextmanager
    def open(self, path, **kwargs):
        with open_dataset(path, engine=self.engine, **kwargs) as ds:
            yield ds

    def test_zero_dimensional_variable(self) -> None:
        expected = create_test_data()
        expected["float_var"] = ([], 1.0e9, {"units": "units of awesome"})
        expected["bytes_var"] = ([], b"foobar")
        expected["string_var"] = ([], "foobar")
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_write_store(self) -> None:
        expected = create_test_data()
        with self.create_store() as store:
            expected.dump_to_store(store)
            # we need to cf decode the store because it has time and
            # non-dimension coordinates
            with xr.decode_cf(store) as actual:
                assert_allclose(expected, actual)

    def check_dtypes_roundtripped(self, expected, actual):
        for k in expected.variables:
            expected_dtype = expected.variables[k].dtype

            # For NetCDF3, the backend should perform dtype coercion
            if (
                isinstance(self, NetCDF3Only)
                and str(expected_dtype) in _nc3_dtype_coercions
            ):
                expected_dtype = np.dtype(_nc3_dtype_coercions[str(expected_dtype)])

            actual_dtype = actual.variables[k].dtype
            # TODO: check expected behavior for string dtypes more carefully
            string_kinds = {"O", "S", "U"}
            assert expected_dtype == actual_dtype or (
                expected_dtype.kind in string_kinds
                and actual_dtype.kind in string_kinds
            )

    def test_roundtrip_test_data(self) -> None:
        expected = create_test_data()
        with self.roundtrip(expected) as actual:
            self.check_dtypes_roundtripped(expected, actual)
            assert_identical(expected, actual)

    def test_load(self) -> None:
        # Note: please keep this in sync with test_load_async below as much as possible!
        expected = create_test_data()

        @contextlib.contextmanager
        def assert_loads(vars=None):
            if vars is None:
                vars = expected
            with self.roundtrip(expected) as actual:
                for k, v in actual.variables.items():
                    # IndexVariables are eagerly loaded into memory
                    assert v._in_memory == (k in actual.dims)
                yield actual
                for k, v in actual.variables.items():
                    if k in vars:
                        assert v._in_memory
                assert_identical(expected, actual)

        with pytest.raises(AssertionError):
            # make sure the contextmanager works!
            with assert_loads() as ds:
                pass

        with assert_loads() as ds:
            ds.load()

        with assert_loads(["var1", "dim1", "dim2"]) as ds:
            ds["var1"].load()

        # verify we can read data even after closing the file
        with self.roundtrip(expected) as ds:
            actual = ds.load()
        assert_identical(expected, actual)

    @pytest.mark.asyncio
    async def test_load_async(self) -> None:
        # Note: please keep this in sync with test_load above as much as possible!

        # Copied from `test_load` on the base test class, but won't work for netcdf
        expected = create_test_data()

        @contextlib.contextmanager
        def assert_loads(vars=None):
            if vars is None:
                vars = expected
            with self.roundtrip(expected) as actual:
                for k, v in actual.variables.items():
                    # IndexVariables are eagerly loaded into memory
                    assert v._in_memory == (k in actual.dims)
                yield actual
                for k, v in actual.variables.items():
                    if k in vars:
                        assert v._in_memory
                assert_identical(expected, actual)

        with pytest.raises(AssertionError):
            # make sure the contextmanager works!
            with assert_loads() as ds:
                pass

        with assert_loads() as ds:
            await ds.load_async()

        with assert_loads(["var1", "dim1", "dim2"]) as ds:
            await ds["var1"].load_async()

        # verify we can read data even after closing the file
        with self.roundtrip(expected) as ds:
            actual = await ds.load_async()
        assert_identical(expected, actual)

    def test_dataset_compute(self) -> None:
        expected = create_test_data()

        with self.roundtrip(expected) as actual:
            # Test Dataset.compute()
            for k, v in actual.variables.items():
                # IndexVariables are eagerly cached
                assert v._in_memory == (k in actual.dims)

            computed = actual.compute()

            for k, v in actual.variables.items():
                assert v._in_memory == (k in actual.dims)
            for v in computed.variables.values():
                assert v._in_memory

            assert_identical(expected, actual)
            assert_identical(expected, computed)

    def test_pickle(self) -> None:
        expected = Dataset({"foo": ("x", [42])})
        with self.roundtrip(expected, allow_cleanup_failure=ON_WINDOWS) as roundtripped:
            with roundtripped:
                # Windows doesn't like reopening an already open file
                raw_pickle = pickle.dumps(roundtripped)
            with pickle.loads(raw_pickle) as unpickled_ds:
                assert_identical(expected, unpickled_ds)

    @pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
    def test_pickle_dataarray(self) -> None:
        expected = Dataset({"foo": ("x", [42])})
        with self.roundtrip(expected, allow_cleanup_failure=ON_WINDOWS) as roundtripped:
            with roundtripped:
                raw_pickle = pickle.dumps(roundtripped["foo"])
            # TODO: figure out how to explicitly close the file for the
            # unpickled DataArray?
            unpickled = pickle.loads(raw_pickle)
            assert_identical(expected["foo"], unpickled)

    def test_dataset_caching(self) -> None:
        expected = Dataset({"foo": ("x", [5, 6, 7])})
        with self.roundtrip(expected) as actual:
            assert isinstance(actual.foo.variable._data, indexing.MemoryCachedArray)
            assert not actual.foo.variable._in_memory
            _ = actual.foo.values  # cache
            assert actual.foo.variable._in_memory

        with self.roundtrip(expected, open_kwargs={"cache": False}) as actual:
            assert isinstance(actual.foo.variable._data, indexing.CopyOnWriteArray)
            assert not actual.foo.variable._in_memory
            _ = actual.foo.values  # no caching
            assert not actual.foo.variable._in_memory

    @pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
    def test_roundtrip_None_variable(self) -> None:
        expected = Dataset({None: (("x", "y"), [[0, 1], [2, 3]])})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_object_dtype(self) -> None:
        floats = np.array([0.0, 0.0, 1.0, 2.0, 3.0], dtype=object)
        floats_nans = np.array([np.nan, np.nan, 1.0, 2.0, 3.0], dtype=object)
        bytes_ = np.array([b"ab", b"cdef", b"g"], dtype=object)
        bytes_nans = np.array([b"ab", b"cdef", np.nan], dtype=object)
        strings = np.array(["ab", "cdef", "g"], dtype=object)
        strings_nans = np.array(["ab", "cdef", np.nan], dtype=object)
        all_nans = np.array([np.nan, np.nan], dtype=object)
        original = Dataset(
            {
                "floats": ("a", floats),
                "floats_nans": ("a", floats_nans),
                "bytes": ("b", bytes_),
                "bytes_nans": ("b", bytes_nans),
                "strings": ("b", strings),
                "strings_nans": ("b", strings_nans),
                "all_nans": ("c", all_nans),
                "nan": ([], np.nan),
            }
        )
        expected = original.copy(deep=True)
        with self.roundtrip(original) as actual:
            try:
                assert_identical(expected, actual)
            except AssertionError:
                # Most stores use '' for nans in strings, but some don't.
                # First try the ideal case (where the store returns exactly)
                # the original Dataset), then try a more realistic case.
                # This currently includes all netCDF files when encoding is not
                # explicitly set.
                # https://github.com/pydata/xarray/issues/1647
                # Also Zarr
                expected["bytes_nans"][-1] = b""
                expected["strings_nans"][-1] = ""
                assert_identical(expected, actual)

    def test_roundtrip_string_data(self) -> None:
        expected = Dataset({"x": ("t", ["ab", "cdef"])})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_string_encoded_characters(self) -> None:
        expected = Dataset({"x": ("t", ["ab", "cdef"])})
        expected["x"].encoding["dtype"] = "S1"
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)
            assert actual["x"].encoding["_Encoding"] == "utf-8"

        expected["x"].encoding["_Encoding"] = "ascii"
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)
            assert actual["x"].encoding["_Encoding"] == "ascii"

    def test_roundtrip_numpy_datetime_data(self) -> None:
        times = pd.to_datetime(["2000-01-01", "2000-01-02", "NaT"], unit="ns")
        expected = Dataset({"t": ("t", times), "t0": times[0]})
        kwargs = {"encoding": {"t0": {"units": "days since 1950-01-01"}}}
        with self.roundtrip(expected, save_kwargs=kwargs) as actual:
            assert_identical(expected, actual)
            assert actual.t0.encoding["units"] == "days since 1950-01-01"

    @requires_cftime
    def test_roundtrip_cftime_datetime_data(self) -> None:
        from xarray.tests.test_coding_times import _all_cftime_date_types

        date_types = _all_cftime_date_types()
        for date_type in date_types.values():
            times = [date_type(1, 1, 1), date_type(1, 1, 2)]
            expected = Dataset({"t": ("t", times), "t0": times[0]})
            kwargs = {"encoding": {"t0": {"units": "days since 0001-01-01"}}}
            expected_decoded_t = np.array(times)
            expected_decoded_t0 = np.array([date_type(1, 1, 1)])
            expected_calendar = times[0].calendar

            with warnings.catch_warnings():
                if expected_calendar in {"proleptic_gregorian", "standard"}:
                    warnings.filterwarnings("ignore", "Unable to decode time axis")

                with self.roundtrip(expected, save_kwargs=kwargs) as actual:
                    # proleptic gregorian will be decoded into numpy datetime64
                    # fixing to expectations
                    if actual.t.dtype.kind == "M":
                        dtype = actual.t.dtype
                        expected_decoded_t = expected_decoded_t.astype(dtype)
                        expected_decoded_t0 = expected_decoded_t0.astype(dtype)
                    assert_array_equal(actual.t.values, expected_decoded_t)
                    assert (
                        actual.t.encoding["units"]
                        == "days since 0001-01-01 00:00:00.000000"
                    )
                    assert actual.t.encoding["calendar"] == expected_calendar
                    assert_array_equal(actual.t0.values, expected_decoded_t0)
                    assert actual.t0.encoding["units"] == "days since 0001-01-01"
                    assert actual.t.encoding["calendar"] == expected_calendar

    def test_roundtrip_timedelta_data(self) -> None:
        # todo: suggestion from review:
        #  roundtrip large microsecond or coarser resolution timedeltas,
        #  though we cannot test that until we fix the timedelta decoding
        #  to support large ranges
        time_deltas = pd.to_timedelta(["1h", "2h", "NaT"]).as_unit("s")  # type: ignore[arg-type, unused-ignore]
        encoding = {"units": "seconds"}
        expected = Dataset({"td": ("td", time_deltas), "td0": time_deltas[0]})
        expected["td"].encoding = encoding
        expected["td0"].encoding = encoding
        with self.roundtrip(
            expected, open_kwargs={"decode_timedelta": CFTimedeltaCoder(time_unit="ns")}
        ) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_timedelta_data_via_dtype(
        self, time_unit: PDDatetimeUnitOptions
    ) -> None:
        time_deltas = pd.to_timedelta(["1h", "2h", "NaT"]).as_unit(time_unit)  # type: ignore[arg-type, unused-ignore]
        expected = Dataset(
            {"td": ("td", time_deltas), "td0": time_deltas[0].to_numpy()}
        )
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_float64_data(self) -> None:
        expected = Dataset({"x": ("y", np.array([1.0, 2.0, np.pi], dtype="float64"))})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    @requires_netcdf
    def test_roundtrip_example_1_netcdf(self) -> None:
        with open_example_dataset("example_1.nc") as expected:
            with self.roundtrip(expected) as actual:
                # we allow the attributes to differ since that
                # will depend on the encoding used.  For example,
                # without CF encoding 'actual' will end up with
                # a dtype attribute.
                assert_equal(expected, actual)

    def test_roundtrip_coordinates(self) -> None:
        original = Dataset(
            {"foo": ("x", [0, 1])}, {"x": [2, 3], "y": ("a", [42]), "z": ("x", [4, 5])}
        )

        with self.roundtrip(original) as actual:
            assert_identical(original, actual)

        original["foo"].encoding["coordinates"] = "y"
        with self.roundtrip(original, open_kwargs={"decode_coords": False}) as expected:
            # check roundtripping when decode_coords=False
            with self.roundtrip(
                expected, open_kwargs={"decode_coords": False}
            ) as actual:
                assert_identical(expected, actual)

    def test_roundtrip_global_coordinates(self) -> None:
        original = Dataset(
            {"foo": ("x", [0, 1])}, {"x": [2, 3], "y": ("a", [42]), "z": ("x", [4, 5])}
        )
        with self.roundtrip(original) as actual:
            assert_identical(original, actual)

        # test that global "coordinates" is as expected
        _, attrs = encode_dataset_coordinates(original)
        assert attrs["coordinates"] == "y"

        # test warning when global "coordinates" is already set
        original.attrs["coordinates"] = "foo"
        with pytest.warns(SerializationWarning):
            _, attrs = encode_dataset_coordinates(original)
            assert attrs["coordinates"] == "foo"

    def test_roundtrip_coordinates_with_space(self) -> None:
        original = Dataset(coords={"x": 0, "y z": 1})
        expected = Dataset({"y z": 1}, {"x": 0})
        with pytest.warns(SerializationWarning):
            with self.roundtrip(original) as actual:
                assert_identical(expected, actual)

    def test_roundtrip_boolean_dtype(self) -> None:
        original = create_boolean_data()
        assert original["x"].dtype == "bool"
        with self.roundtrip(original) as actual:
            assert_identical(original, actual)
            assert actual["x"].dtype == "bool"
            # this checks for preserving dtype during second roundtrip
            # see https://github.com/pydata/xarray/issues/7652#issuecomment-1476956975
            with self.roundtrip(actual) as actual2:
                assert_identical(original, actual2)
                assert actual2["x"].dtype == "bool"
            with self.roundtrip(actual) as actual3:
                # GH10536
                assert_identical(original.transpose(), actual3.transpose())

    def test_orthogonal_indexing(self) -> None:
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            indexers = {"dim1": [1, 2, 0], "dim2": [3, 2, 0, 3], "dim3": np.arange(5)}
            expected = in_memory.isel(indexers)
            actual = on_disk.isel(**indexers)
            # make sure the array is not yet loaded into memory
            assert not actual["var1"].variable._in_memory
            assert_identical(expected, actual)
            # do it twice, to make sure we're switched from orthogonal -> numpy
            # when we cached the values
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)

    def test_vectorized_indexing(self) -> None:
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            indexers = {
                "dim1": DataArray([0, 2, 0], dims="a"),
                "dim2": DataArray([0, 2, 3], dims="a"),
            }
            expected = in_memory.isel(indexers)
            actual = on_disk.isel(**indexers)
            # make sure the array is not yet loaded into memory
            assert not actual["var1"].variable._in_memory
            assert_identical(expected, actual.load())
            # do it twice, to make sure we're switched from
            # vectorized -> numpy when we cached the values
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)

        def multiple_indexing(indexers):
            # make sure a sequence of lazy indexings certainly works.
            with self.roundtrip(in_memory) as on_disk:
                actual = on_disk["var3"]
                expected = in_memory["var3"]
                for ind in indexers:
                    actual = actual.isel(ind)
                    expected = expected.isel(ind)
                    # make sure the array is not yet loaded into memory
                    assert not actual.variable._in_memory
                assert_identical(expected, actual.load())

        # two-staged vectorized-indexing
        indexers2 = [
            {
                "dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
                "dim3": DataArray([[0, 4], [1, 3], [2, 2]], dims=["a", "b"]),
            },
            {"a": DataArray([0, 1], dims=["c"]), "b": DataArray([0, 1], dims=["c"])},
        ]
        multiple_indexing(indexers2)

        # vectorized-slice mixed
        indexers3 = [
            {
                "dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
                "dim3": slice(None, 10),
            }
        ]
        multiple_indexing(indexers3)

        # vectorized-integer mixed
        indexers4 = [
            {"dim3": 0},
            {"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
            {"a": slice(None, None, 2)},
        ]
        multiple_indexing(indexers4)

        # vectorized-integer mixed
        indexers5 = [
            {"dim3": 0},
            {"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
            {"a": 1, "b": 0},
        ]
        multiple_indexing(indexers5)

    def test_vectorized_indexing_negative_step(self) -> None:
        # use dask explicitly when present
        open_kwargs: dict[str, Any] | None
        if has_dask:
            open_kwargs = {"chunks": {}}
        else:
            open_kwargs = None
        in_memory = create_test_data()

        def multiple_indexing(indexers):
            # make sure a sequence of lazy indexings certainly works.
            with self.roundtrip(in_memory, open_kwargs=open_kwargs) as on_disk:
                actual = on_disk["var3"]
                expected = in_memory["var3"]
                for ind in indexers:
                    actual = actual.isel(ind)
                    expected = expected.isel(ind)
                    # make sure the array is not yet loaded into memory
                    assert not actual.variable._in_memory
                assert_identical(expected, actual.load())

        # with negative step slice.
        indexers = [
            {
                "dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
                "dim3": slice(-1, 1, -1),
            }
        ]
        multiple_indexing(indexers)

        # with negative step slice.
        indexers = [
            {
                "dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
                "dim3": slice(-1, 1, -2),
            }
        ]
        multiple_indexing(indexers)

    def test_outer_indexing_reversed(self) -> None:
        # regression test for GH6560
        ds = xr.Dataset(
            {"z": (("t", "p", "y", "x"), np.ones((1, 1, 31, 40)))},
        )

        with self.roundtrip(ds) as on_disk:
            subset = on_disk.isel(t=[0], p=0).z[:, ::10, ::10][:, ::-1, :]
            assert subset.sizes == subset.load().sizes

    def test_isel_dataarray(self) -> None:
        # Make sure isel works lazily. GH:issue:1688
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            expected = in_memory.isel(dim2=in_memory["dim2"] < 3)
            actual = on_disk.isel(dim2=on_disk["dim2"] < 3)
            assert_identical(expected, actual)

    def validate_array_type(self, ds):
        # Make sure that only NumpyIndexingAdapter stores a bare np.ndarray.
        def find_and_validate_array(obj):
            # recursively called function. obj: array or array wrapper.
            if hasattr(obj, "array"):
                if isinstance(obj.array, indexing.ExplicitlyIndexed):
                    find_and_validate_array(obj.array)
                elif isinstance(obj.array, np.ndarray):
                    assert isinstance(obj, indexing.NumpyIndexingAdapter)
                elif isinstance(obj.array, dask_array_type):
                    assert isinstance(obj, indexing.DaskIndexingAdapter)
                elif isinstance(obj.array, pd.Index):
                    assert isinstance(obj, indexing.PandasIndexingAdapter)
                else:
                    raise TypeError(f"{type(obj.array)} is wrapped by {type(obj)}")

        for v in ds.variables.values():
            find_and_validate_array(v._data)

    def test_array_type_after_indexing(self) -> None:
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            self.validate_array_type(on_disk)
            indexers = {"dim1": [1, 2, 0], "dim2": [3, 2, 0, 3], "dim3": np.arange(5)}
            expected = in_memory.isel(indexers)
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)
            self.validate_array_type(actual)
            # do it twice, to make sure we're switched from orthogonal -> numpy
            # when we cached the values
            actual = on_disk.isel(**indexers)
            assert_identical(expected, actual)
            self.validate_array_type(actual)

    def test_dropna(self) -> None:
        # regression test for GH:issue:1694
        a = np.random.randn(4, 3)
        a[1, 1] = np.nan
        in_memory = xr.Dataset(
            {"a": (("y", "x"), a)}, coords={"y": np.arange(4), "x": np.arange(3)}
        )

        assert_identical(
            in_memory.dropna(dim="x"), in_memory.isel(x=slice(None, None, 2))
        )

        with self.roundtrip(in_memory) as on_disk:
            self.validate_array_type(on_disk)
            expected = in_memory.dropna(dim="x")
            actual = on_disk.dropna(dim="x")
            assert_identical(expected, actual)

    def test_ondisk_after_print(self) -> None:
        """Make sure print does not load file into memory"""
        in_memory = create_test_data()
        with self.roundtrip(in_memory) as on_disk:
            repr(on_disk)
            assert not on_disk["var1"]._in_memory


class CFEncodedBase(DatasetIOBase):
    def test_roundtrip_bytes_with_fill_value(self) -> None:
        values = np.array([b"ab", b"cdef", np.nan], dtype=object)
        encoding = {"_FillValue": b"X", "dtype": "S1"}
        original = Dataset({"x": ("t", values, {}, encoding)})
        expected = original.copy(deep=True)
        with self.roundtrip(original) as actual:
            assert_identical(expected, actual)

        original = Dataset({"x": ("t", values, {}, {"_FillValue": b""})})
        with self.roundtrip(original) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_string_with_fill_value_nchar(self) -> None:
        values = np.array(["ab", "cdef", np.nan], dtype=object)
        expected = Dataset({"x": ("t", values)})

        encoding = {"dtype": "S1", "_FillValue": b"X"}
        original = Dataset({"x": ("t", values, {}, encoding)})
        # Not supported yet.
        with pytest.raises(NotImplementedError):
            with self.roundtrip(original) as actual:
                assert_identical(expected, actual)

    def test_roundtrip_empty_vlen_string_array(self) -> None:
        # checks preserving vlen dtype for empty arrays GH7862
        dtype = create_vlen_dtype(str)
        original = Dataset({"a": np.array([], dtype=dtype)})
        assert check_vlen_dtype(original["a"].dtype) is str
        with self.roundtrip(original) as actual:
            assert_identical(original, actual)
            if np.issubdtype(actual["a"].dtype, object):
                # only check metadata for capable backends
                # eg. NETCDF3 based backends do not roundtrip metadata
                if actual["a"].dtype.metadata is not None:
                    assert check_vlen_dtype(actual["a"].dtype) is str
            else:
                # zarr v3 sends back "<U1"
                assert np.issubdtype(actual["a"].dtype, np.dtype("=U1"))

    @pytest.mark.parametrize(
        "decoded_fn, encoded_fn",
        [
            (
                create_unsigned_masked_scaled_data,
                create_encoded_unsigned_masked_scaled_data,
            ),
            pytest.param(
                create_bad_unsigned_masked_scaled_data,
                create_bad_encoded_unsigned_masked_scaled_data,
                marks=pytest.mark.xfail(reason="Bad _Unsigned attribute."),
            ),
            (
                create_signed_masked_scaled_data,
                create_encoded_signed_masked_scaled_data,
            ),
            (
                create_unsigned_false_masked_scaled_data,
                create_encoded_unsigned_false_masked_scaled_data,
            ),
            (create_masked_and_scaled_data, create_encoded_masked_and_scaled_data),
        ],
    )
    @pytest.mark.xfail
    @pytest.mark.parametrize("dtype", [np.dtype("float64"), np.dtype("float32")])
    def test_roundtrip_mask_and_scale(self, decoded_fn, encoded_fn, dtype) -> None:
        if hasattr(self, "zarr_version") and dtype == np.float32:
            pytest.skip("float32 will be treated as float64 in zarr")
        decoded = decoded_fn(dtype)
        encoded = encoded_fn(dtype)
        if decoded["x"].encoding["dtype"] == "u1" and not (
            (self.engine == "netcdf4" and self.file_format is None)
            or self.file_format == "NETCDF4"
        ):
            pytest.skip("uint8 data can't be written to non-NetCDF4 data")

        with self.roundtrip(decoded) as actual:
            for k in decoded.variables:
                assert decoded.variables[k].dtype == actual.variables[k].dtype
                # CF _FillValue is always on-disk type
                assert (
                    decoded.variables[k].encoding["_FillValue"]
                    == actual.variables[k].encoding["_FillValue"]
                )
            assert_allclose(decoded, actual, decode_bytes=False)

        with self.roundtrip(decoded, open_kwargs=dict(decode_cf=False)) as actual:
            # TODO: this assumes that all roundtrips will first
            # encode.  Is that something we want to test for?
            for k in encoded.variables:
                assert encoded.variables[k].dtype == actual.variables[k].dtype
                # CF _FillValue is always on-disk type
                assert (
                    decoded.variables[k].encoding["_FillValue"]
                    == actual.variables[k].attrs["_FillValue"]
                )
            assert_allclose(encoded, actual, decode_bytes=False)

        with self.roundtrip(encoded, open_kwargs=dict(decode_cf=False)) as actual:
            for k in encoded.variables:
                assert encoded.variables[k].dtype == actual.variables[k].dtype
                # CF _FillValue is always on-disk type
                assert (
                    encoded.variables[k].attrs["_FillValue"]
                    == actual.variables[k].attrs["_FillValue"]
                )
            assert_allclose(encoded, actual, decode_bytes=False)

        # make sure roundtrip encoding didn't change the
        # original dataset.
        assert_allclose(encoded, encoded_fn(dtype), decode_bytes=False)

        with self.roundtrip(encoded) as actual:
            for k in decoded.variables:
                assert decoded.variables[k].dtype == actual.variables[k].dtype
            assert_allclose(decoded, actual, decode_bytes=False)

    @pytest.mark.parametrize(
        ("fill_value", "exp_fill_warning"),
        [
            (np.int8(-1), False),
            (np.uint8(255), True),
            (-1, False),
            (255, True),
        ],
    )
    def test_roundtrip_unsigned(self, fill_value, exp_fill_warning):
        @contextlib.contextmanager
        def _roundtrip_with_warnings(*args, **kwargs):
            is_np2 = module_available("numpy", minversion="2.0.0.dev0")
            if exp_fill_warning and is_np2:
                warn_checker: contextlib.AbstractContextManager = pytest.warns(
                    SerializationWarning,
                    match="_FillValue attribute can't be represented",
                )
            else:
                warn_checker = contextlib.nullcontext()
            with warn_checker:
                with self.roundtrip(*args, **kwargs) as actual:
                    yield actual

        # regression/numpy2 test for
        encoding = {
            "_FillValue": fill_value,
            "_Unsigned": "true",
            "dtype": "i1",
        }
        x = np.array([0, 1, 127, 128, 254, np.nan], dtype=np.float32)
        decoded = Dataset({"x": ("t", x, {}, encoding)})

        attributes = {
            "_FillValue": fill_value,
            "_Unsigned": "true",
        }
        # Create unsigned data corresponding to [0, 1, 127, 128, 255] unsigned
        sb = np.asarray([0, 1, 127, -128, -2, -1], dtype="i1")
        encoded = Dataset({"x": ("t", sb, attributes)})
        unsigned_dtype = np.dtype(f"u{sb.dtype.itemsize}")

        with _roundtrip_with_warnings(decoded) as actual:
            for k in decoded.variables:
                assert decoded.variables[k].dtype == actual.variables[k].dtype
                exp_fv = decoded.variables[k].encoding["_FillValue"]
                if exp_fill_warning:
                    exp_fv = np.array(exp_fv, dtype=unsigned_dtype).view(sb.dtype)
                assert exp_fv == actual.variables[k].encoding["_FillValue"]
            assert_allclose(decoded, actual, decode_bytes=False)

        with _roundtrip_with_warnings(
            decoded, open_kwargs=dict(decode_cf=False)
        ) as actual:
            for k in encoded.variables:
                assert encoded.variables[k].dtype == actual.variables[k].dtype
                exp_fv = encoded.variables[k].attrs["_FillValue"]
                if exp_fill_warning:
                    exp_fv = np.array(exp_fv, dtype=unsigned_dtype).view(sb.dtype)
                assert exp_fv == actual.variables[k].attrs["_FillValue"]
            assert_allclose(encoded, actual, decode_bytes=False)

    @staticmethod
    def _create_cf_dataset():
        original = Dataset(
            dict(
                variable=(
                    ("ln_p", "latitude", "longitude"),
                    np.arange(8, dtype="f4").reshape(2, 2, 2),
                    {"ancillary_variables": "std_devs det_lim"},
                ),
                std_devs=(
                    ("ln_p", "latitude", "longitude"),
                    np.arange(0.1, 0.9, 0.1).reshape(2, 2, 2),
                    {"standard_name": "standard_error"},
                ),
                det_lim=(
                    (),
                    0.1,
                    {"standard_name": "detection_minimum"},
                ),
            ),
            dict(
                latitude=("latitude", [0, 1], {"units": "degrees_north"}),
                longitude=("longitude", [0, 1], {"units": "degrees_east"}),
                latlon=((), -1, {"grid_mapping_name": "latitude_longitude"}),
                latitude_bnds=(("latitude", "bnds2"), [[0, 1], [1, 2]]),
                longitude_bnds=(("longitude", "bnds2"), [[0, 1], [1, 2]]),
                areas=(
                    ("latitude", "longitude"),
                    [[1, 1], [1, 1]],
                    {"units": "degree^2"},
                ),
                ln_p=(
                    "ln_p",
                    [1.0, 0.5],
                    {
                        "standard_name": "atmosphere_ln_pressure_coordinate",
                        "computed_standard_name": "air_pressure",
                    },
                ),
                P0=((), 1013.25, {"units": "hPa"}),
            ),
        )
        original["variable"].encoding.update(
            {"cell_measures": "area: areas", "grid_mapping": "latlon"},
        )
        original.coords["latitude"].encoding.update(
            dict(grid_mapping="latlon", bounds="latitude_bnds")
        )
        original.coords["longitude"].encoding.update(
            dict(grid_mapping="latlon", bounds="longitude_bnds")
        )
        original.coords["ln_p"].encoding.update({"formula_terms": "p0: P0 lev : ln_p"})
        return original

    def test_grid_mapping_and_bounds_are_not_coordinates_in_file(self) -> None:
        original = self._create_cf_dataset()
        with self.roundtrip(original, open_kwargs={"decode_coords": False}) as ds:
            assert ds.coords["latitude"].attrs["bounds"] == "latitude_bnds"
            assert ds.coords["longitude"].attrs["bounds"] == "longitude_bnds"
            assert "coordinates" not in ds["variable"].attrs
            assert "coordinates" not in ds.attrs

    def test_coordinate_variables_after_dataset_roundtrip(self) -> None:
        original = self._create_cf_dataset()
        with self.roundtrip(original, open_kwargs={"decode_coords": "all"}) as actual:
            assert_identical(actual, original)

        with self.roundtrip(original) as actual:
            expected = original.reset_coords(
                ["latitude_bnds", "longitude_bnds", "areas", "P0", "latlon"]
            )
            # equal checks that coords and data_vars are equal which
            # should be enough
            # identical would require resetting a number of attributes
            # skip that.
            assert_equal(actual, expected)

    def test_grid_mapping_and_bounds_are_coordinates_after_dataarray_roundtrip(
        self,
    ) -> None:
        original = self._create_cf_dataset()
        # The DataArray roundtrip should have the same warnings as the
        # Dataset, but we already tested for those, so just go for the
        # new warnings.  It would appear that there is no way to tell
        # pytest "This warning and also this warning should both be
        # present".
        # xarray/tests/test_conventions.py::TestCFEncodedDataStore
        # needs the to_dataset. The other backends should be fine
        # without it.
        with pytest.warns(
            UserWarning,
            match=(
                r"Variable\(s\) referenced in bounds not in variables: "
                r"\['l(at|ong)itude_bnds'\]"
            ),
        ):
            with self.roundtrip(
                original["variable"].to_dataset(), open_kwargs={"decode_coords": "all"}
            ) as actual:
                assert_identical(actual, original["variable"].to_dataset())

    @requires_iris
    @requires_netcdf
    def test_coordinate_variables_after_iris_roundtrip(self) -> None:
        original = self._create_cf_dataset()
        iris_cube = original["variable"].to_iris()
        actual = DataArray.from_iris(iris_cube)
        # Bounds will be missing (xfail)
        del original.coords["latitude_bnds"], original.coords["longitude_bnds"]
        # Ancillary vars will be missing
        # Those are data_vars, and will be dropped when grabbing the variable
        assert_identical(actual, original["variable"])

    def test_coordinates_encoding(self) -> None:
        def equals_latlon(obj):
            return obj in {"lat lon", "lon lat"}

        original = Dataset(
            {"temp": ("x", [0, 1]), "precip": ("x", [0, -1])},
            {"lat": ("x", [2, 3]), "lon": ("x", [4, 5])},
        )
        with self.roundtrip(original) as actual:
            assert_identical(actual, original)
        with self.roundtrip(original, open_kwargs=dict(decode_coords=False)) as ds:
            assert equals_latlon(ds["temp"].attrs["coordinates"])
            assert equals_latlon(ds["precip"].attrs["coordinates"])
            assert "coordinates" not in ds.attrs
            assert "coordinates" not in ds["lat"].attrs
            assert "coordinates" not in ds["lon"].attrs

        modified = original.drop_vars(["temp", "precip"])
        with self.roundtrip(modified) as actual:
            assert_identical(actual, modified)
        with self.roundtrip(modified, open_kwargs=dict(decode_coords=False)) as ds:
            assert equals_latlon(ds.attrs["coordinates"])
            assert "coordinates" not in ds["lat"].attrs
            assert "coordinates" not in ds["lon"].attrs

        original["temp"].encoding["coordinates"] = "lat"
        with self.roundtrip(original) as actual:
            assert_identical(actual, original)
        original["precip"].encoding["coordinates"] = "lat"
        with self.roundtrip(original, open_kwargs=dict(decode_coords=True)) as ds:
            assert "lon" not in ds["temp"].encoding["coordinates"]
            assert "lon" not in ds["precip"].encoding["coordinates"]
            assert "coordinates" not in ds["lat"].encoding
            assert "coordinates" not in ds["lon"].encoding

    def test_roundtrip_endian(self) -> None:
        skip_if_zarr_format_3("zarr v3 has not implemented endian support yet")
        ds = Dataset(
            {
                "x": np.arange(3, 10, dtype=">i2"),
                "y": np.arange(3, 20, dtype="<i4"),
                "z": np.arange(3, 30, dtype="=i8"),
                "w": ("x", np.arange(3, 10, dtype=float)),
            }
        )

        with self.roundtrip(ds) as actual:
            # technically these datasets are slightly different,
            # one hold mixed endian data (ds) the other should be
            # all big endian (actual).  assertDatasetIdentical
            # should still pass though.
            assert_identical(ds, actual)

        if self.engine == "netcdf4":
            ds["z"].encoding["endian"] = "big"
            with pytest.raises(NotImplementedError):
                with self.roundtrip(ds) as actual:
                    pass

    def test_invalid_dataarray_names_raise(self) -> None:
        te = (TypeError, "string or None")
        ve = (ValueError, "string must be length 1 or")
        data = np.random.random((2, 2))
        da = xr.DataArray(data)
        for name, (error, msg) in zip(
            [0, (4, 5), True, ""], [te, te, te, ve], strict=True
        ):
            ds = Dataset({name: da})
            with pytest.raises(error) as excinfo:
                with self.roundtrip(ds):
                    pass
            excinfo.match(msg)
            excinfo.match(repr(name))

    def test_encoding_kwarg(self) -> None:
        ds = Dataset({"x": ("y", np.arange(10.0))})

        kwargs: dict[str, Any] = dict(encoding={"x": {"dtype": "f4"}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            encoded_dtype = actual.x.encoding["dtype"]
            # On OS X, dtype sometimes switches endianness for unclear reasons
            assert encoded_dtype.kind == "f" and encoded_dtype.itemsize == 4
        assert ds.x.encoding == {}

        kwargs = dict(encoding={"x": {"foo": "bar"}})
        with pytest.raises(ValueError, match=r"unexpected encoding"):
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                pass

        kwargs = dict(encoding={"x": "foo"})
        with pytest.raises(ValueError, match=r"must be castable"):
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                pass

        kwargs = dict(encoding={"invalid": {}})
        with pytest.raises(KeyError):
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                pass

    def test_encoding_unlimited_dims(self) -> None:
        if isinstance(self, ZarrBase):
            pytest.skip("No unlimited_dims handled in zarr.")
        ds = Dataset({"x": ("y", np.arange(10.0))})
        with self.roundtrip(ds, save_kwargs=dict(unlimited_dims=["y"])) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        # Regression test for https://github.com/pydata/xarray/issues/2134
        with self.roundtrip(ds, save_kwargs=dict(unlimited_dims="y")) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        ds.encoding = {"unlimited_dims": ["y"]}
        with self.roundtrip(ds) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        # Regression test for https://github.com/pydata/xarray/issues/2134
        ds.encoding = {"unlimited_dims": "y"}
        with self.roundtrip(ds) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        # test unlimited_dims validation
        # https://github.com/pydata/xarray/issues/10549
        ds.encoding = {"unlimited_dims": "z"}
        with pytest.raises(
            ValueError,
            match=r"Unlimited dimension\(s\) .* declared in 'dataset.encoding'",
        ):
            with self.roundtrip(ds) as _:
                pass
        ds.encoding = {}
        with pytest.raises(
            ValueError,
            match=r"Unlimited dimension\(s\) .* declared in 'unlimited_dims-kwarg'",
        ):
            with self.roundtrip(ds, save_kwargs=dict(unlimited_dims=["z"])) as _:
                pass

    def test_encoding_kwarg_dates(self) -> None:
        ds = Dataset({"t": pd.date_range("2000-01-01", periods=3)})
        units = "days since 1900-01-01"
        kwargs = dict(encoding={"t": {"units": units}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.t.encoding["units"] == units
            assert_identical(actual, ds)

    def test_encoding_kwarg_fixed_width_string(self) -> None:
        # regression test for GH2149
        for strings in [[b"foo", b"bar", b"baz"], ["foo", "bar", "baz"]]:
            ds = Dataset({"x": strings})
            kwargs = dict(encoding={"x": {"dtype": "S1"}})
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                assert actual["x"].encoding["dtype"] == "S1"
                assert_identical(actual, ds)

    def test_default_fill_value(self) -> None:
        # Test default encoding for float:
        ds = Dataset({"x": ("y", np.arange(10.0))})
        kwargs = dict(encoding={"x": {"dtype": "f4"}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert math.isnan(actual.x.encoding["_FillValue"])
        assert ds.x.encoding == {}

        # Test default encoding for int:
        ds = Dataset({"x": ("y", np.arange(10.0))})
        kwargs = dict(encoding={"x": {"dtype": "int16"}})
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", ".*floating point data as an integer")
            with self.roundtrip(ds, save_kwargs=kwargs) as actual:
                assert "_FillValue" not in actual.x.encoding
        assert ds.x.encoding == {}

        # Test default encoding for implicit int:
        ds = Dataset({"x": ("y", np.arange(10, dtype="int16"))})
        with self.roundtrip(ds) as actual:
            assert "_FillValue" not in actual.x.encoding
        assert ds.x.encoding == {}

    def test_explicitly_omit_fill_value(self) -> None:
        ds = Dataset({"x": ("y", [np.pi, -np.pi])})
        ds.x.encoding["_FillValue"] = None
        with self.roundtrip(ds) as actual:
            assert "_FillValue" not in actual.x.encoding

    def test_explicitly_omit_fill_value_via_encoding_kwarg(self) -> None:
        ds = Dataset({"x": ("y", [np.pi, -np.pi])})
        kwargs = dict(encoding={"x": {"_FillValue": None}})
        # _FillValue is not a valid encoding for Zarr
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert "_FillValue" not in actual.x.encoding
        assert ds.y.encoding == {}

    def test_explicitly_omit_fill_value_in_coord(self) -> None:
        ds = Dataset({"x": ("y", [np.pi, -np.pi])}, coords={"y": [0.0, 1.0]})
        ds.y.encoding["_FillValue"] = None
        with self.roundtrip(ds) as actual:
            assert "_FillValue" not in actual.y.encoding

    def test_explicitly_omit_fill_value_in_coord_via_encoding_kwarg(self) -> None:
        ds = Dataset({"x": ("y", [np.pi, -np.pi])}, coords={"y": [0.0, 1.0]})
        kwargs = dict(encoding={"y": {"_FillValue": None}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert "_FillValue" not in actual.y.encoding
        assert ds.y.encoding == {}

    def test_encoding_same_dtype(self) -> None:
        ds = Dataset({"x": ("y", np.arange(10.0, dtype="f4"))})
        kwargs = dict(encoding={"x": {"dtype": "f4"}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            encoded_dtype = actual.x.encoding["dtype"]
            # On OS X, dtype sometimes switches endianness for unclear reasons
            assert encoded_dtype.kind == "f" and encoded_dtype.itemsize == 4
        assert ds.x.encoding == {}

    def test_append_write(self) -> None:
        # regression for GH1215
        data = create_test_data()
        with self.roundtrip_append(data) as actual:
            assert_identical(data, actual)

    def test_append_overwrite_values(self) -> None:
        # regression for GH1215
        data = create_test_data()
        with create_tmp_file(allow_cleanup_failure=False) as tmp_file:
            self.save(data, tmp_file, mode="w")
            data["var2"][:] = -999
            data["var9"] = data["var2"] * 3
            self.save(data[["var2", "var9"]], tmp_file, mode="a")
            with self.open(tmp_file) as actual:
                assert_identical(data, actual)

    def test_append_with_invalid_dim_raises(self) -> None:
        data = create_test_data()
        with create_tmp_file(allow_cleanup_failure=False) as tmp_file:
            self.save(data, tmp_file, mode="w")
            data["var9"] = data["var2"] * 3
            data = data.isel(dim1=slice(2, 6))  # modify one dimension
            with pytest.raises(
                ValueError, match=r"Unable to update size for existing dimension"
            ):
                self.save(data, tmp_file, mode="a")

    def test_multiindex_not_implemented(self) -> None:
        ds = Dataset(coords={"y": ("x", [1, 2]), "z": ("x", ["a", "b"])}).set_index(
            x=["y", "z"]
        )
        with pytest.raises(NotImplementedError, match=r"MultiIndex"):
            with self.roundtrip(ds):
                pass

        # regression GH8628 (can serialize reset multi-index level coordinates)
        ds_reset = ds.reset_index("x")
        with self.roundtrip(ds_reset) as actual:
            assert_identical(actual, ds_reset)

    @requires_dask
    def test_string_object_warning(self) -> None:
        original = Dataset(
            {
                "x": (
                    [
                        "y",
                    ],
                    np.array(["foo", "bar"], dtype=object),
                )
            }
        ).chunk()
        with pytest.warns(SerializationWarning, match="dask array with dtype=object"):
            with self.roundtrip(original) as actual:
                assert_identical(original, actual)

    @pytest.mark.parametrize(
        "indexer",
        (
            {"y": [1]},
            {"y": slice(2)},
            {"y": 1},
            {"x": [1], "y": [1]},
            {"x": ("x0", [0, 1]), "y": ("x0", [0, 1])},
        ),
    )
    def test_indexing_roundtrip(self, indexer) -> None:
        # regression test for GH8909
        ds = xr.Dataset()
        ds["A"] = xr.DataArray([[1, "a"], [2, "b"]], dims=["x", "y"])
        with self.roundtrip(ds) as ds2:
            expected = ds2.sel(indexer)
            with self.roundtrip(expected) as actual:
                assert_identical(actual, expected)


class NetCDFBase(CFEncodedBase):
    """Tests for all netCDF3 and netCDF4 backends."""

    @pytest.mark.asyncio
    @pytest.mark.skip(reason="NetCDF backends don't support async loading")
    async def test_load_async(self) -> None:
        await super().test_load_async()

    @pytest.mark.skipif(
        ON_WINDOWS, reason="Windows does not allow modifying open files"
    )
    def test_refresh_from_disk(self) -> None:
        # regression test for https://github.com/pydata/xarray/issues/4862

        with create_tmp_file() as example_1_path:
            with create_tmp_file() as example_1_modified_path:
                with open_example_dataset("example_1.nc") as example_1:
                    self.save(example_1, example_1_path)

                    example_1.rh.values += 100
                    self.save(example_1, example_1_modified_path)

                a = open_dataset(example_1_path, engine=self.engine).load()

                # Simulate external process modifying example_1.nc while this script is running
                shutil.copy(example_1_modified_path, example_1_path)

                # Reopen example_1.nc (modified) as `b`; note that `a` has NOT been closed
                b = open_dataset(example_1_path, engine=self.engine).load()

                try:
                    assert not np.array_equal(a.rh.values, b.rh.values)
                finally:
                    a.close()
                    b.close()

    def test_byte_attrs(self, byte_attrs_dataset: dict[str, Any]) -> None:
        # test for issue #9407
        input = byte_attrs_dataset["input"]
        expected = byte_attrs_dataset["expected"]
        with self.roundtrip(input) as actual:
            assert_identical(actual, expected)


_counter = itertools.count()


@contextlib.contextmanager
def create_tmp_file(
    suffix: str = ".nc", allow_cleanup_failure: bool = False
) -> Iterator[str]:
    temp_dir = tempfile.mkdtemp()
    path = os.path.join(temp_dir, f"temp-{next(_counter)}{suffix}")
    try:
        yield path
    finally:
        try:
            shutil.rmtree(temp_dir)
        except OSError:
            if not allow_cleanup_failure:
                raise


@contextlib.contextmanager
def create_tmp_files(
    nfiles: int, suffix: str = ".nc", allow_cleanup_failure: bool = False
) -> Iterator[list[str]]:
    with ExitStack() as stack:
        files = [
            stack.enter_context(create_tmp_file(suffix, allow_cleanup_failure))
            for _ in range(nfiles)
        ]
        yield files


class NetCDF4Base(NetCDFBase):
    """Tests for both netCDF4-python and h5netcdf."""

    engine: T_NetcdfEngine = "netcdf4"

    def test_open_group(self) -> None:
        # Create a netCDF file with a dataset stored within a group
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, "w") as rootgrp:
                foogrp = rootgrp.createGroup("foo")
                ds = foogrp
                ds.createDimension("time", size=10)
                x = np.arange(10)
                ds.createVariable("x", np.int32, dimensions=("time",))
                ds.variables["x"][:] = x

            expected = Dataset()
            expected["x"] = ("time", x)

            # check equivalent ways to specify group
            for group in "foo", "/foo", "foo/", "/foo/":
                with self.open(tmp_file, group=group) as actual:
                    assert_equal(actual["x"], expected["x"])

            # check that missing group raises appropriate exception
            with pytest.raises(OSError):
                open_dataset(tmp_file, group="bar")
            with pytest.raises(ValueError, match=r"must be a string"):
                open_dataset(tmp_file, group=(1, 2, 3))

    def test_open_subgroup(self) -> None:
        # Create a netCDF file with a dataset stored within a group within a
        # group
        with create_tmp_file() as tmp_file:
            rootgrp = nc4.Dataset(tmp_file, "w")
            foogrp = rootgrp.createGroup("foo")
            bargrp = foogrp.createGroup("bar")
            ds = bargrp
            ds.createDimension("time", size=10)
            x = np.arange(10)
            ds.createVariable("x", np.int32, dimensions=("time",))
            ds.variables["x"][:] = x
            rootgrp.close()

            expected = Dataset()
            expected["x"] = ("time", x)

            # check equivalent ways to specify group
            for group in "foo/bar", "/foo/bar", "foo/bar/", "/foo/bar/":
                with self.open(tmp_file, group=group) as actual:
                    assert_equal(actual["x"], expected["x"])

    def test_write_groups(self) -> None:
        data1 = create_test_data()
        data2 = data1 * 2
        with create_tmp_file() as tmp_file:
            self.save(data1, tmp_file, group="data/1")
            self.save(data2, tmp_file, group="data/2", mode="a")
            with self.open(tmp_file, group="data/1") as actual1:
                assert_identical(data1, actual1)
            with self.open(tmp_file, group="data/2") as actual2:
                assert_identical(data2, actual2)

    def test_child_group_with_inconsistent_dimensions(self) -> None:
        base = Dataset(coords={"x": [1, 2]})
        child = Dataset(coords={"x": [1, 2, 3]})
        with create_tmp_file() as tmp_file:
            self.save(base, tmp_file)
            self.save(child, tmp_file, group="child", mode="a")
            with self.open(tmp_file) as actual_base:
                assert_identical(base, actual_base)
            with self.open(tmp_file, group="child") as actual_child:
                assert_identical(child, actual_child)

    @pytest.mark.parametrize(
        "input_strings, is_bytes",
        [
            ([b"foo", b"bar", b"baz"], True),
            (["foo", "bar", "baz"], False),
            (["foó", "bár", "baź"], False),
        ],
    )
    def test_encoding_kwarg_vlen_string(
        self, input_strings: list[str], is_bytes: bool
    ) -> None:
        original = Dataset({"x": input_strings})

        expected_string = ["foo", "bar", "baz"] if is_bytes else input_strings
        expected = Dataset({"x": expected_string})
        kwargs = dict(encoding={"x": {"dtype": str}})
        with self.roundtrip(original, save_kwargs=kwargs) as actual:
            assert actual["x"].encoding["dtype"] == "=U3"
            assert actual["x"].dtype == "=U3"
            assert_identical(actual, expected)

    @pytest.mark.parametrize("fill_value", ["XXX", "", "bár"])
    def test_roundtrip_string_with_fill_value_vlen(self, fill_value: str) -> None:
        values = np.array(["ab", "cdef", np.nan], dtype=object)
        expected = Dataset({"x": ("t", values)})

        original = Dataset({"x": ("t", values, {}, {"_FillValue": fill_value})})
        with self.roundtrip(original) as actual:
            assert_identical(expected, actual)

        original = Dataset({"x": ("t", values, {}, {"_FillValue": ""})})
        with self.roundtrip(original) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_character_array(self) -> None:
        with create_tmp_file() as tmp_file:
            values = np.array([["a", "b", "c"], ["d", "e", "f"]], dtype="S")

            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("x", 2)
                nc.createDimension("string3", 3)
                v = nc.createVariable("x", np.dtype("S1"), ("x", "string3"))
                v[:] = values

            values = np.array(["abc", "def"], dtype="S")
            expected = Dataset({"x": ("x", values)})
            with open_dataset(tmp_file) as actual:
                assert_identical(expected, actual)
                # regression test for #157
                with self.roundtrip(actual) as roundtripped:
                    assert_identical(expected, roundtripped)

    def test_default_to_char_arrays(self) -> None:
        data = Dataset({"x": np.array(["foo", "zzzz"], dtype="S")})
        with self.roundtrip(data) as actual:
            assert_identical(data, actual)
            assert actual["x"].dtype == np.dtype("S4")

    def test_open_encodings(self) -> None:
        # Create a netCDF file with explicit time units
        # and make sure it makes it into the encodings
        # and survives a round trip
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, "w") as ds:
                ds.createDimension("time", size=10)
                ds.createVariable("time", np.int32, dimensions=("time",))
                units = "days since 1999-01-01"
                ds.variables["time"].setncattr("units", units)
                ds.variables["time"][:] = np.arange(10) + 4

            expected = Dataset()
            time = pd.date_range("1999-01-05", periods=10, unit="ns")
            encoding = {"units": units, "dtype": np.dtype("int32")}
            expected["time"] = ("time", time, {}, encoding)

            with open_dataset(tmp_file) as actual:
                assert_equal(actual["time"], expected["time"])
                actual_encoding = {
                    k: v
                    for k, v in actual["time"].encoding.items()
                    if k in expected["time"].encoding
                }
                assert actual_encoding == expected["time"].encoding

    def test_dump_encodings(self) -> None:
        # regression test for #709
        ds = Dataset({"x": ("y", np.arange(10.0))})
        kwargs = dict(encoding={"x": {"zlib": True}})
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding["zlib"]

    def test_dump_and_open_encodings(self) -> None:
        # Create a netCDF file with explicit time units
        # and make sure it makes it into the encodings
        # and survives a round trip
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, "w") as ds:
                ds.createDimension("time", size=10)
                ds.createVariable("time", np.int32, dimensions=("time",))
                units = "days since 1999-01-01"
                ds.variables["time"].setncattr("units", units)
                ds.variables["time"][:] = np.arange(10) + 4

            with open_dataset(tmp_file) as xarray_dataset:
                with create_tmp_file() as tmp_file2:
                    xarray_dataset.to_netcdf(tmp_file2)
                    with nc4.Dataset(tmp_file2, "r") as ds:
                        assert ds.variables["time"].getncattr("units") == units
                        assert_array_equal(ds.variables["time"], np.arange(10) + 4)

    def test_compression_encoding_legacy(self) -> None:
        data = create_test_data()
        data["var2"].encoding.update(
            {
                "zlib": True,
                "chunksizes": (5, 5),
                "fletcher32": True,
                "shuffle": True,
                "original_shape": data.var2.shape,
            }
        )
        with self.roundtrip(data) as actual:
            for k, v in data["var2"].encoding.items():
                assert v == actual["var2"].encoding[k]

        # regression test for #156
        expected = data.isel(dim1=0)
        with self.roundtrip(expected) as actual:
            assert_equal(expected, actual)

    def test_encoding_kwarg_compression(self) -> None:
        ds = Dataset({"x": np.arange(10.0)})
        encoding = dict(
            dtype="f4",
            zlib=True,
            complevel=9,
            fletcher32=True,
            chunksizes=(5,),
            shuffle=True,
        )
        kwargs = dict(encoding=dict(x=encoding))

        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert_equal(actual, ds)
            assert actual.x.encoding["dtype"] == "f4"
            assert actual.x.encoding["zlib"]
            assert actual.x.encoding["complevel"] == 9
            assert actual.x.encoding["fletcher32"]
            assert actual.x.encoding["chunksizes"] == (5,)
            assert actual.x.encoding["shuffle"]

        assert ds.x.encoding == {}

    def test_keep_chunksizes_if_no_original_shape(self) -> None:
        ds = Dataset({"x": [1, 2, 3]})
        chunksizes = (2,)
        ds.variables["x"].encoding = {"chunksizes": chunksizes}

        with self.roundtrip(ds) as actual:
            assert_identical(ds, actual)
            assert_array_equal(
                ds["x"].encoding["chunksizes"], actual["x"].encoding["chunksizes"]
            )

    def test_preferred_chunks_is_present(self) -> None:
        ds = Dataset({"x": [1, 2, 3]})
        chunksizes = (2,)
        ds.variables["x"].encoding = {"chunksizes": chunksizes}

        with self.roundtrip(ds) as actual:
            assert actual["x"].encoding["preferred_chunks"] == {"x": 2}

    @requires_dask
    def test_auto_chunking_is_based_on_disk_chunk_sizes(self) -> None:
        x_size = y_size = 1000
        y_chunksize = y_size
        x_chunksize = 10

        with dask.config.set({"array.chunk-size": "100KiB"}):
            with self.chunked_roundtrip(
                (1, y_size, x_size),
                (1, y_chunksize, x_chunksize),
                open_kwargs={"chunks": "auto"},
            ) as ds:
                t_chunks, y_chunks, x_chunks = ds["image"].data.chunks
                assert all(np.asanyarray(y_chunks) == y_chunksize)
                # Check that the chunk size is a multiple of the file chunk size
                assert all(np.asanyarray(x_chunks) % x_chunksize == 0)

    @requires_dask
    def test_base_chunking_uses_disk_chunk_sizes(self) -> None:
        x_size = y_size = 1000
        y_chunksize = y_size
        x_chunksize = 10

        with self.chunked_roundtrip(
            (1, y_size, x_size),
            (1, y_chunksize, x_chunksize),
            open_kwargs={"chunks": {}},
        ) as ds:
            for chunksizes, expected in zip(
                ds["image"].data.chunks, (1, y_chunksize, x_chunksize), strict=True
            ):
                assert all(np.asanyarray(chunksizes) == expected)

    @contextlib.contextmanager
    def chunked_roundtrip(
        self,
        array_shape: tuple[int, int, int],
        chunk_sizes: tuple[int, int, int],
        open_kwargs: dict[str, Any] | None = None,
    ) -> Generator[Dataset, None, None]:
        t_size, y_size, x_size = array_shape
        t_chunksize, y_chunksize, x_chunksize = chunk_sizes

        image = xr.DataArray(
            np.arange(t_size * x_size * y_size, dtype=np.int16).reshape(
                (t_size, y_size, x_size)
            ),
            dims=["t", "y", "x"],
        )
        image.encoding = {"chunksizes": (t_chunksize, y_chunksize, x_chunksize)}
        dataset = xr.Dataset(dict(image=image))

        with self.roundtrip(dataset, open_kwargs=open_kwargs) as ds:
            yield ds

    def test_preferred_chunks_are_disk_chunk_sizes(self) -> None:
        x_size = y_size = 1000
        y_chunksize = y_size
        x_chunksize = 10

        with self.chunked_roundtrip(
            (1, y_size, x_size), (1, y_chunksize, x_chunksize)
        ) as ds:
            assert ds["image"].encoding["preferred_chunks"] == {
                "t": 1,
                "y": y_chunksize,
                "x": x_chunksize,
            }

    def test_encoding_chunksizes_unlimited(self) -> None:
        # regression test for GH1225
        ds = Dataset({"x": [1, 2, 3], "y": ("x", [2, 3, 4])})
        ds.variables["x"].encoding = {
            "zlib": False,
            "shuffle": False,
            "complevel": 0,
            "fletcher32": False,
            "contiguous": False,
            "chunksizes": (2**20,),
            "original_shape": (3,),
        }
        with self.roundtrip(ds) as actual:
            assert_equal(ds, actual)

    def test_mask_and_scale(self) -> None:
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("t", 5)
                nc.createVariable("x", "int16", ("t",), fill_value=-1)
                v = nc.variables["x"]
                v.set_auto_maskandscale(False)
                v.add_offset = 10
                v.scale_factor = 0.1
                v[:] = np.array([-1, -1, 0, 1, 2])
                dtype = type(v.scale_factor)

            # first make sure netCDF4 reads the masked and scaled data
            # correctly
            with nc4.Dataset(tmp_file, mode="r") as nc:
                expected = np.ma.array(
                    [-1, -1, 10, 10.1, 10.2], mask=[True, True, False, False, False]
                )
                actual = nc.variables["x"][:]
                assert_array_equal(expected, actual)

            # now check xarray
            with open_dataset(tmp_file) as ds:
                expected = create_masked_and_scaled_data(np.dtype(dtype))
                assert_identical(expected, ds)

    def test_0dimensional_variable(self) -> None:
        # This fix verifies our work-around to this netCDF4-python bug:
        # https://github.com/Unidata/netcdf4-python/pull/220
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                v = nc.createVariable("x", "int16")
                v[...] = 123

            with open_dataset(tmp_file) as ds:
                expected = Dataset({"x": ((), 123)})
                assert_identical(expected, ds)

    def test_read_variable_len_strings(self) -> None:
        with create_tmp_file() as tmp_file:
            values = np.array(["foo", "bar", "baz"], dtype=object)

            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("x", 3)
                v = nc.createVariable("x", str, ("x",))
                v[:] = values

            expected = Dataset({"x": ("x", values)})
            for kwargs in [{}, {"decode_cf": True}]:
                with open_dataset(tmp_file, **cast(dict, kwargs)) as actual:
                    assert_identical(expected, actual)

    def test_raise_on_forward_slashes_in_names(self) -> None:
        # test for forward slash in variable names and dimensions
        # see GH 7943
        data_vars: list[dict[str, Any]] = [
            {"PASS/FAIL": (["PASSFAIL"], np.array([0]))},
            {"PASS/FAIL": np.array([0])},
            {"PASSFAIL": (["PASS/FAIL"], np.array([0]))},
        ]
        for dv in data_vars:
            ds = Dataset(data_vars=dv)
            with pytest.raises(ValueError, match="Forward slashes '/' are not allowed"):
                with self.roundtrip(ds):
                    pass

    @requires_netCDF4
    def test_encoding_enum__no_fill_value(self, recwarn):
        with create_tmp_file() as tmp_file:
            cloud_type_dict = {"clear": 0, "cloudy": 1}
            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("time", size=2)
                cloud_type = nc.createEnumType(np.uint8, "cloud_type", cloud_type_dict)
                v = nc.createVariable(
                    "clouds",
                    cloud_type,
                    "time",
                    fill_value=None,
                )
                v[:] = 1
            with open_dataset(tmp_file) as original:
                save_kwargs = {}
                # We don't expect any errors.
                # This is effectively a void context manager
                expected_warnings = 0
                if self.engine == "h5netcdf":
                    if not has_h5netcdf_1_4_0_or_above:
                        save_kwargs["invalid_netcdf"] = True
                        expected_warnings = 1
                        expected_msg = "You are writing invalid netcdf features to file"
                    else:
                        expected_warnings = 1
                        expected_msg = "Creating variable with default fill_value 0 which IS defined in enum type"

                with self.roundtrip(original, save_kwargs=save_kwargs) as actual:
                    assert len(recwarn) == expected_warnings
                    if expected_warnings:
                        assert issubclass(recwarn[0].category, UserWarning)
                        assert str(recwarn[0].message).startswith(expected_msg)
                    assert_equal(original, actual)
                    assert (
                        actual.clouds.encoding["dtype"].metadata["enum"]
                        == cloud_type_dict
                    )
                    if not (
                        self.engine == "h5netcdf" and not has_h5netcdf_1_4_0_or_above
                    ):
                        # not implemented in h5netcdf yet
                        assert (
                            actual.clouds.encoding["dtype"].metadata["enum_name"]
                            == "cloud_type"
                        )

    @requires_netCDF4
    def test_encoding_enum__multiple_variable_with_enum(self):
        with create_tmp_file() as tmp_file:
            cloud_type_dict = {"clear": 0, "cloudy": 1, "missing": 255}
            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("time", size=2)
                cloud_type = nc.createEnumType(np.uint8, "cloud_type", cloud_type_dict)
                nc.createVariable(
                    "clouds",
                    cloud_type,
                    "time",
                    fill_value=255,
                )
                nc.createVariable(
                    "tifa",
                    cloud_type,
                    "time",
                    fill_value=255,
                )
            with open_dataset(tmp_file) as original:
                save_kwargs = {}
                if self.engine == "h5netcdf" and not has_h5netcdf_1_4_0_or_above:
                    save_kwargs["invalid_netcdf"] = True
                with self.roundtrip(original, save_kwargs=save_kwargs) as actual:
                    assert_equal(original, actual)
                    assert (
                        actual.clouds.encoding["dtype"] == actual.tifa.encoding["dtype"]
                    )
                    assert (
                        actual.clouds.encoding["dtype"].metadata
                        == actual.tifa.encoding["dtype"].metadata
                    )
                    assert (
                        actual.clouds.encoding["dtype"].metadata["enum"]
                        == cloud_type_dict
                    )
                    if not (
                        self.engine == "h5netcdf" and not has_h5netcdf_1_4_0_or_above
                    ):
                        # not implemented in h5netcdf yet
                        assert (
                            actual.clouds.encoding["dtype"].metadata["enum_name"]
                            == "cloud_type"
                        )

    @requires_netCDF4
    def test_encoding_enum__error_multiple_variable_with_changing_enum(self):
        """
        Given 2 variables, if they share the same enum type,
        the 2 enum definition should be identical.
        """
        with create_tmp_file() as tmp_file:
            cloud_type_dict = {"clear": 0, "cloudy": 1, "missing": 255}
            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("time", size=2)
                cloud_type = nc.createEnumType(np.uint8, "cloud_type", cloud_type_dict)
                nc.createVariable(
                    "clouds",
                    cloud_type,
                    "time",
                    fill_value=255,
                )
                nc.createVariable(
                    "tifa",
                    cloud_type,
                    "time",
                    fill_value=255,
                )
            with open_dataset(tmp_file) as original:
                assert (
                    original.clouds.encoding["dtype"].metadata
                    == original.tifa.encoding["dtype"].metadata
                )
                modified_enum = original.clouds.encoding["dtype"].metadata["enum"]
                modified_enum.update({"neblig": 2})
                original.clouds.encoding["dtype"] = np.dtype(
                    "u1",
                    metadata={"enum": modified_enum, "enum_name": "cloud_type"},
                )
                if not (self.engine == "h5netcdf" and not has_h5netcdf_1_4_0_or_above):
                    # not implemented yet in h5netcdf
                    with pytest.raises(
                        ValueError,
                        match=(
                            "Cannot save variable .*"
                            " because an enum `cloud_type` already exists in the Dataset .*"
                        ),
                    ):
                        with self.roundtrip(original):
                            pass

    @pytest.mark.parametrize("create_default_indexes", [True, False])
    def test_create_default_indexes(self, tmp_path, create_default_indexes) -> None:
        store_path = tmp_path / "tmp.nc"
        original_ds = xr.Dataset(
            {"data": ("x", np.arange(3))}, coords={"x": [-1, 0, 1]}
        )
        original_ds.to_netcdf(store_path, engine=self.engine, mode="w")

        with open_dataset(
            store_path,
            engine=self.engine,
            create_default_indexes=create_default_indexes,
        ) as loaded_ds:
            if create_default_indexes:
                assert list(loaded_ds.xindexes) == ["x"] and isinstance(
                    loaded_ds.xindexes["x"], PandasIndex
                )
            else:
                assert len(loaded_ds.xindexes) == 0


@requires_netCDF4
class TestNetCDF4Data(NetCDF4Base):
    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.NetCDF4DataStore.open(tmp_file, mode="w") as store:
                yield store

    def test_variable_order(self) -> None:
        # doesn't work with scipy or h5py :(
        ds = Dataset()
        ds["a"] = 1
        ds["z"] = 2
        ds["b"] = 3
        ds.coords["c"] = 4

        with self.roundtrip(ds) as actual:
            assert list(ds.variables) == list(actual.variables)

    def test_unsorted_index_raises(self) -> None:
        # should be fixed in netcdf4 v1.2.1
        random_data = np.random.random(size=(4, 6))
        dim0 = [0, 1, 2, 3]
        dim1 = [0, 2, 1, 3, 5, 4]  # We will sort this in a later step
        da = xr.DataArray(
            data=random_data,
            dims=("dim0", "dim1"),
            coords={"dim0": dim0, "dim1": dim1},
            name="randovar",
        )
        ds = da.to_dataset()

        with self.roundtrip(ds) as ondisk:
            inds = np.argsort(dim1)
            ds2 = ondisk.isel(dim1=inds)
            # Older versions of NetCDF4 raise an exception here, and if so we
            # want to ensure we improve (that is, replace) the error message
            try:
                _ = ds2.randovar.values
            except IndexError as err:
                assert "first by calling .load" in str(err)

    def test_setncattr_string(self) -> None:
        list_of_strings = ["list", "of", "strings"]
        one_element_list_of_strings = ["one element"]
        one_string = "one string"
        attrs = {
            "foo": list_of_strings,
            "bar": one_element_list_of_strings,
            "baz": one_string,
        }
        ds = Dataset({"x": ("y", [1, 2, 3], attrs)}, attrs=attrs)

        with self.roundtrip(ds) as actual:
            for totest in [actual, actual["x"]]:
                assert_array_equal(list_of_strings, totest.attrs["foo"])
                assert_array_equal(one_element_list_of_strings, totest.attrs["bar"])
                assert one_string == totest.attrs["baz"]

    @pytest.mark.parametrize(
        "compression",
        [
            None,
            "zlib",
            "szip",
        ],
    )
    @requires_netCDF4_1_6_2_or_above
    @pytest.mark.xfail(ON_WINDOWS, reason="new compression not yet implemented")
    def test_compression_encoding(self, compression: str | None) -> None:
        data = create_test_data(dim_sizes=(20, 80, 10))
        encoding_params: dict[str, Any] = dict(compression=compression, blosc_shuffle=1)
        data["var2"].encoding.update(encoding_params)
        data["var2"].encoding.update(
            {
                "chunksizes": (20, 40),
                "original_shape": data.var2.shape,
                "blosc_shuffle": 1,
                "fletcher32": False,
            }
        )
        with self.roundtrip(data) as actual:
            expected_encoding = data["var2"].encoding.copy()
            # compression does not appear in the retrieved encoding, that differs
            # from the input encoding. shuffle also chantges. Here we modify the
            # expected encoding to account for this
            compression = expected_encoding.pop("compression")
            blosc_shuffle = expected_encoding.pop("blosc_shuffle")
            if compression is not None:
                if "blosc" in compression and blosc_shuffle:
                    expected_encoding["blosc"] = {
                        "compressor": compression,
                        "shuffle": blosc_shuffle,
                    }
                    expected_encoding["shuffle"] = False
                elif compression == "szip":
                    expected_encoding["szip"] = {
                        "coding": "nn",
                        "pixels_per_block": 8,
                    }
                    expected_encoding["shuffle"] = False
                else:
                    # This will set a key like zlib=true which is what appears in
                    # the encoding when we read it.
                    expected_encoding[compression] = True
                    if compression == "zstd":
                        expected_encoding["shuffle"] = False
            else:
                expected_encoding["shuffle"] = False

            actual_encoding = actual["var2"].encoding
            assert expected_encoding.items() <= actual_encoding.items()
        if (
            encoding_params["compression"] is not None
            and "blosc" not in encoding_params["compression"]
        ):
            # regression test for #156
            expected = data.isel(dim1=0)
            with self.roundtrip(expected) as actual:
                assert_equal(expected, actual)

    @pytest.mark.skip(reason="https://github.com/Unidata/netcdf4-python/issues/1195")
    def test_refresh_from_disk(self) -> None:
        super().test_refresh_from_disk()

    @requires_netCDF4_1_7_0_or_above
    def test_roundtrip_complex(self):
        expected = Dataset({"x": ("y", np.ones(5) + 1j * np.ones(5))})
        skwargs = dict(auto_complex=True)
        okwargs = dict(auto_complex=True)
        with self.roundtrip(
            expected, save_kwargs=skwargs, open_kwargs=okwargs
        ) as actual:
            assert_equal(expected, actual)


@requires_netCDF4
class TestNetCDF4AlreadyOpen:
    def test_base_case(self) -> None:
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                v = nc.createVariable("x", "int")
                v[...] = 42

            nc = nc4.Dataset(tmp_file, mode="r")
            store = backends.NetCDF4DataStore(nc)
            with open_dataset(store) as ds:
                expected = Dataset({"x": ((), 42)})
                assert_identical(expected, ds)

    def test_group(self) -> None:
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                group = nc.createGroup("g")
                v = group.createVariable("x", "int")
                v[...] = 42

            nc = nc4.Dataset(tmp_file, mode="r")
            store = backends.NetCDF4DataStore(nc.groups["g"])
            with open_dataset(store) as ds:
                expected = Dataset({"x": ((), 42)})
                assert_identical(expected, ds)

            nc = nc4.Dataset(tmp_file, mode="r")
            store = backends.NetCDF4DataStore(nc, group="g")
            with open_dataset(store) as ds:
                expected = Dataset({"x": ((), 42)})
                assert_identical(expected, ds)

            with nc4.Dataset(tmp_file, mode="r") as nc:
                with pytest.raises(ValueError, match="must supply a root"):
                    backends.NetCDF4DataStore(nc.groups["g"], group="g")

    def test_deepcopy(self) -> None:
        # regression test for https://github.com/pydata/xarray/issues/4425
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("x", 10)
                v = nc.createVariable("y", np.int32, ("x",))
                v[:] = np.arange(10)

            h5 = nc4.Dataset(tmp_file, mode="r")
            store = backends.NetCDF4DataStore(h5)
            with open_dataset(store) as ds:
                copied = ds.copy(deep=True)
                expected = Dataset({"y": ("x", np.arange(10))})
                assert_identical(expected, copied)


@requires_netCDF4
@requires_dask
@pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
class TestNetCDF4ViaDaskData(TestNetCDF4Data):
    @contextlib.contextmanager
    def roundtrip(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        if open_kwargs is None:
            open_kwargs = {}
        if save_kwargs is None:
            save_kwargs = {}
        open_kwargs.setdefault("chunks", -1)
        with TestNetCDF4Data.roundtrip(
            self, data, save_kwargs, open_kwargs, allow_cleanup_failure
        ) as ds:
            yield ds

    def test_unsorted_index_raises(self) -> None:
        # Skip when using dask because dask rewrites indexers to getitem,
        # dask first pulls items by block.
        pass

    @pytest.mark.skip(reason="caching behavior differs for dask")
    def test_dataset_caching(self) -> None:
        pass

    def test_write_inconsistent_chunks(self) -> None:
        # Construct two variables with the same dimensions, but different
        # chunk sizes.
        x = da.zeros((100, 100), dtype="f4", chunks=(50, 100))
        x = DataArray(data=x, dims=("lat", "lon"), name="x")
        x.encoding["chunksizes"] = (50, 100)
        x.encoding["original_shape"] = (100, 100)
        y = da.ones((100, 100), dtype="f4", chunks=(100, 50))
        y = DataArray(data=y, dims=("lat", "lon"), name="y")
        y.encoding["chunksizes"] = (100, 50)
        y.encoding["original_shape"] = (100, 100)
        # Put them both into the same dataset
        ds = Dataset({"x": x, "y": y})
        with self.roundtrip(ds) as actual:
            assert actual["x"].encoding["chunksizes"] == (50, 100)
            assert actual["y"].encoding["chunksizes"] == (100, 50)

    # Flaky test. Very open to contributions on fixing this
    @pytest.mark.flaky
    def test_roundtrip_coordinates(self) -> None:
        super().test_roundtrip_coordinates()

    @requires_cftime
    def test_roundtrip_cftime_bnds(self):
        # Regression test for issue #7794
        import cftime

        original = xr.Dataset(
            {
                "foo": ("time", [0.0]),
                "time_bnds": (
                    ("time", "bnds"),
                    [
                        [
                            cftime.Datetime360Day(2005, 12, 1, 0, 0, 0, 0),
                            cftime.Datetime360Day(2005, 12, 2, 0, 0, 0, 0),
                        ]
                    ],
                ),
            },
            {"time": [cftime.Datetime360Day(2005, 12, 1, 12, 0, 0, 0)]},
        )

        with create_tmp_file() as tmp_file:
            original.to_netcdf(tmp_file)
            with open_dataset(tmp_file) as actual:
                # Operation to load actual time_bnds into memory
                assert_array_equal(actual.time_bnds.values, original.time_bnds.values)
                chunked = actual.chunk(time=1)
                with create_tmp_file() as tmp_file_chunked:
                    chunked.to_netcdf(tmp_file_chunked)


@requires_zarr
@pytest.mark.usefixtures("default_zarr_format")
class ZarrBase(CFEncodedBase):
    DIMENSION_KEY = "_ARRAY_DIMENSIONS"
    zarr_version = 2
    version_kwargs: dict[str, Any] = {}

    def create_zarr_target(self):
        raise NotImplementedError

    @contextlib.contextmanager
    def create_store(self, cache_members: bool = False):
        with self.create_zarr_target() as store_target:
            yield backends.ZarrStore.open_group(
                store_target,
                mode="w",
                cache_members=cache_members,
                **self.version_kwargs,
            )

    def save(self, dataset, store_target, **kwargs):  # type: ignore[override]
        return dataset.to_zarr(store=store_target, **kwargs, **self.version_kwargs)

    @contextlib.contextmanager
    def open(self, path, **kwargs):
        with xr.open_dataset(
            path, engine="zarr", mode="r", **kwargs, **self.version_kwargs
        ) as ds:
            yield ds

    @contextlib.contextmanager
    def roundtrip(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with self.create_zarr_target() as store_target:
            self.save(data, store_target, **save_kwargs)
            with self.open(store_target, **open_kwargs) as ds:
                yield ds

    @pytest.mark.asyncio
    @pytest.mark.skipif(
        not has_zarr_v3,
        reason="zarr-python <3 did not support async loading",
    )
    async def test_load_async(self) -> None:
        await super().test_load_async()

    def test_roundtrip_bytes_with_fill_value(self):
        pytest.xfail("Broken by Zarr 3.0.7")

    @pytest.mark.parametrize("consolidated", [False, True, None])
    def test_roundtrip_consolidated(self, consolidated) -> None:
        expected = create_test_data()
        with self.roundtrip(
            expected,
            save_kwargs={"consolidated": consolidated},
            open_kwargs={"backend_kwargs": {"consolidated": consolidated}},
        ) as actual:
            self.check_dtypes_roundtripped(expected, actual)
            assert_identical(expected, actual)

    def test_read_non_consolidated_warning(self) -> None:
        expected = create_test_data()
        with self.create_zarr_target() as store:
            self.save(
                expected, store_target=store, consolidated=False, **self.version_kwargs
            )
            if getattr(store, "supports_consolidated_metadata", True):
                with pytest.warns(
                    RuntimeWarning,
                    match="Failed to open Zarr store with consolidated",
                ):
                    with xr.open_zarr(store, **self.version_kwargs) as ds:
                        assert_identical(ds, expected)

    def test_non_existent_store(self) -> None:
        with pytest.raises(
            FileNotFoundError,
            match="(No such file or directory|Unable to find group|No group found in store)",
        ):
            xr.open_zarr(f"{uuid.uuid4()}")

    @pytest.mark.skipif(has_zarr_v3, reason="chunk_store not implemented in zarr v3")
    def test_with_chunkstore(self) -> None:
        expected = create_test_data()
        with (
            self.create_zarr_target() as store_target,
            self.create_zarr_target() as chunk_store,
        ):
            save_kwargs = {"chunk_store": chunk_store}
            self.save(expected, store_target, **save_kwargs)
            # the chunk store must have been populated with some entries
            assert len(chunk_store) > 0
            open_kwargs = {"backend_kwargs": {"chunk_store": chunk_store}}
            with self.open(store_target, **open_kwargs) as ds:
                assert_equal(ds, expected)

    @requires_dask
    def test_auto_chunk(self) -> None:
        original = create_test_data().chunk()

        with self.roundtrip(original, open_kwargs={"chunks": None}) as actual:
            for k, v in actual.variables.items():
                # only index variables should be in memory
                assert v._in_memory == (k in actual.dims)
                # there should be no chunks
                assert v.chunks is None

        with self.roundtrip(original, open_kwargs={"chunks": {}}) as actual:
            for k, v in actual.variables.items():
                # only index variables should be in memory
                assert v._in_memory == (k in actual.dims)
                # chunk size should be the same as original
                assert v.chunks == original[k].chunks

    @requires_dask
    @pytest.mark.filterwarnings("ignore:The specified chunks separate:UserWarning")
    def test_manual_chunk(self) -> None:
        original = create_test_data().chunk({"dim1": 3, "dim2": 4, "dim3": 3})

        # Using chunks = None should return non-chunked arrays
        open_kwargs: dict[str, Any] = {"chunks": None}
        with self.roundtrip(original, open_kwargs=open_kwargs) as actual:
            for k, v in actual.variables.items():
                # only index variables should be in memory
                assert v._in_memory == (k in actual.dims)
                # there should be no chunks
                assert v.chunks is None

        # uniform arrays
        for i in range(2, 6):
            rechunked = original.chunk(chunks=i)
            open_kwargs = {"chunks": i}
            with self.roundtrip(original, open_kwargs=open_kwargs) as actual:
                for k, v in actual.variables.items():
                    # only index variables should be in memory
                    assert v._in_memory == (k in actual.dims)
                    # chunk size should be the same as rechunked
                    assert v.chunks == rechunked[k].chunks

        chunks = {"dim1": 2, "dim2": 3, "dim3": 5}
        rechunked = original.chunk(chunks=chunks)

        open_kwargs = {
            "chunks": chunks,
            "backend_kwargs": {"overwrite_encoded_chunks": True},
        }
        with self.roundtrip(original, open_kwargs=open_kwargs) as actual:
            for k, v in actual.variables.items():
                assert v.chunks == rechunked[k].chunks

            with self.roundtrip(actual) as auto:
                # encoding should have changed
                for k, v in actual.variables.items():
                    assert v.chunks == rechunked[k].chunks

                assert_identical(actual, auto)
                assert_identical(actual.load(), auto.load())

    @requires_dask
    @pytest.mark.filterwarnings("ignore:.*does not have a Zarr V3 specification.*")
    def test_warning_on_bad_chunks(self) -> None:
        original = create_test_data().chunk({"dim1": 4, "dim2": 3, "dim3": 3})

        bad_chunks = (2, {"dim2": (3, 3, 2, 1)})
        for chunks in bad_chunks:
            kwargs = {"chunks": chunks}
            with pytest.warns(UserWarning):
                with self.roundtrip(original, open_kwargs=kwargs) as actual:
                    for k, v in actual.variables.items():
                        # only index variables should be in memory
                        assert v._in_memory == (k in actual.dims)

        good_chunks: tuple[dict[str, Any], ...] = ({"dim2": 3}, {"dim3": (6, 4)}, {})
        for chunks in good_chunks:
            kwargs = {"chunks": chunks}
            with assert_no_warnings():
                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "ignore",
                        message=".*Zarr format 3 specification.*",
                        category=UserWarning,
                    )
                    with self.roundtrip(original, open_kwargs=kwargs) as actual:
                        for k, v in actual.variables.items():
                            # only index variables should be in memory
                            assert v._in_memory == (k in actual.dims)

    @requires_dask
    def test_deprecate_auto_chunk(self) -> None:
        original = create_test_data().chunk()
        with pytest.raises(TypeError):
            with self.roundtrip(original, open_kwargs={"auto_chunk": True}) as actual:
                for k, v in actual.variables.items():
                    # only index variables should be in memory
                    assert v._in_memory == (k in actual.dims)
                    # chunk size should be the same as original
                    assert v.chunks == original[k].chunks

        with pytest.raises(TypeError):
            with self.roundtrip(original, open_kwargs={"auto_chunk": False}) as actual:
                for k, v in actual.variables.items():
                    # only index variables should be in memory
                    assert v._in_memory == (k in actual.dims)
                    # there should be no chunks
                    assert v.chunks is None

    @requires_dask
    def test_write_uneven_dask_chunks(self) -> None:
        # regression for GH#2225
        original = create_test_data().chunk({"dim1": 3, "dim2": 4, "dim3": 3})
        with self.roundtrip(original, open_kwargs={"chunks": {}}) as actual:
            for k, v in actual.data_vars.items():
                assert v.chunks == actual[k].chunks

    def test_chunk_encoding(self) -> None:
        # These datasets have no dask chunks. All chunking specified in
        # encoding
        data = create_test_data()
        chunks = (5, 5)
        data["var2"].encoding.update({"chunks": chunks})

        with self.roundtrip(data) as actual:
            assert chunks == actual["var2"].encoding["chunks"]

        # expect an error with non-integer chunks
        data["var2"].encoding.update({"chunks": (5, 4.5)})
        with pytest.raises(TypeError):
            with self.roundtrip(data) as actual:
                pass

    def test_shard_encoding(self) -> None:
        # These datasets have no dask chunks. All chunking/sharding specified in
        # encoding
        if has_zarr_v3 and zarr.config.config["default_zarr_format"] == 3:
            data = create_test_data()
            chunks = (1, 1)
            shards = (5, 5)
            data["var2"].encoding.update({"chunks": chunks})
            data["var2"].encoding.update({"shards": shards})
            with self.roundtrip(data) as actual:
                assert shards == actual["var2"].encoding["shards"]

            # expect an error with shards not divisible by chunks
            data["var2"].encoding.update({"chunks": (2, 2)})
            with pytest.raises(ValueError):
                with self.roundtrip(data) as actual:
                    pass

    @requires_dask
    @pytest.mark.skipif(
        ON_WINDOWS,
        reason="Very flaky on Windows CI. Can re-enable assuming it starts consistently passing.",
    )
    def test_chunk_encoding_with_dask(self) -> None:
        # These datasets DO have dask chunks. Need to check for various
        # interactions between dask and zarr chunks
        ds = xr.DataArray((np.arange(12)), dims="x", name="var1").to_dataset()

        # - no encoding specified -
        # zarr automatically gets chunk information from dask chunks
        ds_chunk4 = ds.chunk({"x": 4})
        with self.roundtrip(ds_chunk4) as actual:
            assert (4,) == actual["var1"].encoding["chunks"]

        # should fail if dask_chunks are irregular...
        ds_chunk_irreg = ds.chunk({"x": (5, 4, 3)})
        with pytest.raises(ValueError, match=r"uniform chunk sizes."):
            with self.roundtrip(ds_chunk_irreg) as actual:
                pass

        # should fail if encoding["chunks"] clashes with dask_chunks
        badenc = ds.chunk({"x": 4})
        badenc.var1.encoding["chunks"] = (6,)
        with pytest.raises(ValueError, match=r"named 'var1' would overlap"):
            with self.roundtrip(badenc) as actual:
                pass

        # unless...
        with self.roundtrip(badenc, save_kwargs={"safe_chunks": False}) as actual:
            # don't actually check equality because the data could be corrupted
            pass

        # if dask chunks (4) are an integer multiple of zarr chunks (2) it should not fail...
        goodenc = ds.chunk({"x": 4})
        goodenc.var1.encoding["chunks"] = (2,)
        with self.roundtrip(goodenc) as actual:
            pass

        # if initial dask chunks are aligned, size of last dask chunk doesn't matter
        goodenc = ds.chunk({"x": (3, 3, 6)})
        goodenc.var1.encoding["chunks"] = (3,)
        with self.roundtrip(goodenc) as actual:
            pass

        goodenc = ds.chunk({"x": (3, 6, 3)})
        goodenc.var1.encoding["chunks"] = (3,)
        with self.roundtrip(goodenc) as actual:
            pass

        # ... also if the last chunk is irregular
        ds_chunk_irreg = ds.chunk({"x": (5, 5, 2)})
        with self.roundtrip(ds_chunk_irreg) as actual:
            assert (5,) == actual["var1"].encoding["chunks"]
        # re-save Zarr arrays
        with self.roundtrip(ds_chunk_irreg) as original:
            with self.roundtrip(original) as actual:
                assert_identical(original, actual)

        # but intermediate unaligned chunks are bad
        badenc = ds.chunk({"x": (3, 5, 3, 1)})
        badenc.var1.encoding["chunks"] = (3,)
        with pytest.raises(ValueError, match=r"would overlap multiple Dask chunks"):
            with self.roundtrip(badenc) as actual:
                pass

        # - encoding specified  -
        # specify compatible encodings
        for chunk_enc in 4, (4,):
            ds_chunk4["var1"].encoding.update({"chunks": chunk_enc})
            with self.roundtrip(ds_chunk4) as actual:
                assert (4,) == actual["var1"].encoding["chunks"]

        # TODO: remove this failure once synchronized overlapping writes are
        # supported by xarray
        ds_chunk4["var1"].encoding.update({"chunks": 5})
        with pytest.raises(ValueError, match=r"named 'var1' would overlap"):
            with self.roundtrip(ds_chunk4) as actual:
                pass
        # override option
        with self.roundtrip(ds_chunk4, save_kwargs={"safe_chunks": False}) as actual:
            # don't actually check equality because the data could be corrupted
            pass

    @requires_netcdf
    def test_drop_encoding(self):
        with open_example_dataset("example_1.nc") as ds:
            encodings = {v: {**ds[v].encoding} for v in ds.data_vars}
            with self.create_zarr_target() as store:
                ds.to_zarr(store, encoding=encodings)

    def test_hidden_zarr_keys(self) -> None:
        skip_if_zarr_format_3("This test is unnecessary; no hidden Zarr keys")

        expected = create_test_data()
        with self.create_store() as store:
            expected.dump_to_store(store)
            zarr_group = store.ds

            # check that a variable hidden attribute is present and correct
            # JSON only has a single array type, which maps to list in Python.
            # In contrast, dims in xarray is always a tuple.
            for var in expected.variables.keys():
                dims = zarr_group[var].attrs[self.DIMENSION_KEY]
                assert dims == list(expected[var].dims)

            with xr.decode_cf(store):
                # make sure it is hidden
                for var in expected.variables.keys():
                    assert self.DIMENSION_KEY not in expected[var].attrs

            # put it back and try removing from a variable
            attrs = dict(zarr_group["var2"].attrs)
            del attrs[self.DIMENSION_KEY]
            zarr_group["var2"].attrs.put(attrs)

            with pytest.raises(KeyError):
                with xr.decode_cf(store):
                    pass

    def test_dimension_names(self) -> None:
        skip_if_zarr_format_2("No dimension names in V2")

        expected = create_test_data()
        with self.create_store() as store:
            expected.dump_to_store(store)
            zarr_group = store.ds
            for var in zarr_group:
                assert expected[var].dims == zarr_group[var].metadata.dimension_names

    @pytest.mark.parametrize("group", [None, "group1"])
    def test_write_persistence_modes(self, group) -> None:
        original = create_test_data()

        # overwrite mode
        with self.roundtrip(
            original,
            save_kwargs={"mode": "w", "group": group},
            open_kwargs={"group": group},
        ) as actual:
            assert_identical(original, actual)

        # don't overwrite mode
        with self.roundtrip(
            original,
            save_kwargs={"mode": "w-", "group": group},
            open_kwargs={"group": group},
        ) as actual:
            assert_identical(original, actual)

        # make sure overwriting works as expected
        with self.create_zarr_target() as store:
            self.save(original, store)
            # should overwrite with no error
            self.save(original, store, mode="w", group=group)
            with self.open(store, group=group) as actual:
                assert_identical(original, actual)
                with pytest.raises((ValueError, FileExistsError)):
                    self.save(original, store, mode="w-")

        # check append mode for normal write
        with self.roundtrip(
            original,
            save_kwargs={"mode": "a", "group": group},
            open_kwargs={"group": group},
        ) as actual:
            assert_identical(original, actual)

        # check append mode for append write
        ds, ds_to_append, _ = create_append_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", group=group, **self.version_kwargs)
            ds_to_append.to_zarr(
                store_target, append_dim="time", group=group, **self.version_kwargs
            )
            original = xr.concat([ds, ds_to_append], dim="time")
            actual = xr.open_dataset(
                store_target, group=group, engine="zarr", **self.version_kwargs
            )
            assert_identical(original, actual)

    def test_compressor_encoding(self) -> None:
        # specify a custom compressor
        original = create_test_data()
        if has_zarr_v3 and zarr.config.config["default_zarr_format"] == 3:
            encoding_key = "compressors"
            # all parameters need to be explicitly specified in order for the comparison to pass below
            encoding = {
                "serializer": zarr.codecs.BytesCodec(endian="little"),
                encoding_key: (
                    zarr.codecs.BloscCodec(
                        cname="zstd",
                        clevel=3,
                        shuffle="shuffle",
                        typesize=8,
                        blocksize=0,
                    ),
                ),
            }
        else:
            from numcodecs.blosc import Blosc

            encoding_key = "compressors" if has_zarr_v3 else "compressor"
            comp = Blosc(cname="zstd", clevel=3, shuffle=2)
            encoding = {encoding_key: (comp,) if has_zarr_v3 else comp}

        save_kwargs = dict(encoding={"var1": encoding})

        with self.roundtrip(original, save_kwargs=save_kwargs) as ds:
            enc = ds["var1"].encoding[encoding_key]
            assert enc == encoding[encoding_key]

    def test_group(self) -> None:
        original = create_test_data()
        group = "some/random/path"
        with self.roundtrip(
            original, save_kwargs={"group": group}, open_kwargs={"group": group}
        ) as actual:
            assert_identical(original, actual)

    def test_zarr_mode_w_overwrites_encoding(self) -> None:
        data = Dataset({"foo": ("x", [1.0, 1.0, 1.0])})
        with self.create_zarr_target() as store:
            data.to_zarr(
                store, **self.version_kwargs, encoding={"foo": {"add_offset": 1}}
            )
            np.testing.assert_equal(
                zarr.open_group(store, **self.version_kwargs)["foo"], data.foo.data - 1
            )
            data.to_zarr(
                store,
                **self.version_kwargs,
                encoding={"foo": {"add_offset": 0}},
                mode="w",
            )
            np.testing.assert_equal(
                zarr.open_group(store, **self.version_kwargs)["foo"], data.foo.data
            )

    def test_encoding_kwarg_fixed_width_string(self) -> None:
        # not relevant for zarr, since we don't use EncodedStringCoder
        pass

    def test_dataset_caching(self) -> None:
        super().test_dataset_caching()

    def test_append_write(self) -> None:
        super().test_append_write()

    def test_append_with_mode_rplus_success(self) -> None:
        original = Dataset({"foo": ("x", [1])})
        modified = Dataset({"foo": ("x", [2])})
        with self.create_zarr_target() as store:
            original.to_zarr(store, **self.version_kwargs)
            modified.to_zarr(store, mode="r+", **self.version_kwargs)
            with self.open(store) as actual:
                assert_identical(actual, modified)

    def test_append_with_mode_rplus_fails(self) -> None:
        original = Dataset({"foo": ("x", [1])})
        modified = Dataset({"bar": ("x", [2])})
        with self.create_zarr_target() as store:
            original.to_zarr(store, **self.version_kwargs)
            with pytest.raises(
                ValueError, match="dataset contains non-pre-existing variables"
            ):
                modified.to_zarr(store, mode="r+", **self.version_kwargs)

    def test_append_with_invalid_dim_raises(self) -> None:
        ds, ds_to_append, _ = create_append_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            with pytest.raises(
                ValueError, match="does not match any existing dataset dimensions"
            ):
                ds_to_append.to_zarr(
                    store_target, append_dim="notvalid", **self.version_kwargs
                )

    def test_append_with_no_dims_raises(self) -> None:
        with self.create_zarr_target() as store_target:
            Dataset({"foo": ("x", [1])}).to_zarr(
                store_target, mode="w", **self.version_kwargs
            )
            with pytest.raises(ValueError, match="different dimension names"):
                Dataset({"foo": ("y", [2])}).to_zarr(
                    store_target, mode="a", **self.version_kwargs
                )

    def test_append_with_append_dim_not_set_raises(self) -> None:
        ds, ds_to_append, _ = create_append_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            with pytest.raises(ValueError, match="different dimension sizes"):
                ds_to_append.to_zarr(store_target, mode="a", **self.version_kwargs)

    def test_append_with_mode_not_a_raises(self) -> None:
        ds, ds_to_append, _ = create_append_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            with pytest.raises(ValueError, match="cannot set append_dim unless"):
                ds_to_append.to_zarr(
                    store_target, mode="w", append_dim="time", **self.version_kwargs
                )

    def test_append_with_existing_encoding_raises(self) -> None:
        ds, ds_to_append, _ = create_append_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            with pytest.raises(ValueError, match="but encoding was provided"):
                ds_to_append.to_zarr(
                    store_target,
                    append_dim="time",
                    encoding={"da": {"compressor": None}},
                    **self.version_kwargs,
                )

    @pytest.mark.parametrize("dtype", ["U", "S"])
    def test_append_string_length_mismatch_raises(self, dtype) -> None:
        if has_zarr_v3 and not has_zarr_v3_dtypes:
            skip_if_zarr_format_3("This actually works fine with Zarr format 3")

        ds, ds_to_append = create_append_string_length_mismatch_test_data(dtype)
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            with pytest.raises(ValueError, match="Mismatched dtypes for variable"):
                ds_to_append.to_zarr(
                    store_target, append_dim="time", **self.version_kwargs
                )

    @pytest.mark.parametrize("dtype", ["U", "S"])
    def test_append_string_length_mismatch_works(self, dtype) -> None:
        skip_if_zarr_format_2("This doesn't work with Zarr format 2")
        # ...but it probably would if we used object dtype
        if has_zarr_v3_dtypes:
            pytest.skip("This works on pre ZDtype Zarr-Python, but fails after.")

        ds, ds_to_append = create_append_string_length_mismatch_test_data(dtype)
        expected = xr.concat([ds, ds_to_append], dim="time")

        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            ds_to_append.to_zarr(store_target, append_dim="time", **self.version_kwargs)
            actual = xr.open_dataset(store_target, engine="zarr")
            xr.testing.assert_identical(expected, actual)

    def test_check_encoding_is_consistent_after_append(self) -> None:
        ds, ds_to_append, _ = create_append_test_data()

        # check encoding consistency
        with self.create_zarr_target() as store_target:
            import numcodecs

            encoding_value: Any
            if has_zarr_v3 and zarr.config.config["default_zarr_format"] == 3:
                compressor = zarr.codecs.BloscCodec()
            else:
                compressor = numcodecs.Blosc()
            encoding_key = "compressors" if has_zarr_v3 else "compressor"
            encoding_value = (compressor,) if has_zarr_v3 else compressor

            encoding = {"da": {encoding_key: encoding_value}}
            ds.to_zarr(store_target, mode="w", encoding=encoding, **self.version_kwargs)
            original_ds = xr.open_dataset(
                store_target, engine="zarr", **self.version_kwargs
            )
            original_encoding = original_ds["da"].encoding[encoding_key]
            ds_to_append.to_zarr(store_target, append_dim="time", **self.version_kwargs)
            actual_ds = xr.open_dataset(
                store_target, engine="zarr", **self.version_kwargs
            )

            actual_encoding = actual_ds["da"].encoding[encoding_key]
            assert original_encoding == actual_encoding
            assert_identical(
                xr.open_dataset(
                    store_target, engine="zarr", **self.version_kwargs
                ).compute(),
                xr.concat([ds, ds_to_append], dim="time"),
            )

    def test_append_with_new_variable(self) -> None:
        ds, ds_to_append, ds_with_new_var = create_append_test_data()

        # check append mode for new variable
        with self.create_zarr_target() as store_target:
            combined = xr.concat([ds, ds_to_append], dim="time")
            combined.to_zarr(store_target, mode="w", **self.version_kwargs)
            assert_identical(
                combined,
                xr.open_dataset(store_target, engine="zarr", **self.version_kwargs),
            )
            ds_with_new_var.to_zarr(store_target, mode="a", **self.version_kwargs)
            combined = xr.concat([ds, ds_to_append], dim="time")
            combined["new_var"] = ds_with_new_var["new_var"]
            assert_identical(
                combined,
                xr.open_dataset(store_target, engine="zarr", **self.version_kwargs),
            )

    def test_append_with_append_dim_no_overwrite(self) -> None:
        ds, ds_to_append, _ = create_append_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, mode="w", **self.version_kwargs)
            original = xr.concat([ds, ds_to_append], dim="time")
            original2 = xr.concat([original, ds_to_append], dim="time")

            # overwrite a coordinate;
            # for mode='a-', this will not get written to the store
            # because it does not have the append_dim as a dim
            lon = ds_to_append.lon.to_numpy().copy()
            lon[:] = -999
            ds_to_append["lon"] = lon
            ds_to_append.to_zarr(
                store_target, mode="a-", append_dim="time", **self.version_kwargs
            )
            actual = xr.open_dataset(store_target, engine="zarr", **self.version_kwargs)
            assert_identical(original, actual)

            # by default, mode="a" will overwrite all coordinates.
            ds_to_append.to_zarr(store_target, append_dim="time", **self.version_kwargs)
            actual = xr.open_dataset(store_target, engine="zarr", **self.version_kwargs)
            lon = original2.lon.to_numpy().copy()
            lon[:] = -999
            original2["lon"] = lon
            assert_identical(original2, actual)

    @requires_dask
    def test_to_zarr_compute_false_roundtrip(self) -> None:
        from dask.delayed import Delayed

        original = create_test_data().chunk()

        with self.create_zarr_target() as store:
            delayed_obj = self.save(original, store, compute=False)
            assert isinstance(delayed_obj, Delayed)

            # make sure target store has not been written to yet
            with pytest.raises(AssertionError):
                with self.open(store) as actual:
                    assert_identical(original, actual)

            delayed_obj.compute()

            with self.open(store) as actual:
                assert_identical(original, actual)

    @requires_dask
    def test_to_zarr_append_compute_false_roundtrip(self) -> None:
        from dask.delayed import Delayed

        ds, ds_to_append, _ = create_append_test_data()
        ds, ds_to_append = ds.chunk(), ds_to_append.chunk()

        with pytest.warns(SerializationWarning):
            with self.create_zarr_target() as store:
                delayed_obj = self.save(ds, store, compute=False, mode="w")
                assert isinstance(delayed_obj, Delayed)

                with pytest.raises(AssertionError):
                    with self.open(store) as actual:
                        assert_identical(ds, actual)

                delayed_obj.compute()

                with self.open(store) as actual:
                    assert_identical(ds, actual)

                delayed_obj = self.save(
                    ds_to_append, store, compute=False, append_dim="time"
                )
                assert isinstance(delayed_obj, Delayed)

                with pytest.raises(AssertionError):
                    with self.open(store) as actual:
                        assert_identical(
                            xr.concat([ds, ds_to_append], dim="time"), actual
                        )

                delayed_obj.compute()

                with self.open(store) as actual:
                    assert_identical(xr.concat([ds, ds_to_append], dim="time"), actual)

    @pytest.mark.parametrize("chunk", [False, True])
    def test_save_emptydim(self, chunk) -> None:
        if chunk and not has_dask:
            pytest.skip("requires dask")
        ds = Dataset({"x": (("a", "b"), np.empty((5, 0))), "y": ("a", [1, 2, 5, 8, 9])})
        if chunk:
            ds = ds.chunk({})  # chunk dataset to save dask array
        with self.roundtrip(ds) as ds_reload:
            assert_identical(ds, ds_reload)

    @requires_dask
    def test_no_warning_from_open_emptydim_with_chunks(self) -> None:
        ds = Dataset({"x": (("a", "b"), np.empty((5, 0)))}).chunk({"a": 1})
        with assert_no_warnings():
            with warnings.catch_warnings():
                warnings.filterwarnings(
                    "ignore",
                    message=".*Zarr format 3 specification.*",
                    category=UserWarning,
                )
                with self.roundtrip(ds, open_kwargs=dict(chunks={"a": 1})) as ds_reload:
                    assert_identical(ds, ds_reload)

    @pytest.mark.parametrize("consolidated", [False, True, None])
    @pytest.mark.parametrize("compute", [False, True])
    @pytest.mark.parametrize("use_dask", [False, True])
    @pytest.mark.parametrize("write_empty", [False, True, None])
    def test_write_region(self, consolidated, compute, use_dask, write_empty) -> None:
        if (use_dask or not compute) and not has_dask:
            pytest.skip("requires dask")

        zeros = Dataset({"u": (("x",), np.zeros(10))})
        nonzeros = Dataset({"u": (("x",), np.arange(1, 11))})

        if use_dask:
            zeros = zeros.chunk(2)
            nonzeros = nonzeros.chunk(2)

        with self.create_zarr_target() as store:
            zeros.to_zarr(
                store,
                consolidated=consolidated,
                compute=compute,
                encoding={"u": dict(chunks=2)},
                **self.version_kwargs,
            )
            if compute:
                with xr.open_zarr(
                    store, consolidated=consolidated, **self.version_kwargs
                ) as actual:
                    assert_identical(actual, zeros)
            for i in range(0, 10, 2):
                region = {"x": slice(i, i + 2)}
                nonzeros.isel(region).to_zarr(
                    store,
                    region=region,
                    consolidated=consolidated,
                    write_empty_chunks=write_empty,
                    **self.version_kwargs,
                )
            with xr.open_zarr(
                store, consolidated=consolidated, **self.version_kwargs
            ) as actual:
                assert_identical(actual, nonzeros)

    @pytest.mark.parametrize("mode", [None, "r+", "a"])
    def test_write_region_mode(self, mode) -> None:
        zeros = Dataset({"u": (("x",), np.zeros(10))})
        nonzeros = Dataset({"u": (("x",), np.arange(1, 11))})
        with self.create_zarr_target() as store:
            zeros.to_zarr(store, **self.version_kwargs)
            for region in [{"x": slice(5)}, {"x": slice(5, 10)}]:
                nonzeros.isel(region).to_zarr(
                    store, region=region, mode=mode, **self.version_kwargs
                )
            with xr.open_zarr(store, **self.version_kwargs) as actual:
                assert_identical(actual, nonzeros)

    @requires_dask
    def test_write_preexisting_override_metadata(self) -> None:
        """Metadata should be overridden if mode="a" but not in mode="r+"."""
        original = Dataset(
            {"u": (("x",), np.zeros(10), {"variable": "original"})},
            attrs={"global": "original"},
        )
        both_modified = Dataset(
            {"u": (("x",), np.ones(10), {"variable": "modified"})},
            attrs={"global": "modified"},
        )
        global_modified = Dataset(
            {"u": (("x",), np.ones(10), {"variable": "original"})},
            attrs={"global": "modified"},
        )
        only_new_data = Dataset(
            {"u": (("x",), np.ones(10), {"variable": "original"})},
            attrs={"global": "original"},
        )

        with self.create_zarr_target() as store:
            original.to_zarr(store, compute=False, **self.version_kwargs)
            both_modified.to_zarr(store, mode="a", **self.version_kwargs)
            with self.open(store) as actual:
                # NOTE: this arguably incorrect -- we should probably be
                # overriding the variable metadata, too. See the TODO note in
                # ZarrStore.set_variables.
                assert_identical(actual, global_modified)

        with self.create_zarr_target() as store:
            original.to_zarr(store, compute=False, **self.version_kwargs)
            both_modified.to_zarr(store, mode="r+", **self.version_kwargs)
            with self.open(store) as actual:
                assert_identical(actual, only_new_data)

        with self.create_zarr_target() as store:
            original.to_zarr(store, compute=False, **self.version_kwargs)
            # with region, the default mode becomes r+
            both_modified.to_zarr(
                store, region={"x": slice(None)}, **self.version_kwargs
            )
            with self.open(store) as actual:
                assert_identical(actual, only_new_data)

    def test_write_region_errors(self) -> None:
        data = Dataset({"u": (("x",), np.arange(5))})
        data2 = Dataset({"u": (("x",), np.array([10, 11]))})

        @contextlib.contextmanager
        def setup_and_verify_store(expected=data):
            with self.create_zarr_target() as store:
                data.to_zarr(store, **self.version_kwargs)
                yield store
                with self.open(store) as actual:
                    assert_identical(actual, expected)

        # verify the base case works
        expected = Dataset({"u": (("x",), np.array([10, 11, 2, 3, 4]))})
        with setup_and_verify_store(expected) as store:
            data2.to_zarr(store, region={"x": slice(2)}, **self.version_kwargs)

        with setup_and_verify_store() as store:
            with pytest.raises(
                ValueError,
                match=re.escape(
                    "cannot set region unless mode='a', mode='a-', mode='r+' or mode=None"
                ),
            ):
                data.to_zarr(
                    store, region={"x": slice(None)}, mode="w", **self.version_kwargs
                )

        with setup_and_verify_store() as store:
            with pytest.raises(TypeError, match=r"must be a dict"):
                data.to_zarr(store, region=slice(None), **self.version_kwargs)  # type: ignore[call-overload]

        with setup_and_verify_store() as store:
            with pytest.raises(TypeError, match=r"must be slice objects"):
                data2.to_zarr(store, region={"x": [0, 1]}, **self.version_kwargs)  # type: ignore[dict-item]

        with setup_and_verify_store() as store:
            with pytest.raises(ValueError, match=r"step on all slices"):
                data2.to_zarr(
                    store, region={"x": slice(None, None, 2)}, **self.version_kwargs
                )

        with setup_and_verify_store() as store:
            with pytest.raises(
                ValueError,
                match=r"all keys in ``region`` are not in Dataset dimensions",
            ):
                data.to_zarr(store, region={"y": slice(None)}, **self.version_kwargs)

        with setup_and_verify_store() as store:
            with pytest.raises(
                ValueError,
                match=r"all variables in the dataset to write must have at least one dimension in common",
            ):
                data2.assign(v=2).to_zarr(
                    store, region={"x": slice(2)}, **self.version_kwargs
                )

        with setup_and_verify_store() as store:
            with pytest.raises(
                ValueError, match=r"cannot list the same dimension in both"
            ):
                data.to_zarr(
                    store,
                    region={"x": slice(None)},
                    append_dim="x",
                    **self.version_kwargs,
                )

        with setup_and_verify_store() as store:
            with pytest.raises(
                ValueError,
                match=r"variable 'u' already exists with different dimension sizes",
            ):
                data2.to_zarr(store, region={"x": slice(3)}, **self.version_kwargs)

    @requires_dask
    def test_encoding_chunksizes(self) -> None:
        # regression test for GH2278
        # see also test_encoding_chunksizes_unlimited
        nx, ny, nt = 4, 4, 5
        original = xr.Dataset(
            {},
            coords={
                "x": np.arange(nx),
                "y": np.arange(ny),
                "t": np.arange(nt),
            },
        )
        original["v"] = xr.Variable(("x", "y", "t"), np.zeros((nx, ny, nt)))
        original = original.chunk({"t": 1, "x": 2, "y": 2})

        with self.roundtrip(original) as ds1:
            assert_equal(ds1, original)
            with self.roundtrip(ds1.isel(t=0)) as ds2:
                assert_equal(ds2, original.isel(t=0))

    @requires_dask
    def test_chunk_encoding_with_partial_dask_chunks(self) -> None:
        original = xr.Dataset(
            {"x": xr.DataArray(np.random.random(size=(6, 8)), dims=("a", "b"))}
        ).chunk({"a": 3})

        with self.roundtrip(
            original, save_kwargs={"encoding": {"x": {"chunks": [3, 2]}}}
        ) as ds1:
            assert_equal(ds1, original)

    @requires_dask
    def test_chunk_encoding_with_larger_dask_chunks(self) -> None:
        original = xr.Dataset({"a": ("x", [1, 2, 3, 4])}).chunk({"x": 2})

        with self.roundtrip(
            original, save_kwargs={"encoding": {"a": {"chunks": [1]}}}
        ) as ds1:
            assert_equal(ds1, original)

    @requires_cftime
    def test_open_zarr_use_cftime(self) -> None:
        ds = create_test_data()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, **self.version_kwargs)
            ds_a = xr.open_zarr(store_target, **self.version_kwargs)
            assert_identical(ds, ds_a)
            decoder = CFDatetimeCoder(use_cftime=True)
            ds_b = xr.open_zarr(
                store_target, decode_times=decoder, **self.version_kwargs
            )
            assert xr.coding.times.contains_cftime_datetimes(ds_b.time.variable)

    def test_write_read_select_write(self) -> None:
        # Test for https://github.com/pydata/xarray/issues/4084
        ds = create_test_data()

        # NOTE: using self.roundtrip, which uses open_dataset, will not trigger the bug.
        with self.create_zarr_target() as initial_store:
            ds.to_zarr(initial_store, mode="w", **self.version_kwargs)
            ds1 = xr.open_zarr(initial_store, **self.version_kwargs)

            # Combination of where+squeeze triggers error on write.
            ds_sel = ds1.where(ds1.coords["dim3"] == "a", drop=True).squeeze("dim3")
            with self.create_zarr_target() as final_store:
                ds_sel.to_zarr(final_store, mode="w", **self.version_kwargs)

    @pytest.mark.parametrize("obj", [Dataset(), DataArray(name="foo")])
    def test_attributes(self, obj) -> None:
        obj = obj.copy()

        obj.attrs["good"] = {"key": "value"}
        ds = obj if isinstance(obj, Dataset) else obj.to_dataset()
        with self.create_zarr_target() as store_target:
            ds.to_zarr(store_target, **self.version_kwargs)
            assert_identical(ds, xr.open_zarr(store_target, **self.version_kwargs))

        obj.attrs["bad"] = DataArray()
        ds = obj if isinstance(obj, Dataset) else obj.to_dataset()
        with self.create_zarr_target() as store_target:
            with pytest.raises(TypeError, match=r"Invalid attribute in Dataset.attrs."):
                ds.to_zarr(store_target, **self.version_kwargs)

    @requires_dask
    @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
    def test_chunked_datetime64_or_timedelta64(self, dtype) -> None:
        # Generalized from @malmans2's test in PR #8253
        original = create_test_data().astype(dtype).chunk(1)
        with self.roundtrip(
            original,
            open_kwargs={
                "chunks": {},
                "decode_timedelta": CFTimedeltaCoder(time_unit="ns"),
            },
        ) as actual:
            for name, actual_var in actual.variables.items():
                assert original[name].chunks == actual_var.chunks
            assert original.chunks == actual.chunks

    @requires_cftime
    @requires_dask
    def test_chunked_cftime_datetime(self) -> None:
        # Based on @malmans2's test in PR #8253
        times = date_range("2000", freq="D", periods=3, use_cftime=True)
        original = xr.Dataset(data_vars={"chunked_times": (["time"], times)})
        original = original.chunk({"time": 1})
        with self.roundtrip(original, open_kwargs={"chunks": {}}) as actual:
            for name, actual_var in actual.variables.items():
                assert original[name].chunks == actual_var.chunks
            assert original.chunks == actual.chunks

    def test_cache_members(self) -> None:
        """
        Ensure that if `ZarrStore` is created with `cache_members` set to `True`,
        a `ZarrStore` only inspects the underlying zarr group once,
        and that the results of that inspection are cached.

        Otherwise, `ZarrStore.members` should inspect the underlying zarr group each time it is
        invoked
        """
        with self.create_zarr_target() as store_target:
            zstore_mut = backends.ZarrStore.open_group(
                store_target, mode="w", cache_members=False
            )

            # ensure that the keys are sorted
            array_keys = sorted(("foo", "bar"))

            # create some arrays
            for ak in array_keys:
                zstore_mut.zarr_group.create(name=ak, shape=(1,), dtype="uint8")

            zstore_stat = backends.ZarrStore.open_group(
                store_target, mode="r", cache_members=True
            )

            observed_keys_0 = sorted(zstore_stat.array_keys())
            assert observed_keys_0 == array_keys

            # create a new array
            new_key = "baz"
            zstore_mut.zarr_group.create(name=new_key, shape=(1,), dtype="uint8")

            observed_keys_1 = sorted(zstore_stat.array_keys())
            assert observed_keys_1 == array_keys

            observed_keys_2 = sorted(zstore_mut.array_keys())
            assert observed_keys_2 == sorted(array_keys + [new_key])

    @requires_dask
    @pytest.mark.parametrize("dtype", [int, float])
    def test_zarr_fill_value_setting(self, dtype):
        # When zarr_format=2, _FillValue sets fill_value
        # When zarr_format=3, fill_value is set independently
        # We test this by writing a dask array with compute=False,
        # on read we should receive chunks filled with `fill_value`
        fv = -1
        ds = xr.Dataset(
            {"foo": ("x", dask.array.from_array(np.array([0, 0, 0], dtype=dtype)))}
        )
        expected = xr.Dataset({"foo": ("x", [fv] * 3)})

        zarr_format_2 = (
            has_zarr_v3 and zarr.config.get("default_zarr_format") == 2
        ) or not has_zarr_v3
        if zarr_format_2:
            attr = "_FillValue"
            expected.foo.attrs[attr] = fv
        else:
            attr = "fill_value"
            if dtype is float:
                # for floats, Xarray inserts a default `np.nan`
                expected.foo.attrs["_FillValue"] = np.nan

        # turn off all decoding so we see what Zarr returns to us.
        # Since chunks, are not written, we should receive on `fill_value`
        open_kwargs = {
            "mask_and_scale": False,
            "consolidated": False,
            "use_zarr_fill_value_as_mask": False,
        }
        save_kwargs = dict(compute=False, consolidated=False)
        with self.roundtrip(
            ds,
            save_kwargs=ChainMap(save_kwargs, dict(encoding={"foo": {attr: fv}})),
            open_kwargs=open_kwargs,
        ) as actual:
            assert_identical(actual, expected)

        ds.foo.encoding[attr] = fv
        with self.roundtrip(
            ds, save_kwargs=save_kwargs, open_kwargs=open_kwargs
        ) as actual:
            assert_identical(actual, expected)

        if zarr_format_2:
            ds = ds.drop_encoding()
            with pytest.raises(ValueError, match="_FillValue"):
                with self.roundtrip(
                    ds,
                    save_kwargs=ChainMap(
                        save_kwargs, dict(encoding={"foo": {"fill_value": fv}})
                    ),
                    open_kwargs=open_kwargs,
                ):
                    pass
            # TODO: this doesn't fail because of the
            # ``raise_on_invalid=vn in check_encoding_set`` line in zarr.py
            # ds.foo.encoding["fill_value"] = fv


@requires_zarr
@pytest.mark.skipif(
    KVStore is None, reason="zarr-python 2.x or ZARR_V3_EXPERIMENTAL_API is unset."
)
class TestInstrumentedZarrStore:
    if has_zarr_v3:
        methods = [
            "get",
            "set",
            "list_dir",
            "list_prefix",
        ]
    else:
        methods = [
            "__iter__",
            "__contains__",
            "__setitem__",
            "__getitem__",
            "listdir",
            "list_prefix",
        ]

    @contextlib.contextmanager
    def create_zarr_target(self):
        if Version(zarr.__version__) < Version("2.18.0"):
            pytest.skip("Instrumented tests only work on latest Zarr.")

        if has_zarr_v3:
            kwargs = {"read_only": False}
        else:
            kwargs = {}  # type: ignore[arg-type,unused-ignore]

        store = KVStore({}, **kwargs)  # type: ignore[arg-type,unused-ignore]
        yield store

    def make_patches(self, store):
        from unittest.mock import MagicMock

        return {
            method: MagicMock(
                f"KVStore.{method}",
                side_effect=getattr(store, method),
                autospec=True,
            )
            for method in self.methods
        }

    def summarize(self, patches):
        summary = {}
        for name, patch_ in patches.items():
            count = 0
            for call in patch_.mock_calls:
                if "zarr.json" not in call.args:
                    count += 1
            summary[name.strip("_")] = count
        return summary

    def check_requests(self, expected, patches):
        summary = self.summarize(patches)
        for k in summary:
            assert summary[k] <= expected[k], (k, summary)

    def test_append(self) -> None:
        original = Dataset({"foo": ("x", [1])}, coords={"x": [0]})
        modified = Dataset({"foo": ("x", [2])}, coords={"x": [1]})

        with self.create_zarr_target() as store:
            if has_zarr_v3:
                # TODO: verify these
                expected = {
                    "set": 5,
                    "get": 4,
                    "list_dir": 2,
                    "list_prefix": 1,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 18,
                    "setitem": 10,
                    "getitem": 13,
                    "listdir": 0,
                    "list_prefix": 3,
                }

            patches = self.make_patches(store)
            with patch.multiple(KVStore, **patches):
                original.to_zarr(store)
            self.check_requests(expected, patches)

            patches = self.make_patches(store)
            # v2024.03.0: {'iter': 6, 'contains': 2, 'setitem': 5, 'getitem': 10, 'listdir': 6, 'list_prefix': 0}
            # 6057128b: {'iter': 5, 'contains': 2, 'setitem': 5, 'getitem': 10, "listdir": 5, "list_prefix": 0}
            if has_zarr_v3:
                expected = {
                    "set": 4,
                    "get": 9,  # TODO: fixme upstream (should be 8)
                    "list_dir": 2,  # TODO: fixme upstream (should be 2)
                    "list_prefix": 0,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 11,
                    "setitem": 6,
                    "getitem": 15,
                    "listdir": 0,
                    "list_prefix": 1,
                }

            with patch.multiple(KVStore, **patches):
                modified.to_zarr(store, mode="a", append_dim="x")
            self.check_requests(expected, patches)

            patches = self.make_patches(store)

            if has_zarr_v3:
                expected = {
                    "set": 4,
                    "get": 9,  # TODO: fixme upstream (should be 8)
                    "list_dir": 2,  # TODO: fixme upstream (should be 2)
                    "list_prefix": 0,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 11,
                    "setitem": 6,
                    "getitem": 15,
                    "listdir": 0,
                    "list_prefix": 1,
                }

            with patch.multiple(KVStore, **patches):
                modified.to_zarr(store, mode="a-", append_dim="x")
            self.check_requests(expected, patches)

            with open_dataset(store, engine="zarr") as actual:
                assert_identical(
                    actual, xr.concat([original, modified, modified], dim="x")
                )

    @requires_dask
    def test_region_write(self) -> None:
        ds = Dataset({"foo": ("x", [1, 2, 3])}, coords={"x": [1, 2, 3]}).chunk()
        with self.create_zarr_target() as store:
            if has_zarr_v3:
                expected = {
                    "set": 5,
                    "get": 2,
                    "list_dir": 2,
                    "list_prefix": 4,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 16,
                    "setitem": 9,
                    "getitem": 13,
                    "listdir": 0,
                    "list_prefix": 5,
                }

            patches = self.make_patches(store)
            with patch.multiple(KVStore, **patches):
                ds.to_zarr(store, mode="w", compute=False)
            self.check_requests(expected, patches)

            # v2024.03.0: {'iter': 5, 'contains': 2, 'setitem': 1, 'getitem': 6, 'listdir': 5, 'list_prefix': 0}
            # 6057128b: {'iter': 4, 'contains': 2, 'setitem': 1, 'getitem': 5, 'listdir': 4, 'list_prefix': 0}
            if has_zarr_v3:
                expected = {
                    "set": 1,
                    "get": 3,
                    "list_dir": 0,
                    "list_prefix": 0,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 6,
                    "setitem": 1,
                    "getitem": 7,
                    "listdir": 0,
                    "list_prefix": 0,
                }

            patches = self.make_patches(store)
            with patch.multiple(KVStore, **patches):
                ds.to_zarr(store, region={"x": slice(None)})
            self.check_requests(expected, patches)

            # v2024.03.0: {'iter': 6, 'contains': 4, 'setitem': 1, 'getitem': 11, 'listdir': 6, 'list_prefix': 0}
            # 6057128b: {'iter': 4, 'contains': 2, 'setitem': 1, 'getitem': 7, 'listdir': 4, 'list_prefix': 0}
            if has_zarr_v3:
                expected = {
                    "set": 1,
                    "get": 4,
                    "list_dir": 0,
                    "list_prefix": 0,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 6,
                    "setitem": 1,
                    "getitem": 8,
                    "listdir": 0,
                    "list_prefix": 0,
                }

            patches = self.make_patches(store)
            with patch.multiple(KVStore, **patches):
                ds.to_zarr(store, region="auto")
            self.check_requests(expected, patches)

            if has_zarr_v3:
                expected = {
                    "set": 0,
                    "get": 5,
                    "list_dir": 0,
                    "list_prefix": 0,
                }
            else:
                expected = {
                    "iter": 1,
                    "contains": 6,
                    "setitem": 0,
                    "getitem": 8,
                    "listdir": 0,
                    "list_prefix": 0,
                }

            patches = self.make_patches(store)
            with patch.multiple(KVStore, **patches):
                with open_dataset(store, engine="zarr") as actual:
                    assert_identical(actual, ds)
            self.check_requests(expected, patches)


@requires_zarr
class TestZarrDictStore(ZarrBase):
    @contextlib.contextmanager
    def create_zarr_target(self):
        if has_zarr_v3:
            yield zarr.storage.MemoryStore({}, read_only=False)
        else:
            yield {}

    def test_chunk_key_encoding_v2(self) -> None:
        encoding = {"name": "v2", "configuration": {"separator": "/"}}

        # Create a dataset with a variable name containing a period
        data = np.ones((4, 4))
        original = Dataset({"var1": (("x", "y"), data)})

        # Set up chunk key encoding with slash separator
        encoding = {
            "var1": {
                "chunk_key_encoding": encoding,
                "chunks": (2, 2),
            }
        }

        # Write to store with custom encoding
        with self.create_zarr_target() as store:
            original.to_zarr(store, encoding=encoding)

            # Verify the chunk keys in store use the slash separator
            if not has_zarr_v3:
                chunk_keys = [k for k in store.keys() if k.startswith("var1/")]
                assert len(chunk_keys) > 0
                for key in chunk_keys:
                    assert "/" in key
                    assert "." not in key.split("/")[1:]  # No dots in chunk coordinates

            # Read back and verify data
            with xr.open_zarr(store) as actual:
                assert_identical(original, actual)
                # Verify chunks are preserved
                assert actual["var1"].encoding["chunks"] == (2, 2)

    @pytest.mark.asyncio
    @requires_zarr_v3
    async def test_async_load_multiple_variables(self) -> None:
        target_class = zarr.AsyncArray
        method_name = "getitem"
        original_method = getattr(target_class, method_name)

        # the indexed coordinate variables is not lazy, so the create_test_dataset has 4 lazy variables in total
        N_LAZY_VARS = 4

        original = create_test_data()
        with self.create_zarr_target() as store:
            original.to_zarr(store, zarr_format=3, consolidated=False)

            with patch.object(
                target_class, method_name, wraps=original_method, autospec=True
            ) as mocked_meth:
                # blocks upon loading the coordinate variables here
                ds = xr.open_zarr(store, consolidated=False, chunks=None)

                # TODO we're not actually testing that these indexing methods are not blocking...
                result_ds = await ds.load_async()

                mocked_meth.assert_called()
                assert mocked_meth.call_count == N_LAZY_VARS
                mocked_meth.assert_awaited()

            xrt.assert_identical(result_ds, ds.load())

    @pytest.mark.asyncio
    @requires_zarr_v3
    @pytest.mark.parametrize("cls_name", ["Variable", "DataArray", "Dataset"])
    async def test_concurrent_load_multiple_objects(
        self,
        cls_name,
    ) -> None:
        N_OBJECTS = 5
        N_LAZY_VARS = {
            "Variable": 1,
            "DataArray": 1,
            "Dataset": 4,
        }  # specific to the create_test_data() used

        target_class = zarr.AsyncArray
        method_name = "getitem"
        original_method = getattr(target_class, method_name)

        original = create_test_data()
        with self.create_zarr_target() as store:
            original.to_zarr(store, consolidated=False, zarr_format=3)

            with patch.object(
                target_class, method_name, wraps=original_method, autospec=True
            ) as mocked_meth:
                xr_obj = get_xr_obj(store, cls_name)

                # TODO we're not actually testing that these indexing methods are not blocking...
                coros = [xr_obj.load_async() for _ in range(N_OBJECTS)]
                results = await asyncio.gather(*coros)

                mocked_meth.assert_called()
                assert mocked_meth.call_count == N_OBJECTS * N_LAZY_VARS[cls_name]
                mocked_meth.assert_awaited()

            for result in results:
                xrt.assert_identical(result, xr_obj.load())

    @pytest.mark.asyncio
    @requires_zarr_v3
    @pytest.mark.parametrize("cls_name", ["Variable", "DataArray", "Dataset"])
    @pytest.mark.parametrize(
        "indexer, method, target_zarr_class",
        [
            pytest.param({}, "sel", "zarr.AsyncArray", id="no-indexing-sel"),
            pytest.param({}, "isel", "zarr.AsyncArray", id="no-indexing-isel"),
            pytest.param({"dim2": 1.0}, "sel", "zarr.AsyncArray", id="basic-int-sel"),
            pytest.param({"dim2": 2}, "isel", "zarr.AsyncArray", id="basic-int-isel"),
            pytest.param(
                {"dim2": slice(1.0, 3.0)},
                "sel",
                "zarr.AsyncArray",
                id="basic-slice-sel",
            ),
            pytest.param(
                {"dim2": slice(1, 3)}, "isel", "zarr.AsyncArray", id="basic-slice-isel"
            ),
            pytest.param(
                {"dim2": [1.0, 3.0]},
                "sel",
                "zarr.core.indexing.AsyncOIndex",
                id="outer-sel",
            ),
            pytest.param(
                {"dim2": [1, 3]},
                "isel",
                "zarr.core.indexing.AsyncOIndex",
                id="outer-isel",
            ),
            pytest.param(
                {
                    "dim1": xr.Variable(data=[2, 3], dims="points"),
                    "dim2": xr.Variable(data=[1.0, 2.0], dims="points"),
                },
                "sel",
                "zarr.core.indexing.AsyncVIndex",
                id="vectorized-sel",
            ),
            pytest.param(
                {
                    "dim1": xr.Variable(data=[2, 3], dims="points"),
                    "dim2": xr.Variable(data=[1, 3], dims="points"),
                },
                "isel",
                "zarr.core.indexing.AsyncVIndex",
                id="vectorized-isel",
            ),
        ],
    )
    async def test_indexing(
        self,
        cls_name,
        method,
        indexer,
        target_zarr_class,
    ) -> None:
        if not has_zarr_v3_async_oindex and target_zarr_class in (
            "zarr.core.indexing.AsyncOIndex",
            "zarr.core.indexing.AsyncVIndex",
        ):
            pytest.skip(
                "current version of zarr does not support orthogonal or vectorized async indexing"
            )

        if cls_name == "Variable" and method == "sel":
            pytest.skip("Variable doesn't have a .sel method")

        # Each type of indexing ends up calling a different zarr indexing method
        # They all use a method named .getitem, but on a different internal zarr class
        def _resolve_class_from_string(class_path: str) -> type[Any]:
            """Resolve a string class path like 'zarr.AsyncArray' to the actual class."""
            module_path, class_name = class_path.rsplit(".", 1)
            module = import_module(module_path)
            return getattr(module, class_name)

        target_class = _resolve_class_from_string(target_zarr_class)
        method_name = "getitem"
        original_method = getattr(target_class, method_name)

        original = create_test_data()
        with self.create_zarr_target() as store:
            original.to_zarr(store, consolidated=False, zarr_format=3)

            with patch.object(
                target_class, method_name, wraps=original_method, autospec=True
            ) as mocked_meth:
                xr_obj = get_xr_obj(store, cls_name)

                # TODO we're not actually testing that these indexing methods are not blocking...
                result = await getattr(xr_obj, method)(**indexer).load_async()

                mocked_meth.assert_called()
                mocked_meth.assert_awaited()
                assert mocked_meth.call_count > 0

            expected = getattr(xr_obj, method)(**indexer).load()
            xrt.assert_identical(result, expected)

    @pytest.mark.asyncio
    @pytest.mark.parametrize(
        ("indexer", "expected_err_msg"),
        [
            pytest.param(
                {"dim2": 2},
                "basic async indexing",
                marks=pytest.mark.skipif(
                    has_zarr_v3,
                    reason="current version of zarr has basic async indexing",
                ),
            ),  # tests basic indexing
            pytest.param(
                {"dim2": [1, 3]},
                "orthogonal async indexing",
                marks=pytest.mark.skipif(
                    has_zarr_v3_async_oindex,
                    reason="current version of zarr has async orthogonal indexing",
                ),
            ),  # tests oindexing
            pytest.param(
                {
                    "dim1": xr.Variable(data=[2, 3], dims="points"),
                    "dim2": xr.Variable(data=[1, 3], dims="points"),
                },
                "vectorized async indexing",
                marks=pytest.mark.skipif(
                    has_zarr_v3_async_oindex,
                    reason="current version of zarr has async vectorized indexing",
                ),
            ),  # tests vindexing
        ],
    )
    @parametrize_zarr_format
    async def test_raise_on_older_zarr_version(
        self,
        indexer,
        expected_err_msg,
        zarr_format,
    ):
        """Test that trying to use async load with insufficiently new version of zarr raises a clear error"""

        original = create_test_data()
        with self.create_zarr_target() as store:
            original.to_zarr(store, consolidated=False, zarr_format=zarr_format)

            ds = xr.open_zarr(store, consolidated=False, chunks=None)
            var = ds["var1"].variable

            with pytest.raises(NotImplementedError, match=expected_err_msg):
                await var.isel(**indexer).load_async()


def get_xr_obj(
    store: zarr.abc.store.Store, cls_name: Literal["Variable", "DataArray", "Dataset"]
):
    ds = xr.open_zarr(store, consolidated=False, chunks=None)

    match cls_name:
        case "Variable":
            return ds["var1"].variable
        case "DataArray":
            return ds["var1"]
        case "Dataset":
            return ds


class NoConsolidatedMetadataSupportStore(WrapperStore):
    """
    Store that explicitly does not support consolidated metadata.

    Useful as a proxy for stores like Icechunk, see https://github.com/zarr-developers/zarr-python/pull/3119.
    """

    supports_consolidated_metadata = False

    def __init__(
        self,
        store,
        *,
        read_only: bool = False,
    ) -> None:
        self._store = store.with_read_only(read_only=read_only)

    def with_read_only(
        self, read_only: bool = False
    ) -> NoConsolidatedMetadataSupportStore:
        return type(self)(
            store=self._store,
            read_only=read_only,
        )


@requires_zarr_v3
class TestZarrNoConsolidatedMetadataSupport(ZarrBase):
    @contextlib.contextmanager
    def create_zarr_target(self):
        # TODO the zarr version would need to be >3.08 for the supports_consolidated_metadata property to have any effect
        yield NoConsolidatedMetadataSupportStore(
            zarr.storage.MemoryStore({}, read_only=False)
        )


@requires_zarr
@pytest.mark.skipif(
    ON_WINDOWS,
    reason="Very flaky on Windows CI. Can re-enable assuming it starts consistently passing.",
)
class TestZarrDirectoryStore(ZarrBase):
    @contextlib.contextmanager
    def create_zarr_target(self):
        with create_tmp_file(suffix=".zarr") as tmp:
            yield tmp


@requires_zarr
class TestZarrWriteEmpty(TestZarrDirectoryStore):
    @contextlib.contextmanager
    def temp_dir(self) -> Iterator[tuple[str, str]]:
        with tempfile.TemporaryDirectory() as d:
            store = os.path.join(d, "test.zarr")
            yield d, store

    @contextlib.contextmanager
    def roundtrip_dir(
        self,
        data,
        store,
        save_kwargs=None,
        open_kwargs=None,
        allow_cleanup_failure=False,
    ) -> Iterator[Dataset]:
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}

        data.to_zarr(store, **save_kwargs, **self.version_kwargs)
        with xr.open_dataset(
            store, engine="zarr", **open_kwargs, **self.version_kwargs
        ) as ds:
            yield ds

    @pytest.mark.parametrize("consolidated", [True, False, None])
    @pytest.mark.parametrize("write_empty", [True, False, None])
    def test_write_empty(
        self,
        consolidated: bool | None,
        write_empty: bool | None,
    ) -> None:
        def assert_expected_files(expected: list[str], store: str) -> None:
            """Convenience for comparing with actual files written"""
            ls = []
            test_root = os.path.join(store, "test")
            for root, _, files in os.walk(test_root):
                ls.extend(
                    [
                        os.path.join(root, f).removeprefix(test_root).lstrip("/")
                        for f in files
                    ]
                )

            assert set(expected) == {
                file.lstrip("c/")
                for file in ls
                if (file not in (".zattrs", ".zarray", "zarr.json"))
            }

        # The zarr format is set by the `default_zarr_format`
        # pytest fixture that acts on a superclass
        zarr_format_3 = has_zarr_v3 and zarr.config.config["default_zarr_format"] == 3
        if (write_empty is False) or (write_empty is None and has_zarr_v3):
            expected = ["0.1.0"]
        else:
            expected = [
                "0.0.0",
                "0.0.1",
                "0.1.0",
                "0.1.1",
            ]

        if zarr_format_3:
            data = np.array([0.0, 0, 1.0, 0]).reshape((1, 2, 2))
            # transform to the path style of zarr 3
            # e.g. 0/0/1
            expected = [e.replace(".", "/") for e in expected]
        else:
            # use nan for default fill_value behaviour
            data = np.array([np.nan, np.nan, 1.0, np.nan]).reshape((1, 2, 2))

        ds = xr.Dataset(data_vars={"test": (("Z", "Y", "X"), data)})

        if has_dask:
            ds["test"] = ds["test"].chunk(1)
            encoding = None
        else:
            encoding = {"test": {"chunks": (1, 1, 1)}}

        with self.temp_dir() as (d, store):
            ds.to_zarr(
                store,
                mode="w",
                encoding=encoding,
                write_empty_chunks=write_empty,
            )

            # check expected files after a write
            assert_expected_files(expected, store)

            with self.roundtrip_dir(
                ds,
                store,
                save_kwargs={
                    "mode": "a",
                    "append_dim": "Z",
                    "write_empty_chunks": write_empty,
                },
            ) as a_ds:
                expected_ds = xr.concat([ds, ds], dim="Z")

                assert_identical(a_ds, expected_ds.compute())
                # add the new files we expect to be created by the append
                # that was performed by the roundtrip_dir
                if (write_empty is False) or (write_empty is None and has_zarr_v3):
                    expected.append("1.1.0")
                elif not has_zarr_v3:
                    # TODO: remove zarr3 if once zarr issue is fixed
                    # https://github.com/zarr-developers/zarr-python/issues/2931
                    expected.extend(
                        [
                            "1.1.0",
                            "1.0.0",
                            "1.0.1",
                            "1.1.1",
                        ]
                    )
                else:
                    expected.append("1.1.0")
                if zarr_format_3:
                    expected = [e.replace(".", "/") for e in expected]
                assert_expected_files(expected, store)

    def test_avoid_excess_metadata_calls(self) -> None:
        """Test that chunk requests do not trigger redundant metadata requests.

        This test targets logic in backends.zarr.ZarrArrayWrapper, asserting that calls
        to retrieve chunk data after initialization do not trigger additional
        metadata requests.

        https://github.com/pydata/xarray/issues/8290
        """
        ds = xr.Dataset(data_vars={"test": (("Z",), np.array([123]).reshape(1))})

        # The call to retrieve metadata performs a group lookup. We patch Group.__getitem__
        # so that we can inspect calls to this method - specifically count of calls.
        # Use of side_effect means that calls are passed through to the original method
        # rather than a mocked method.

        Group: Any
        if has_zarr_v3:
            Group = zarr.AsyncGroup
            patched = patch.object(
                Group, "getitem", side_effect=Group.getitem, autospec=True
            )
        else:
            Group = zarr.Group
            patched = patch.object(
                Group, "__getitem__", side_effect=Group.__getitem__, autospec=True
            )

        with self.create_zarr_target() as store, patched as mock:
            ds.to_zarr(store, mode="w")

            # We expect this to request array metadata information, so call_count should be == 1,
            xrds = xr.open_zarr(store)
            call_count = mock.call_count
            assert call_count == 1

            # compute() requests array data, which should not trigger additional metadata requests
            # we assert that the number of calls has not increased after fetchhing the array
            xrds.test.compute(scheduler="sync")
            assert mock.call_count == call_count


@requires_zarr
@requires_fsspec
@pytest.mark.skipif(has_zarr_v3, reason="Difficult to test.")
def test_zarr_storage_options() -> None:
    pytest.importorskip("aiobotocore")
    ds = create_test_data()
    store_target = "memory://test.zarr"
    ds.to_zarr(store_target, storage_options={"test": "zarr_write"})
    ds_a = xr.open_zarr(store_target, storage_options={"test": "zarr_read"})
    assert_identical(ds, ds_a)


@requires_zarr
def test_zarr_version_deprecated() -> None:
    ds = create_test_data()
    store: Any
    if has_zarr_v3:
        store = KVStore()
    else:
        store = {}

    with pytest.warns(FutureWarning, match="zarr_version"):
        ds.to_zarr(store=store, zarr_version=2)

    with pytest.warns(FutureWarning, match="zarr_version"):
        xr.open_zarr(store=store, zarr_version=2)

    with pytest.raises(ValueError, match="zarr_format"):
        xr.open_zarr(store=store, zarr_version=2, zarr_format=3)


@requires_scipy
class TestScipyInMemoryData(NetCDF3Only, CFEncodedBase):
    engine: T_NetcdfEngine = "scipy"

    @contextlib.contextmanager
    def create_store(self):
        fobj = BytesIO()
        yield backends.ScipyDataStore(fobj, "w")

    @pytest.mark.asyncio
    @pytest.mark.skip(reason="NetCDF backends don't support async loading")
    async def test_load_async(self) -> None:
        await super().test_load_async()

    def test_to_netcdf_explicit_engine(self) -> None:
        with pytest.warns(
            FutureWarning,
            match=re.escape("return value of to_netcdf() without a target"),
        ):
            Dataset({"foo": 42}).to_netcdf(engine="scipy")

    def test_roundtrip_via_bytes(self) -> None:
        original = create_test_data()
        with pytest.warns(
            FutureWarning,
            match=re.escape("return value of to_netcdf() without a target"),
        ):
            netcdf_bytes = original.to_netcdf(engine="scipy")
        roundtrip = open_dataset(netcdf_bytes, engine="scipy")
        assert_identical(roundtrip, original)

    def test_bytes_pickle(self) -> None:
        data = Dataset({"foo": ("x", [1, 2, 3])})
        with pytest.warns(
            FutureWarning,
            match=re.escape("return value of to_netcdf() without a target"),
        ):
            fobj = data.to_netcdf()
        with self.open(fobj) as ds:
            unpickled = pickle.loads(pickle.dumps(ds))
            assert_identical(unpickled, data)


@requires_scipy
class TestScipyFileObject(NetCDF3Only, CFEncodedBase):
    # TODO: Consider consolidating some of these cases (e.g.,
    # test_file_remains_open) with TestH5NetCDFFileObject
    engine: T_NetcdfEngine = "scipy"

    @contextlib.contextmanager
    def create_store(self):
        fobj = BytesIO()
        yield backends.ScipyDataStore(fobj, "w")

    @contextlib.contextmanager
    def roundtrip(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        with create_tmp_file() as tmp_file:
            with open(tmp_file, "wb") as f:
                self.save(data, f, **save_kwargs)
            with open(tmp_file, "rb") as f:
                with self.open(f, **open_kwargs) as ds:
                    yield ds

    @pytest.mark.xfail(
        reason="scipy.io.netcdf_file closes files upon garbage collection"
    )
    def test_file_remains_open(self) -> None:
        data = Dataset({"foo": ("x", [1, 2, 3])})
        f = BytesIO()
        data.to_netcdf(f, engine="scipy")
        assert not f.closed
        restored = open_dataset(f, engine="scipy")
        assert not f.closed
        assert_identical(restored, data)
        restored.close()
        assert not f.closed

    @pytest.mark.skip(reason="cannot pickle file objects")
    def test_pickle(self) -> None:
        pass

    @pytest.mark.skip(reason="cannot pickle file objects")
    def test_pickle_dataarray(self) -> None:
        pass

    @pytest.mark.parametrize("create_default_indexes", [True, False])
    def test_create_default_indexes(self, tmp_path, create_default_indexes) -> None:
        store_path = tmp_path / "tmp.nc"
        original_ds = xr.Dataset(
            {"data": ("x", np.arange(3))}, coords={"x": [-1, 0, 1]}
        )
        original_ds.to_netcdf(store_path, engine=self.engine, mode="w")

        with open_dataset(
            store_path,
            engine=self.engine,
            create_default_indexes=create_default_indexes,
        ) as loaded_ds:
            if create_default_indexes:
                assert list(loaded_ds.xindexes) == ["x"] and isinstance(
                    loaded_ds.xindexes["x"], PandasIndex
                )
            else:
                assert len(loaded_ds.xindexes) == 0


@requires_scipy
class TestScipyFilePath(NetCDF3Only, CFEncodedBase):
    engine: T_NetcdfEngine = "scipy"

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.ScipyDataStore(tmp_file, mode="w") as store:
                yield store

    def test_array_attrs(self) -> None:
        ds = Dataset(attrs={"foo": [[1, 2], [3, 4]]})
        with pytest.raises(ValueError, match=r"must be 1-dimensional"):
            with self.roundtrip(ds):
                pass

    def test_roundtrip_example_1_netcdf_gz(self) -> None:
        with open_example_dataset("example_1.nc.gz") as expected:
            with open_example_dataset("example_1.nc") as actual:
                assert_identical(expected, actual)

    def test_netcdf3_endianness(self) -> None:
        # regression test for GH416
        with open_example_dataset("bears.nc", engine="scipy") as expected:
            for var in expected.variables.values():
                assert var.dtype.isnative

    @requires_netCDF4
    def test_nc4_scipy(self) -> None:
        with create_tmp_file(allow_cleanup_failure=True) as tmp_file:
            with nc4.Dataset(tmp_file, "w", format="NETCDF4") as rootgrp:
                rootgrp.createGroup("foo")

            with pytest.raises(TypeError, match=r"pip install netcdf4"):
                open_dataset(tmp_file, engine="scipy")


@requires_netCDF4
class TestNetCDF3ViaNetCDF4Data(NetCDF3Only, CFEncodedBase):
    engine: T_NetcdfEngine = "netcdf4"
    file_format: T_NetcdfTypes = "NETCDF3_CLASSIC"

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.NetCDF4DataStore.open(
                tmp_file, mode="w", format="NETCDF3_CLASSIC"
            ) as store:
                yield store

    def test_encoding_kwarg_vlen_string(self) -> None:
        original = Dataset({"x": ["foo", "bar", "baz"]})
        kwargs = dict(encoding={"x": {"dtype": str}})
        with pytest.raises(ValueError, match=r"encoding dtype=str for vlen"):
            with self.roundtrip(original, save_kwargs=kwargs):
                pass


@requires_netCDF4
class TestNetCDF4ClassicViaNetCDF4Data(NetCDF3Only, CFEncodedBase):
    engine: T_NetcdfEngine = "netcdf4"
    file_format: T_NetcdfTypes = "NETCDF4_CLASSIC"

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            with backends.NetCDF4DataStore.open(
                tmp_file, mode="w", format="NETCDF4_CLASSIC"
            ) as store:
                yield store


@requires_scipy_or_netCDF4
class TestGenericNetCDFData(NetCDF3Only, CFEncodedBase):
    # verify that we can read and write netCDF3 files as long as we have scipy
    # or netCDF4-python installed
    file_format: T_NetcdfTypes = "NETCDF3_64BIT"

    def test_write_store(self) -> None:
        # there's no specific store to test here
        pass

    @requires_scipy
    def test_engine(self) -> None:
        data = create_test_data()
        with pytest.raises(ValueError, match=r"unrecognized engine"):
            data.to_netcdf("foo.nc", engine="foobar")  # type: ignore[call-overload]
        with pytest.raises(ValueError, match=r"invalid engine"):
            data.to_netcdf(engine="netcdf4")

        with create_tmp_file() as tmp_file:
            data.to_netcdf(tmp_file)
            with pytest.raises(ValueError, match=r"unrecognized engine"):
                open_dataset(tmp_file, engine="foobar")

        bytes_io = BytesIO()
        data.to_netcdf(bytes_io, engine="scipy")
        with pytest.raises(ValueError, match=r"unrecognized engine"):
            open_dataset(bytes_io, engine="foobar")

    def test_cross_engine_read_write_netcdf3(self) -> None:
        data = create_test_data()
        valid_engines: set[T_NetcdfEngine] = set()
        if has_netCDF4:
            valid_engines.add("netcdf4")
        if has_scipy:
            valid_engines.add("scipy")

        for write_engine in valid_engines:
            for format in self.netcdf3_formats:
                with create_tmp_file() as tmp_file:
                    data.to_netcdf(tmp_file, format=format, engine=write_engine)
                    for read_engine in valid_engines:
                        with open_dataset(tmp_file, engine=read_engine) as actual:
                            # hack to allow test to work:
                            # coord comes back as DataArray rather than coord,
                            # and so need to loop through here rather than in
                            # the test function (or we get recursion)
                            [
                                assert_allclose(data[k].variable, actual[k].variable)
                                for k in data.variables
                            ]

    def test_encoding_unlimited_dims(self) -> None:
        ds = Dataset({"x": ("y", np.arange(10.0))})
        with self.roundtrip(ds, save_kwargs=dict(unlimited_dims=["y"])) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        # Regression test for https://github.com/pydata/xarray/issues/2134
        with self.roundtrip(ds, save_kwargs=dict(unlimited_dims="y")) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        ds.encoding = {"unlimited_dims": ["y"]}
        with self.roundtrip(ds) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

        # Regression test for https://github.com/pydata/xarray/issues/2134
        ds.encoding = {"unlimited_dims": "y"}
        with self.roundtrip(ds) as actual:
            assert actual.encoding["unlimited_dims"] == set("y")
            assert_equal(ds, actual)

    @requires_scipy
    def test_roundtrip_via_bytes(self) -> None:
        original = create_test_data()
        with pytest.warns(
            FutureWarning,
            match=re.escape("return value of to_netcdf() without a target"),
        ):
            netcdf_bytes = original.to_netcdf()
        roundtrip = open_dataset(netcdf_bytes)
        assert_identical(roundtrip, original)

    @pytest.mark.xfail(
        reason="scipy.io.netcdf_file closes files upon garbage collection"
    )
    @requires_scipy
    def test_roundtrip_via_file_object(self) -> None:
        original = create_test_data()
        f = BytesIO()
        original.to_netcdf(f)
        assert not f.closed
        restored = open_dataset(f)
        assert not f.closed
        assert_identical(restored, original)
        restored.close()
        assert not f.closed


@requires_h5netcdf
@requires_netCDF4
@pytest.mark.filterwarnings("ignore:use make_scale(name) instead")
class TestH5NetCDFData(NetCDF4Base):
    engine: T_NetcdfEngine = "h5netcdf"

    @contextlib.contextmanager
    def create_store(self):
        with create_tmp_file() as tmp_file:
            yield backends.H5NetCDFStore.open(tmp_file, "w")

    @pytest.mark.skipif(
        has_h5netcdf_1_4_0_or_above, reason="only valid for h5netcdf < 1.4.0"
    )
    def test_complex(self) -> None:
        expected = Dataset({"x": ("y", np.ones(5) + 1j * np.ones(5))})
        save_kwargs = {"invalid_netcdf": True}
        with pytest.warns(UserWarning, match="You are writing invalid netcdf features"):
            with self.roundtrip(expected, save_kwargs=save_kwargs) as actual:
                assert_equal(expected, actual)

    @pytest.mark.skipif(
        has_h5netcdf_1_4_0_or_above, reason="only valid for h5netcdf < 1.4.0"
    )
    @pytest.mark.parametrize("invalid_netcdf", [None, False])
    def test_complex_error(self, invalid_netcdf) -> None:
        import h5netcdf

        expected = Dataset({"x": ("y", np.ones(5) + 1j * np.ones(5))})
        save_kwargs = {"invalid_netcdf": invalid_netcdf}
        with pytest.raises(
            h5netcdf.CompatibilityError, match="are not a supported NetCDF feature"
        ):
            with self.roundtrip(expected, save_kwargs=save_kwargs) as actual:
                assert_equal(expected, actual)

    def test_numpy_bool_(self) -> None:
        # h5netcdf loads booleans as numpy.bool_, this type needs to be supported
        # when writing invalid_netcdf datasets in order to support a roundtrip
        expected = Dataset({"x": ("y", np.ones(5), {"numpy_bool": np.bool_(True)})})
        save_kwargs = {"invalid_netcdf": True}
        with pytest.warns(UserWarning, match="You are writing invalid netcdf features"):
            with self.roundtrip(expected, save_kwargs=save_kwargs) as actual:
                assert_identical(expected, actual)

    def test_cross_engine_read_write_netcdf4(self) -> None:
        # Drop dim3, because its labels include strings. These appear to be
        # not properly read with python-netCDF4, which converts them into
        # unicode instead of leaving them as bytes.
        data = create_test_data().drop_vars("dim3")
        data.attrs["foo"] = "bar"
        valid_engines: list[T_NetcdfEngine] = ["netcdf4", "h5netcdf"]
        for write_engine in valid_engines:
            with create_tmp_file() as tmp_file:
                data.to_netcdf(tmp_file, engine=write_engine)
                for read_engine in valid_engines:
                    with open_dataset(tmp_file, engine=read_engine) as actual:
                        assert_identical(data, actual)

    def test_read_byte_attrs_as_unicode(self) -> None:
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, "w") as nc:
                nc.foo = b"bar"
            with open_dataset(tmp_file) as actual:
                expected = Dataset(attrs={"foo": "bar"})
                assert_identical(expected, actual)

    def test_compression_encoding_h5py(self) -> None:
        ENCODINGS: tuple[tuple[dict[str, Any], dict[str, Any]], ...] = (
            # h5py style compression with gzip codec will be converted to
            # NetCDF4-Python style on round-trip
            (
                {"compression": "gzip", "compression_opts": 9},
                {"zlib": True, "complevel": 9},
            ),
            # What can't be expressed in NetCDF4-Python style is
            # round-tripped unaltered
            (
                {"compression": "lzf", "compression_opts": None},
                {"compression": "lzf", "compression_opts": None},
            ),
            # If both styles are used together, h5py format takes precedence
            (
                {
                    "compression": "lzf",
                    "compression_opts": None,
                    "zlib": True,
                    "complevel": 9,
                },
                {"compression": "lzf", "compression_opts": None},
            ),
        )

        for compr_in, compr_out in ENCODINGS:
            data = create_test_data()
            compr_common = {
                "chunksizes": (5, 5),
                "fletcher32": True,
                "shuffle": True,
                "original_shape": data.var2.shape,
            }
            data["var2"].encoding.update(compr_in)
            data["var2"].encoding.update(compr_common)
            compr_out.update(compr_common)
            data["scalar"] = ("scalar_dim", np.array([2.0]))
            data["scalar"] = data["scalar"][0]
            with self.roundtrip(data) as actual:
                for k, v in compr_out.items():
                    assert v == actual["var2"].encoding[k]

    def test_compression_check_encoding_h5py(self) -> None:
        """When mismatched h5py and NetCDF4-Python encodings are expressed
        in to_netcdf(encoding=...), must raise ValueError
        """
        data = Dataset({"x": ("y", np.arange(10.0))})
        # Compatible encodings are graciously supported
        with create_tmp_file() as tmp_file:
            data.to_netcdf(
                tmp_file,
                engine="h5netcdf",
                encoding={
                    "x": {
                        "compression": "gzip",
                        "zlib": True,
                        "compression_opts": 6,
                        "complevel": 6,
                    }
                },
            )
            with open_dataset(tmp_file, engine="h5netcdf") as actual:
                assert actual.x.encoding["zlib"] is True
                assert actual.x.encoding["complevel"] == 6

        # Incompatible encodings cause a crash
        with create_tmp_file() as tmp_file:
            with pytest.raises(
                ValueError, match=r"'zlib' and 'compression' encodings mismatch"
            ):
                data.to_netcdf(
                    tmp_file,
                    engine="h5netcdf",
                    encoding={"x": {"compression": "lzf", "zlib": True}},
                )

        with create_tmp_file() as tmp_file:
            with pytest.raises(
                ValueError,
                match=r"'complevel' and 'compression_opts' encodings mismatch",
            ):
                data.to_netcdf(
                    tmp_file,
                    engine="h5netcdf",
                    encoding={
                        "x": {
                            "compression": "gzip",
                            "compression_opts": 5,
                            "complevel": 6,
                        }
                    },
                )

    def test_dump_encodings_h5py(self) -> None:
        # regression test for #709
        ds = Dataset({"x": ("y", np.arange(10.0))})

        kwargs = {"encoding": {"x": {"compression": "gzip", "compression_opts": 9}}}
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding["zlib"]
            assert actual.x.encoding["complevel"] == 9

        kwargs = {"encoding": {"x": {"compression": "lzf", "compression_opts": None}}}
        with self.roundtrip(ds, save_kwargs=kwargs) as actual:
            assert actual.x.encoding["compression"] == "lzf"
            assert actual.x.encoding["compression_opts"] is None

    def test_decode_utf8_warning(self) -> None:
        title = b"\xc3"
        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, "w") as f:
                f.title = title
            with pytest.warns(UnicodeWarning, match="returning bytes undecoded") as w:
                ds = xr.load_dataset(tmp_file, engine="h5netcdf")
                assert ds.title == title
                assert "attribute 'title' of h5netcdf object '/'" in str(w[0].message)

    def test_byte_attrs(self, byte_attrs_dataset: dict[str, Any]) -> None:
        with pytest.raises(ValueError, match=byte_attrs_dataset["h5netcdf_error"]):
            super().test_byte_attrs(byte_attrs_dataset)

    @requires_h5netcdf_1_4_0_or_above
    def test_roundtrip_complex(self):
        expected = Dataset({"x": ("y", np.ones(5) + 1j * np.ones(5))})
        with self.roundtrip(expected) as actual:
            assert_equal(expected, actual)

    def test_phony_dims_warning(self) -> None:
        import h5py

        foo_data = np.arange(125).reshape(5, 5, 5)
        bar_data = np.arange(625).reshape(25, 5, 5)
        var = {"foo1": foo_data, "foo2": bar_data, "foo3": foo_data, "foo4": bar_data}
        with create_tmp_file() as tmp_file:
            with h5py.File(tmp_file, "w") as f:
                grps = ["bar", "baz"]
                for grp in grps:
                    fx = f.create_group(grp)
                    for k, v in var.items():
                        fx.create_dataset(k, data=v)
            with pytest.warns(UserWarning, match="The 'phony_dims' kwarg"):
                with xr.open_dataset(tmp_file, engine="h5netcdf", group="bar") as ds:
                    assert ds.sizes == {
                        "phony_dim_0": 5,
                        "phony_dim_1": 5,
                        "phony_dim_2": 5,
                        "phony_dim_3": 25,
                    }


@requires_h5netcdf
@requires_netCDF4
class TestH5NetCDFAlreadyOpen:
    def test_open_dataset_group(self) -> None:
        import h5netcdf

        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                group = nc.createGroup("g")
                v = group.createVariable("x", "int")
                v[...] = 42

            kwargs = {"decode_vlen_strings": True}

            h5 = h5netcdf.File(tmp_file, mode="r", **kwargs)
            store = backends.H5NetCDFStore(h5["g"])
            with open_dataset(store) as ds:
                expected = Dataset({"x": ((), 42)})
                assert_identical(expected, ds)

            h5 = h5netcdf.File(tmp_file, mode="r", **kwargs)
            store = backends.H5NetCDFStore(h5, group="g")
            with open_dataset(store) as ds:
                expected = Dataset({"x": ((), 42)})
                assert_identical(expected, ds)

    def test_deepcopy(self) -> None:
        import h5netcdf

        with create_tmp_file() as tmp_file:
            with nc4.Dataset(tmp_file, mode="w") as nc:
                nc.createDimension("x", 10)
                v = nc.createVariable("y", np.int32, ("x",))
                v[:] = np.arange(10)

            kwargs = {"decode_vlen_strings": True}

            h5 = h5netcdf.File(tmp_file, mode="r", **kwargs)
            store = backends.H5NetCDFStore(h5)
            with open_dataset(store) as ds:
                copied = ds.copy(deep=True)
                expected = Dataset({"y": ("x", np.arange(10))})
                assert_identical(expected, copied)


@requires_h5netcdf
class TestH5NetCDFFileObject(TestH5NetCDFData):
    engine: T_NetcdfEngine = "h5netcdf"

    def test_open_badbytes(self) -> None:
        with pytest.raises(
            ValueError, match=r"match in any of xarray's currently installed IO"
        ):
            with open_dataset(b"garbage"):
                pass
        with pytest.raises(ValueError, match=r"can only read bytes"):
            with open_dataset(b"garbage", engine="netcdf4"):
                pass
        with pytest.raises(
            ValueError, match=r"not the signature of a valid netCDF4 file"
        ):
            with open_dataset(BytesIO(b"garbage"), engine="h5netcdf"):
                pass

    def test_open_twice(self) -> None:
        expected = create_test_data()
        expected.attrs["foo"] = "bar"
        with create_tmp_file() as tmp_file:
            expected.to_netcdf(tmp_file, engine="h5netcdf")
            with open(tmp_file, "rb") as f:
                with open_dataset(f, engine="h5netcdf"):
                    with open_dataset(f, engine="h5netcdf"):
                        pass

    @requires_scipy
    def test_open_fileobj(self) -> None:
        # open in-memory datasets instead of local file paths
        expected = create_test_data().drop_vars("dim3")
        expected.attrs["foo"] = "bar"
        with create_tmp_file() as tmp_file:
            expected.to_netcdf(tmp_file, engine="h5netcdf")

            with open(tmp_file, "rb") as f:
                with open_dataset(f, engine="h5netcdf") as actual:
                    assert_identical(expected, actual)

                f.seek(0)
                with open_dataset(f) as actual:
                    assert_identical(expected, actual)

                f.seek(0)
                with BytesIO(f.read()) as bio:
                    with open_dataset(bio, engine="h5netcdf") as actual:
                        assert_identical(expected, actual)

                f.seek(0)
                with pytest.raises(TypeError, match="not a valid NetCDF 3"):
                    open_dataset(f, engine="scipy")

            # TODO: this additional open is required since scipy seems to close the file
            # when it fails on the TypeError (though didn't when we used
            # `raises_regex`?). Ref https://github.com/pydata/xarray/pull/5191
            with open(tmp_file, "rb") as f:
                f.seek(8)
                with open_dataset(f):  # ensure file gets closed
                    pass

    def test_file_remains_open(self) -> None:
        data = Dataset({"foo": ("x", [1, 2, 3])})
        f = BytesIO()
        data.to_netcdf(f, engine="h5netcdf")
        assert not f.closed
        restored = open_dataset(f, engine="h5netcdf")
        assert not f.closed
        assert_identical(restored, data)
        restored.close()
        assert not f.closed


@requires_h5netcdf
class TestH5NetCDFInMemoryData:
    def test_roundtrip_via_bytes(self) -> None:
        original = create_test_data()
        netcdf_bytes = original.to_netcdf(engine="h5netcdf")
        roundtrip = open_dataset(netcdf_bytes, engine="h5netcdf")
        assert_identical(roundtrip, original)

    def test_roundtrip_group_via_bytes(self) -> None:
        original = create_test_data()
        netcdf_bytes = original.to_netcdf(group="sub", engine="h5netcdf")
        roundtrip = open_dataset(netcdf_bytes, group="sub", engine="h5netcdf")
        assert_identical(roundtrip, original)


@requires_h5netcdf
@requires_dask
@pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
class TestH5NetCDFViaDaskData(TestH5NetCDFData):
    @contextlib.contextmanager
    def roundtrip(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        if save_kwargs is None:
            save_kwargs = {}
        if open_kwargs is None:
            open_kwargs = {}
        open_kwargs.setdefault("chunks", -1)
        with TestH5NetCDFData.roundtrip(
            self, data, save_kwargs, open_kwargs, allow_cleanup_failure
        ) as ds:
            yield ds

    @pytest.mark.skip(reason="caching behavior differs for dask")
    def test_dataset_caching(self) -> None:
        pass

    def test_write_inconsistent_chunks(self) -> None:
        # Construct two variables with the same dimensions, but different
        # chunk sizes.
        x = da.zeros((100, 100), dtype="f4", chunks=(50, 100))
        x = DataArray(data=x, dims=("lat", "lon"), name="x")
        x.encoding["chunksizes"] = (50, 100)
        x.encoding["original_shape"] = (100, 100)
        y = da.ones((100, 100), dtype="f4", chunks=(100, 50))
        y = DataArray(data=y, dims=("lat", "lon"), name="y")
        y.encoding["chunksizes"] = (100, 50)
        y.encoding["original_shape"] = (100, 100)
        # Put them both into the same dataset
        ds = Dataset({"x": x, "y": y})
        with self.roundtrip(ds) as actual:
            assert actual["x"].encoding["chunksizes"] == (50, 100)
            assert actual["y"].encoding["chunksizes"] == (100, 50)


@requires_h5netcdf_ros3
class TestH5NetCDFDataRos3Driver(TestCommon):
    engine: T_NetcdfEngine = "h5netcdf"
    test_remote_dataset: str = (
        "https://www.unidata.ucar.edu/software/netcdf/examples/OMI-Aura_L2-example.nc"
    )

    @pytest.mark.skip("Skipping due to download needed")
    @pytest.mark.filterwarnings("ignore:Duplicate dimension names")
    def test_get_variable_list(self) -> None:
        with open_dataset(
            self.test_remote_dataset,
            engine="h5netcdf",
            backend_kwargs={"driver": "ros3"},
        ) as actual:
            assert "Temperature" in list(actual)

    @pytest.mark.skip("Skipping due to download needed")
    @pytest.mark.filterwarnings("ignore:Duplicate dimension names")
    def test_get_variable_list_empty_driver_kwds(self) -> None:
        driver_kwds = {
            "secret_id": b"",
            "secret_key": b"",
        }
        backend_kwargs = {"driver": "ros3", "driver_kwds": driver_kwds}

        with open_dataset(
            self.test_remote_dataset, engine="h5netcdf", backend_kwargs=backend_kwargs
        ) as actual:
            assert "Temperature" in list(actual)


@pytest.fixture(params=["scipy", "netcdf4", "h5netcdf", "zarr"])
def readengine(request):
    return request.param


@pytest.fixture(params=[1, 20])
def nfiles(request):
    return request.param


@pytest.fixture(params=[5, None])
def file_cache_maxsize(request):
    maxsize = request.param
    if maxsize is not None:
        with set_options(file_cache_maxsize=maxsize):
            yield maxsize
    else:
        yield maxsize


@pytest.fixture(params=[True, False])
def parallel(request):
    return request.param


@pytest.fixture(params=[None, 5])
def chunks(request):
    return request.param


@pytest.fixture(params=["tmp_path", "ZipStore", "Dict"])
def tmp_store(request, tmp_path):
    if request.param == "tmp_path":
        return tmp_path
    elif request.param == "ZipStore":
        from zarr.storage import ZipStore

        path = tmp_path / "store.zip"
        return ZipStore(path)
    elif request.param == "Dict":
        return dict()
    else:
        raise ValueError("not supported")


# using pytest.mark.skipif does not work so this a work around
def skip_if_not_engine(engine):
    if engine == "netcdf4":
        pytest.importorskip("netCDF4")
    else:
        pytest.importorskip(engine)


@requires_dask
@pytest.mark.filterwarnings("ignore:use make_scale(name) instead")
@pytest.mark.skip(
    reason="Flaky test which can cause the worker to crash (so don't xfail). Very open to contributions fixing this"
)
def test_open_mfdataset_manyfiles(
    readengine, nfiles, parallel, chunks, file_cache_maxsize
):
    # skip certain combinations
    skip_if_not_engine(readengine)

    randdata = np.random.randn(nfiles)
    original = Dataset({"foo": ("x", randdata)})
    # test standard open_mfdataset approach with too many files
    with create_tmp_files(nfiles) as tmpfiles:
        # split into multiple sets of temp files
        for ii in original.x.values:
            subds = original.isel(x=slice(ii, ii + 1))
            if readengine != "zarr":
                subds.to_netcdf(tmpfiles[ii], engine=readengine)
            else:  # if writeengine == "zarr":
                subds.to_zarr(store=tmpfiles[ii])

        # check that calculation on opened datasets works properly
        with open_mfdataset(
            tmpfiles,
            combine="nested",
            concat_dim="x",
            engine=readengine,
            parallel=parallel,
            chunks=chunks if (not chunks and readengine != "zarr") else "auto",
        ) as actual:
            # check that using open_mfdataset returns dask arrays for variables
            assert isinstance(actual["foo"].data, dask_array_type)

            assert_identical(original, actual)


@requires_netCDF4
@requires_dask
def test_open_mfdataset_can_open_path_objects() -> None:
    dataset = os.path.join(os.path.dirname(__file__), "data", "example_1.nc")
    with open_mfdataset(Path(dataset)) as actual:
        assert isinstance(actual, Dataset)


@requires_netCDF4
@requires_dask
def test_open_mfdataset_list_attr() -> None:
    """
    Case when an attribute of type list differs across the multiple files
    """
    from netCDF4 import Dataset

    with create_tmp_files(2) as nfiles:
        for i in range(2):
            with Dataset(nfiles[i], "w") as f:
                f.createDimension("x", 3)
                vlvar = f.createVariable("test_var", np.int32, ("x"))
                # here create an attribute as a list
                vlvar.test_attr = [f"string a {i}", f"string b {i}"]
                vlvar[:] = np.arange(3)

        with open_dataset(nfiles[0]) as ds1:
            with open_dataset(nfiles[1]) as ds2:
                original = xr.concat([ds1, ds2], dim="x")
                with xr.open_mfdataset(
                    [nfiles[0], nfiles[1]], combine="nested", concat_dim="x"
                ) as actual:
                    assert_identical(actual, original)


@requires_scipy_or_netCDF4
@requires_dask
class TestOpenMFDatasetWithDataVarsAndCoordsKw:
    coord_name = "lon"
    var_name = "v1"

    @contextlib.contextmanager
    def setup_files_and_datasets(self, *, fuzz=0, new_combine_kwargs: bool = False):
        ds1, ds2 = self.gen_datasets_with_common_coord_and_time()

        # to test join='exact'
        ds1["x"] = ds1.x + fuzz

        with create_tmp_file() as tmpfile1:
            with create_tmp_file() as tmpfile2:
                # save data to the temporary files
                ds1.to_netcdf(tmpfile1)
                ds2.to_netcdf(tmpfile2)

                with set_options(use_new_combine_kwarg_defaults=new_combine_kwargs):
                    yield [tmpfile1, tmpfile2], [ds1, ds2]

    def gen_datasets_with_common_coord_and_time(self):
        # create coordinate data
        nx = 10
        nt = 10
        x = np.arange(nx)
        t1 = np.arange(nt)
        t2 = np.arange(nt, 2 * nt, 1)

        v1 = np.random.randn(nt, nx)
        v2 = np.random.randn(nt, nx)

        ds1 = Dataset(
            data_vars={self.var_name: (["t", "x"], v1), self.coord_name: ("x", 2 * x)},
            coords={"t": (["t"], t1), "x": (["x"], x)},
        )

        ds2 = Dataset(
            data_vars={self.var_name: (["t", "x"], v2), self.coord_name: ("x", 2 * x)},
            coords={"t": (["t"], t2), "x": (["x"], x)},
        )

        return ds1, ds2

    @pytest.mark.parametrize(
        "combine, concat_dim", [("nested", "t"), ("by_coords", None)]
    )
    @pytest.mark.parametrize("opt", ["all", "minimal", "different"])
    @pytest.mark.parametrize("join", ["outer", "inner", "left", "right"])
    def test_open_mfdataset_does_same_as_concat(
        self, combine, concat_dim, opt, join
    ) -> None:
        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            if combine == "by_coords":
                files.reverse()
            with open_mfdataset(
                files,
                data_vars=opt,
                combine=combine,
                concat_dim=concat_dim,
                join=join,
                compat="equals",
            ) as ds:
                ds_expect = xr.concat(
                    [ds1, ds2], data_vars=opt, dim="t", join=join, compat="equals"
                )
                assert_identical(ds, ds_expect)

    @pytest.mark.parametrize("use_new_combine_kwarg_defaults", [True, False])
    @pytest.mark.parametrize(
        ["combine_attrs", "attrs", "expected", "expect_error"],
        (
            pytest.param("drop", [{"a": 1}, {"a": 2}], {}, False, id="drop"),
            pytest.param(
                "override", [{"a": 1}, {"a": 2}], {"a": 1}, False, id="override"
            ),
            pytest.param(
                "no_conflicts", [{"a": 1}, {"a": 2}], None, True, id="no_conflicts"
            ),
            pytest.param(
                "identical",
                [{"a": 1, "b": 2}, {"a": 1, "c": 3}],
                None,
                True,
                id="identical",
            ),
            pytest.param(
                "drop_conflicts",
                [{"a": 1, "b": 2}, {"b": -1, "c": 3}],
                {"a": 1, "c": 3},
                False,
                id="drop_conflicts",
            ),
        ),
    )
    def test_open_mfdataset_dataset_combine_attrs(
        self,
        use_new_combine_kwarg_defaults,
        combine_attrs,
        attrs,
        expected,
        expect_error,
    ):
        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            # Give the files an inconsistent attribute
            for i, f in enumerate(files):
                ds = open_dataset(f).load()
                ds.attrs = attrs[i]
                ds.close()
                ds.to_netcdf(f)

            with set_options(
                use_new_combine_kwarg_defaults=use_new_combine_kwarg_defaults
            ):
                warning: contextlib.AbstractContextManager = (
                    pytest.warns(FutureWarning)
                    if not use_new_combine_kwarg_defaults
                    else contextlib.nullcontext()
                )
                error: contextlib.AbstractContextManager = (
                    pytest.raises(xr.MergeError)
                    if expect_error
                    else contextlib.nullcontext()
                )
                with warning:
                    with error:
                        with xr.open_mfdataset(
                            files,
                            combine="nested",
                            concat_dim="t",
                            combine_attrs=combine_attrs,
                        ) as ds:
                            assert ds.attrs == expected

    def test_open_mfdataset_dataset_attr_by_coords(self) -> None:
        """
        Case when an attribute differs across the multiple files
        """
        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            # Give the files an inconsistent attribute
            for i, f in enumerate(files):
                ds = open_dataset(f).load()
                ds.attrs["test_dataset_attr"] = 10 + i
                ds.close()
                ds.to_netcdf(f)

            with set_options(use_new_combine_kwarg_defaults=True):
                with xr.open_mfdataset(files, combine="nested", concat_dim="t") as ds:
                    assert ds.test_dataset_attr == 10

    def test_open_mfdataset_dataarray_attr_by_coords(self) -> None:
        """
        Case when an attribute of a member DataArray differs across the multiple files
        """
        with self.setup_files_and_datasets(new_combine_kwargs=True) as (
            files,
            [ds1, ds2],
        ):
            # Give the files an inconsistent attribute
            for i, f in enumerate(files):
                ds = open_dataset(f).load()
                ds["v1"].attrs["test_dataarray_attr"] = i
                ds.close()
                ds.to_netcdf(f)

                with xr.open_mfdataset(
                    files, data_vars=None, combine="nested", concat_dim="t"
                ) as ds:
                    assert ds["v1"].test_dataarray_attr == 0

    @pytest.mark.parametrize(
        "combine, concat_dim", [("nested", "t"), ("by_coords", None)]
    )
    @pytest.mark.parametrize(
        "kwargs",
        [
            {"data_vars": "all"},
            {"data_vars": "minimal"},
            {
                "data_vars": "all",
                "coords": "different",
                "compat": "no_conflicts",
            },  # old defaults
            {
                "data_vars": None,
                "coords": "minimal",
                "compat": "override",
            },  # new defaults
            {"data_vars": "different", "compat": "no_conflicts"},
            {},
        ],
    )
    def test_open_mfdataset_exact_join_raises_error(
        self, combine, concat_dim, kwargs
    ) -> None:
        with self.setup_files_and_datasets(fuzz=0.1, new_combine_kwargs=True) as (
            files,
            _,
        ):
            if combine == "by_coords":
                files.reverse()

            with pytest.raises(
                ValueError, match="cannot align objects with join='exact'"
            ):
                open_mfdataset(
                    files,
                    **kwargs,
                    combine=combine,
                    concat_dim=concat_dim,
                    join="exact",
                )

    def test_open_mfdataset_defaults_with_exact_join_warns_as_well_as_raising(
        self,
    ) -> None:
        with self.setup_files_and_datasets(fuzz=0.1, new_combine_kwargs=True) as (
            files,
            _,
        ):
            files.reverse()
            with pytest.raises(
                ValueError, match="cannot align objects with join='exact'"
            ):
                open_mfdataset(files, combine="by_coords")

    def test_common_coord_when_datavars_all(self) -> None:
        opt: Final = "all"

        with self.setup_files_and_datasets() as (files, [ds1, ds2]):
            # open the files with the data_var option
            with open_mfdataset(
                files, data_vars=opt, combine="nested", concat_dim="t"
            ) as ds:
                coord_shape = ds[self.coord_name].shape
                coord_shape1 = ds1[self.coord_name].shape
                coord_shape2 = ds2[self.coord_name].shape

                var_shape = ds[self.var_name].shape

                assert var_shape == coord_shape
                assert coord_shape1 != coord_shape
                assert coord_shape2 != coord_shape

    def test_common_coord_when_datavars_minimal(self) -> None:
        opt: Final = "minimal"

        with self.setup_files_and_datasets(new_combine_kwargs=True) as (
            files,
            [ds1, ds2],
        ):
            # open the files using data_vars option
            with open_mfdataset(
                files, data_vars=opt, combine="nested", concat_dim="t"
            ) as ds:
                coord_shape = ds[self.coord_name].shape
                coord_shape1 = ds1[self.coord_name].shape
                coord_shape2 = ds2[self.coord_name].shape

                var_shape = ds[self.var_name].shape

                assert var_shape != coord_shape
                assert coord_shape1 == coord_shape
                assert coord_shape2 == coord_shape

    def test_invalid_data_vars_value_should_fail(self) -> None:
        with self.setup_files_and_datasets() as (files, _):
            with pytest.raises(ValueError):
                with open_mfdataset(files, data_vars="minimum", combine="by_coords"):  # type: ignore[arg-type]
                    pass

            # test invalid coord parameter
            with pytest.raises(ValueError):
                with open_mfdataset(files, coords="minimum", combine="by_coords"):
                    pass

    @pytest.mark.parametrize(
        "combine, concat_dim", [("nested", "t"), ("by_coords", None)]
    )
    @pytest.mark.parametrize(
        "kwargs", [{"data_vars": "different"}, {"coords": "different"}]
    )
    def test_open_mfdataset_warns_when_kwargs_set_to_different(
        self, combine, concat_dim, kwargs
    ) -> None:
        with self.setup_files_and_datasets(new_combine_kwargs=True) as (
            files,
            [ds1, ds2],
        ):
            if combine == "by_coords":
                files.reverse()
            with pytest.raises(
                ValueError, match="Previously the default was `compat='no_conflicts'`"
            ):
                open_mfdataset(files, combine=combine, concat_dim=concat_dim, **kwargs)
            with pytest.raises(
                ValueError, match="Previously the default was `compat='equals'`"
            ):
                xr.concat([ds1, ds2], dim="t", **kwargs)

            with set_options(use_new_combine_kwarg_defaults=False):
                expectation: contextlib.AbstractContextManager = (
                    pytest.warns(
                        FutureWarning,
                        match="will change from data_vars='all'",
                    )
                    if "data_vars" not in kwargs
                    else contextlib.nullcontext()
                )

                with pytest.warns(
                    FutureWarning,
                    match="will change from compat='equals'",
                ):
                    with expectation:
                        ds_expect = xr.concat([ds1, ds2], dim="t", **kwargs)
                with pytest.warns(
                    FutureWarning, match="will change from compat='no_conflicts'"
                ):
                    with expectation:
                        with open_mfdataset(
                            files, combine=combine, concat_dim=concat_dim, **kwargs
                        ) as ds:
                            assert_identical(ds, ds_expect)


@requires_dask
@requires_scipy
@requires_netCDF4
class TestDask(DatasetIOBase):
    @contextlib.contextmanager
    def create_store(self):
        yield Dataset()

    @contextlib.contextmanager
    def roundtrip(
        self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
    ):
        yield data.chunk()

    # Override methods in DatasetIOBase - not applicable to dask
    def test_roundtrip_string_encoded_characters(self) -> None:
        pass

    def test_roundtrip_coordinates_with_space(self) -> None:
        pass

    def test_roundtrip_numpy_datetime_data(self) -> None:
        # Override method in DatasetIOBase - remove not applicable
        # save_kwargs
        times = pd.to_datetime(["2000-01-01", "2000-01-02", "NaT"], unit="ns")
        expected = Dataset({"t": ("t", times), "t0": times[0]})
        with self.roundtrip(expected) as actual:
            assert_identical(expected, actual)

    def test_roundtrip_cftime_datetime_data(self) -> None:
        # Override method in DatasetIOBase - remove not applicable
        # save_kwargs
        from xarray.tests.test_coding_times import _all_cftime_date_types

        date_types = _all_cftime_date_types()
        for date_type in date_types.values():
            times = [date_type(1, 1, 1), date_type(1, 1, 2)]
            expected = Dataset({"t": ("t", times), "t0": times[0]})
            expected_decoded_t = np.array(times)
            expected_decoded_t0 = np.array([date_type(1, 1, 1)])

            with self.roundtrip(expected) as actual:
                assert_array_equal(actual.t.values, expected_decoded_t)
                assert_array_equal(actual.t0.values, expected_decoded_t0)

    def test_write_store(self) -> None:
        # Override method in DatasetIOBase - not applicable to dask
        pass

    def test_dataset_caching(self) -> None:
        expected = Dataset({"foo": ("x", [5, 6, 7])})
        with self.roundtrip(expected) as actual:
            assert not actual.foo.variable._in_memory
            _ = actual.foo.values  # no caching
            assert not actual.foo.variable._in_memory

    def test_open_mfdataset(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)
                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested"
                ) as actual:
                    assert isinstance(actual.foo.variable.data, da.Array)
                    assert actual.foo.variable.data.chunks == ((5, 5),)
                    assert_identical(original, actual)
                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested", chunks={"x": 3}
                ) as actual:
                    assert actual.foo.variable.data.chunks == ((3, 2, 3, 2),)

        with pytest.raises(OSError, match=r"no files to open"):
            open_mfdataset("foo-bar-baz-*.nc")
        with pytest.raises(ValueError, match=r"wild-card"):
            open_mfdataset("http://some/remote/uri")

    @requires_fsspec
    def test_open_mfdataset_no_files(self) -> None:
        pytest.importorskip("aiobotocore")

        # glob is attempted as of #4823, but finds no files
        with pytest.raises(OSError, match=r"no files"):
            open_mfdataset("http://some/remote/uri", engine="zarr")

    def test_open_mfdataset_2d(self) -> None:
        original = Dataset({"foo": (["x", "y"], np.random.randn(10, 8))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                with create_tmp_file() as tmp3:
                    with create_tmp_file() as tmp4:
                        original.isel(x=slice(5), y=slice(4)).to_netcdf(tmp1)
                        original.isel(x=slice(5, 10), y=slice(4)).to_netcdf(tmp2)
                        original.isel(x=slice(5), y=slice(4, 8)).to_netcdf(tmp3)
                        original.isel(x=slice(5, 10), y=slice(4, 8)).to_netcdf(tmp4)
                        with open_mfdataset(
                            [[tmp1, tmp2], [tmp3, tmp4]],
                            combine="nested",
                            concat_dim=["y", "x"],
                        ) as actual:
                            assert isinstance(actual.foo.variable.data, da.Array)
                            assert actual.foo.variable.data.chunks == ((5, 5), (4, 4))
                            assert_identical(original, actual)
                        with open_mfdataset(
                            [[tmp1, tmp2], [tmp3, tmp4]],
                            combine="nested",
                            concat_dim=["y", "x"],
                            chunks={"x": 3, "y": 2},
                        ) as actual:
                            assert actual.foo.variable.data.chunks == (
                                (3, 2, 3, 2),
                                (2, 2, 2, 2),
                            )

    def test_open_mfdataset_pathlib(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmps1:
            with create_tmp_file() as tmps2:
                tmp1 = Path(tmps1)
                tmp2 = Path(tmps2)
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)
                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested"
                ) as actual:
                    assert_identical(original, actual)

    def test_open_mfdataset_2d_pathlib(self) -> None:
        original = Dataset({"foo": (["x", "y"], np.random.randn(10, 8))})
        with create_tmp_file() as tmps1:
            with create_tmp_file() as tmps2:
                with create_tmp_file() as tmps3:
                    with create_tmp_file() as tmps4:
                        tmp1 = Path(tmps1)
                        tmp2 = Path(tmps2)
                        tmp3 = Path(tmps3)
                        tmp4 = Path(tmps4)
                        original.isel(x=slice(5), y=slice(4)).to_netcdf(tmp1)
                        original.isel(x=slice(5, 10), y=slice(4)).to_netcdf(tmp2)
                        original.isel(x=slice(5), y=slice(4, 8)).to_netcdf(tmp3)
                        original.isel(x=slice(5, 10), y=slice(4, 8)).to_netcdf(tmp4)
                        with open_mfdataset(
                            [[tmp1, tmp2], [tmp3, tmp4]],
                            combine="nested",
                            concat_dim=["y", "x"],
                        ) as actual:
                            assert_identical(original, actual)

    def test_open_mfdataset_2(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)

                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested"
                ) as actual:
                    assert_identical(original, actual)

    def test_open_mfdataset_with_ignore(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_files(2) as (tmp1, tmp2):
            ds1 = original.isel(x=slice(5))
            ds2 = original.isel(x=slice(5, 10))
            ds1.to_netcdf(tmp1)
            ds2.to_netcdf(tmp2)
            with open_mfdataset(
                [tmp1, "non-existent-file.nc", tmp2],
                concat_dim="x",
                combine="nested",
                errors="ignore",
            ) as actual:
                assert_identical(original, actual)

    def test_open_mfdataset_with_warn(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with pytest.warns(UserWarning, match="Ignoring."):
            with create_tmp_files(2) as (tmp1, tmp2):
                ds1 = original.isel(x=slice(5))
                ds2 = original.isel(x=slice(5, 10))
                ds1.to_netcdf(tmp1)
                ds2.to_netcdf(tmp2)
                with open_mfdataset(
                    [tmp1, "non-existent-file.nc", tmp2],
                    concat_dim="x",
                    combine="nested",
                    errors="warn",
                ) as actual:
                    assert_identical(original, actual)

    def test_open_mfdataset_2d_with_ignore(self) -> None:
        original = Dataset({"foo": (["x", "y"], np.random.randn(10, 8))})
        with create_tmp_files(4) as (tmp1, tmp2, tmp3, tmp4):
            original.isel(x=slice(5), y=slice(4)).to_netcdf(tmp1)
            original.isel(x=slice(5, 10), y=slice(4)).to_netcdf(tmp2)
            original.isel(x=slice(5), y=slice(4, 8)).to_netcdf(tmp3)
            original.isel(x=slice(5, 10), y=slice(4, 8)).to_netcdf(tmp4)
            with open_mfdataset(
                [[tmp1, tmp2], ["non-existent-file.nc", tmp3, tmp4]],
                combine="nested",
                concat_dim=["y", "x"],
                errors="ignore",
            ) as actual:
                assert_identical(original, actual)

    def test_open_mfdataset_2d_with_warn(self) -> None:
        original = Dataset({"foo": (["x", "y"], np.random.randn(10, 8))})
        with pytest.warns(UserWarning, match="Ignoring."):
            with create_tmp_files(4) as (tmp1, tmp2, tmp3, tmp4):
                original.isel(x=slice(5), y=slice(4)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10), y=slice(4)).to_netcdf(tmp2)
                original.isel(x=slice(5), y=slice(4, 8)).to_netcdf(tmp3)
                original.isel(x=slice(5, 10), y=slice(4, 8)).to_netcdf(tmp4)
                with open_mfdataset(
                    [[tmp1, tmp2, "non-existent-file.nc"], [tmp3, tmp4]],
                    combine="nested",
                    concat_dim=["y", "x"],
                    errors="warn",
                ) as actual:
                    assert_identical(original, actual)

    def test_attrs_mfdataset(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                ds1 = original.isel(x=slice(5))
                ds2 = original.isel(x=slice(5, 10))
                ds1.attrs["test1"] = "foo"
                ds2.attrs["test2"] = "bar"
                ds1.to_netcdf(tmp1)
                ds2.to_netcdf(tmp2)
                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested"
                ) as actual:
                    # presumes that attributes inherited from
                    # first dataset loaded
                    assert actual.test1 == ds1.test1
                    # attributes from ds2 are not retained, e.g.,
                    with pytest.raises(AttributeError, match=r"no attribute"):
                        _ = actual.test2

    def test_open_mfdataset_attrs_file(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_files(2) as (tmp1, tmp2):
            ds1 = original.isel(x=slice(5))
            ds2 = original.isel(x=slice(5, 10))
            ds1.attrs["test1"] = "foo"
            ds2.attrs["test2"] = "bar"
            ds1.to_netcdf(tmp1)
            ds2.to_netcdf(tmp2)
            with open_mfdataset(
                [tmp1, tmp2], concat_dim="x", combine="nested", attrs_file=tmp2
            ) as actual:
                # attributes are inherited from the master file
                assert actual.attrs["test2"] == ds2.attrs["test2"]
                # attributes from ds1 are not retained, e.g.,
                assert "test1" not in actual.attrs

    def test_open_mfdataset_attrs_file_path(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_files(2) as (tmps1, tmps2):
            tmp1 = Path(tmps1)
            tmp2 = Path(tmps2)
            ds1 = original.isel(x=slice(5))
            ds2 = original.isel(x=slice(5, 10))
            ds1.attrs["test1"] = "foo"
            ds2.attrs["test2"] = "bar"
            ds1.to_netcdf(tmp1)
            ds2.to_netcdf(tmp2)
            with open_mfdataset(
                [tmp1, tmp2], concat_dim="x", combine="nested", attrs_file=tmp2
            ) as actual:
                # attributes are inherited from the master file
                assert actual.attrs["test2"] == ds2.attrs["test2"]
                # attributes from ds1 are not retained, e.g.,
                assert "test1" not in actual.attrs

    def test_open_mfdataset_auto_combine(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10)), "x": np.arange(10)})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)

                with open_mfdataset([tmp2, tmp1], combine="by_coords") as actual:
                    assert_identical(original, actual)

    def test_open_mfdataset_raise_on_bad_combine_args(self) -> None:
        # Regression test for unhelpful error shown in #5230
        original = Dataset({"foo": ("x", np.random.randn(10)), "x": np.arange(10)})
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                original.isel(x=slice(5)).to_netcdf(tmp1)
                original.isel(x=slice(5, 10)).to_netcdf(tmp2)
                with pytest.raises(ValueError, match="`concat_dim` has no effect"):
                    open_mfdataset([tmp1, tmp2], concat_dim="x")

    def test_encoding_mfdataset(self) -> None:
        original = Dataset(
            {
                "foo": ("t", np.random.randn(10)),
                "t": ("t", pd.date_range(start="2010-01-01", periods=10, freq="1D")),
            }
        )
        original.t.encoding["units"] = "days since 2010-01-01"

        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                ds1 = original.isel(t=slice(5))
                ds2 = original.isel(t=slice(5, 10))
                ds1.t.encoding["units"] = "days since 2010-01-01"
                ds2.t.encoding["units"] = "days since 2000-01-01"
                ds1.to_netcdf(tmp1)
                ds2.to_netcdf(tmp2)
                with open_mfdataset(
                    [tmp1, tmp2], combine="nested", concat_dim="t"
                ) as actual:
                    assert actual.t.encoding["units"] == original.t.encoding["units"]
                    assert actual.t.encoding["units"] == ds1.t.encoding["units"]
                    assert actual.t.encoding["units"] != ds2.t.encoding["units"]

    def test_encoding_mfdataset_new_defaults(self) -> None:
        original = Dataset(
            {
                "foo": ("t", np.random.randn(10)),
                "t": ("t", pd.date_range(start="2010-01-01", periods=10, freq="1D")),
            }
        )
        original.t.encoding["units"] = "days since 2010-01-01"

        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                ds1 = original.isel(t=slice(5))
                ds2 = original.isel(t=slice(5, 10))
                ds1.t.encoding["units"] = "days since 2010-01-01"
                ds2.t.encoding["units"] = "days since 2000-01-01"
                ds1.to_netcdf(tmp1)
                ds2.to_netcdf(tmp2)

                for setting in [True, False]:
                    with set_options(use_new_combine_kwarg_defaults=setting):
                        with open_mfdataset(
                            [tmp1, tmp2], combine="nested", concat_dim="t"
                        ) as old:
                            assert (
                                old.t.encoding["units"] == original.t.encoding["units"]
                            )
                            assert old.t.encoding["units"] == ds1.t.encoding["units"]
                            assert old.t.encoding["units"] != ds2.t.encoding["units"]

                with set_options(use_new_combine_kwarg_defaults=True):
                    with pytest.raises(
                        AlignmentError, match="If you are intending to concatenate"
                    ):
                        open_mfdataset([tmp1, tmp2], combine="nested")

    def test_preprocess_mfdataset(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)

            def preprocess(ds):
                return ds.assign_coords(z=0)

            expected = preprocess(original)
            with open_mfdataset(
                tmp, preprocess=preprocess, combine="by_coords"
            ) as actual:
                assert_identical(expected, actual)

    def test_save_mfdataset_roundtrip(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        datasets = [original.isel(x=slice(5)), original.isel(x=slice(5, 10))]
        with create_tmp_file() as tmp1:
            with create_tmp_file() as tmp2:
                save_mfdataset(datasets, [tmp1, tmp2])
                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested"
                ) as actual:
                    assert_identical(actual, original)

    def test_save_mfdataset_invalid(self) -> None:
        ds = Dataset()
        with pytest.raises(ValueError, match=r"cannot use mode"):
            save_mfdataset([ds, ds], ["same", "same"])
        with pytest.raises(ValueError, match=r"same length"):
            save_mfdataset([ds, ds], ["only one path"])

    def test_save_mfdataset_invalid_dataarray(self) -> None:
        # regression test for GH1555
        da = DataArray([1, 2])
        with pytest.raises(TypeError, match=r"supports writing Dataset"):
            save_mfdataset([da], ["dataarray"])

    def test_save_mfdataset_pathlib_roundtrip(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        datasets = [original.isel(x=slice(5)), original.isel(x=slice(5, 10))]
        with create_tmp_file() as tmps1:
            with create_tmp_file() as tmps2:
                tmp1 = Path(tmps1)
                tmp2 = Path(tmps2)
                save_mfdataset(datasets, [tmp1, tmp2])
                with open_mfdataset(
                    [tmp1, tmp2], concat_dim="x", combine="nested"
                ) as actual:
                    assert_identical(actual, original)

    def test_save_mfdataset_pass_kwargs(self) -> None:
        # create a timeseries to store in a netCDF file
        times = [0, 1]
        time = xr.DataArray(times, dims=("time",))

        # create a simple dataset to write using save_mfdataset
        test_ds = xr.Dataset()
        test_ds["time"] = time

        # make sure the times are written as double and
        # turn off fill values
        encoding = dict(time=dict(dtype="double"))
        unlimited_dims = ["time"]

        # set the output file name
        output_path = "test.nc"

        # attempt to write the dataset with the encoding and unlimited args
        # passed through
        xr.save_mfdataset(
            [test_ds], [output_path], encoding=encoding, unlimited_dims=unlimited_dims
        )

    def test_open_and_do_math(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)
            with open_mfdataset(tmp, combine="by_coords") as ds:
                actual = 1.0 * ds
                assert_allclose(original, actual, decode_bytes=False)

    @pytest.mark.parametrize(
        "kwargs",
        [pytest.param({"concat_dim": None}, id="none"), pytest.param({}, id="default")],
    )
    def test_open_mfdataset_concat_dim(self, kwargs) -> None:
        with set_options(use_new_combine_kwarg_defaults=True):
            with create_tmp_file() as tmp1:
                with create_tmp_file() as tmp2:
                    data = Dataset({"x": 0})
                    data.to_netcdf(tmp1)
                    Dataset({"x": np.nan}).to_netcdf(tmp2)
                    with open_mfdataset(
                        [tmp1, tmp2], **kwargs, combine="nested"
                    ) as actual:
                        assert_identical(data, actual)

    def test_open_dataset(self) -> None:
        original = Dataset({"foo": ("x", np.random.randn(10))})
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)
            with open_dataset(tmp, chunks={"x": 5}) as actual:
                assert isinstance(actual.foo.variable.data, da.Array)
                assert actual.foo.variable.data.chunks == ((5, 5),)
                assert_identical(original, actual)
            with open_dataset(tmp, chunks=5) as actual:
                assert_identical(original, actual)
            with open_dataset(tmp) as actual:
                assert isinstance(actual.foo.variable.data, np.ndarray)
                assert_identical(original, actual)

    def test_open_single_dataset(self) -> None:
        # Test for issue GH #1988. This makes sure that the
        # concat_dim is utilized when specified in open_mfdataset().
        rnddata = np.random.randn(10)
        original = Dataset({"foo": ("x", rnddata)})
        dim = DataArray([100], name="baz", dims="baz")
        expected = Dataset(
            {"foo": (("baz", "x"), rnddata[np.newaxis, :])}, {"baz": [100]}
        )
        with create_tmp_file() as tmp:
            original.to_netcdf(tmp)
            with open_mfdataset(
                [tmp], concat_dim=dim, data_vars="all", combine="nested"
            ) as actual:
                assert_identical(expected, actual)

    def test_open_multi_dataset(self) -> None:
        # Test for issue GH #1988 and #2647. This makes sure that the
        # concat_dim is utilized when specified in open_mfdataset().
        # The additional wrinkle is to ensure that a length greater
        # than one is tested as well due to numpy's implicit casting
        # of 1-length arrays to booleans in tests, which allowed
        # #2647 to still pass the test_open_single_dataset(),
        # which is itself still needed as-is because the original
        # bug caused one-length arrays to not be used correctly
        # in concatenation.
        rnddata = np.random.randn(10)
        original = Dataset({"foo": ("x", rnddata)})
        dim = DataArray([100, 150], name="baz", dims="baz")
        expected = Dataset(
            {"foo": (("baz", "x"), np.tile(rnddata[np.newaxis, :], (2, 1)))},
            {"baz": [100, 150]},
        )
        with create_tmp_file() as tmp1, create_tmp_file() as tmp2:
            original.to_netcdf(tmp1)
            original.to_netcdf(tmp2)
            with open_mfdataset(
                [tmp1, tmp2], concat_dim=dim, data_vars="all", combine="nested"
            ) as actual:
                assert_identical(expected, actual)

    # Flaky test. Very open to contributions on fixing this
    @pytest.mark.flaky
    def test_dask_roundtrip(self) -> None:
        with create_tmp_file() as tmp:
            data = create_test_data()
            data.to_netcdf(tmp)
            chunks = {"dim1": 4, "dim2": 4, "dim3": 4, "time": 10}
            with open_dataset(tmp, chunks=chunks) as dask_ds:
                assert_identical(data, dask_ds)
                with create_tmp_file() as tmp2:
                    dask_ds.to_netcdf(tmp2)
                    with open_dataset(tmp2) as on_disk:
                        assert_identical(data, on_disk)

    def test_deterministic_names(self) -> None:
        with create_tmp_file() as tmp:
            data = create_test_data()
            data.to_netcdf(tmp)
            with open_mfdataset(tmp, combine="by_coords") as ds:
                original_names = {k: v.data.name for k, v in ds.data_vars.items()}
            with open_mfdataset(tmp, combine="by_coords") as ds:
                repeat_names = {k: v.data.name for k, v in ds.data_vars.items()}
            for var_name, dask_name in original_names.items():
                assert var_name in dask_name
                assert dask_name[:13] == "open_dataset-"
            assert original_names == repeat_names

    def test_dataarray_compute(self) -> None:
        # Test DataArray.compute() on dask backend.
        # The test for Dataset.compute() is already in DatasetIOBase;
        # however dask is the only tested backend which supports DataArrays
        actual = DataArray([1, 2]).chunk()
        computed = actual.compute()
        assert not actual._in_memory
        assert computed._in_memory
        assert_allclose(actual, computed, decode_bytes=False)

    def test_save_mfdataset_compute_false_roundtrip(self) -> None:
        from dask.delayed import Delayed

        original = Dataset({"foo": ("x", np.random.randn(10))}).chunk()
        datasets = [original.isel(x=slice(5)), original.isel(x=slice(5, 10))]
        with create_tmp_file(allow_cleanup_failure=ON_WINDOWS) as tmp1:
            with create_tmp_file(allow_cleanup_failure=ON_WINDOWS) as tmp2:
                delayed_obj = save_mfdataset(
                    datasets, [tmp1, tmp2], engine=self.engine, compute=False
                )
                assert isinstance(delayed_obj, Delayed)
                delayed_obj.compute()
                with open_mfdataset(
                    [tmp1, tmp2], combine="nested", concat_dim="x"
                ) as actual:
                    assert_identical(actual, original)

    def test_load_dataset(self) -> None:
        with create_tmp_file() as tmp:
            original = Dataset({"foo": ("x", np.random.randn(10))})
            original.to_netcdf(tmp)
            ds = load_dataset(tmp)
            # this would fail if we used open_dataset instead of load_dataset
            ds.to_netcdf(tmp)

    def test_load_dataarray(self) -> None:
        with create_tmp_file() as tmp:
            original = Dataset({"foo": ("x", np.random.randn(10))})
            original.to_netcdf(tmp)
            ds = load_dataarray(tmp)
            # this would fail if we used open_dataarray instead of
            # load_dataarray
            ds.to_netcdf(tmp)

    @pytest.mark.skipif(
        ON_WINDOWS,
        reason="counting number of tasks in graph fails on windows for some reason",
    )
    def test_inline_array(self) -> None:
        with create_tmp_file() as tmp:
            original = Dataset({"foo": ("x", np.random.randn(10))})
            original.to_netcdf(tmp)
            chunks = {"time": 10}

            def num_graph_nodes(obj):
                return len(obj.__dask_graph__())

            with (
                open_dataset(tmp, inline_array=False, chunks=chunks) as not_inlined_ds,
                open_dataset(tmp, inline_array=True, chunks=chunks) as inlined_ds,
            ):
                assert num_graph_nodes(inlined_ds) < num_graph_nodes(not_inlined_ds)

            with (
                open_dataarray(
                    tmp, inline_array=False, chunks=chunks
                ) as not_inlined_da,
                open_dataarray(tmp, inline_array=True, chunks=chunks) as inlined_da,
            ):
                assert num_graph_nodes(inlined_da) < num_graph_nodes(not_inlined_da)


@requires_scipy_or_netCDF4
@requires_pydap
@pytest.mark.filterwarnings("ignore:The binary mode of fromstring is deprecated")
class TestPydap:
    def convert_to_pydap_dataset(self, original):
        from pydap.model import BaseType, DatasetType

        ds = DatasetType("bears", **original.attrs)
        for key, var in original.data_vars.items():
            ds[key] = BaseType(
                key, var.values, dtype=var.values.dtype.kind, dims=var.dims, **var.attrs
            )
        # check all dims are stored in ds
        for d in original.coords:
            ds[d] = BaseType(d, original[d].values, dims=(d,), **original[d].attrs)
        return ds

    @contextlib.contextmanager
    def create_datasets(self, **kwargs):
        with open_example_dataset("bears.nc") as expected:
            # print("QQ0:", expected["bears"].load())
            pydap_ds = self.convert_to_pydap_dataset(expected)
            actual = open_dataset(PydapDataStore(pydap_ds))
            # netcdf converts string to byte not unicode
            # fixed in pydap 3.5.6. https://github.com/pydap/pydap/issues/510
            actual["bears"].values = actual["bears"].values.astype("S")
            yield actual, expected

    def test_cmp_local_file(self) -> None:
        with self.create_datasets() as (actual, expected):
            assert_equal(actual, expected)

            # global attributes should be global attributes on the dataset
            assert "NC_GLOBAL" not in actual.attrs
            assert "history" in actual.attrs

            # we don't check attributes exactly with assertDatasetIdentical()
            # because the test DAP server seems to insert some extra
            # attributes not found in the netCDF file.
            assert actual.attrs.keys() == expected.attrs.keys()

        with self.create_datasets() as (actual, expected):
            assert_equal(actual[{"l": 2}], expected[{"l": 2}])

        with self.create_datasets() as (actual, expected):
            # always return arrays and not scalars
            # scalars will be promoted to unicode for numpy >= 2.3.0
            assert_equal(actual.isel(i=[0], j=[-1]), expected.isel(i=[0], j=[-1]))

        with self.create_datasets() as (actual, expected):
            assert_equal(actual.isel(j=slice(1, 2)), expected.isel(j=slice(1, 2)))

        with self.create_datasets() as (actual, expected):
            indexers = {"i": [1, 0, 0], "j": [1, 2, 0, 1]}
            assert_equal(actual.isel(**indexers), expected.isel(**indexers))

        with self.create_datasets() as (actual, expected):
            indexers2 = {
                "i": DataArray([0, 1, 0], dims="a"),
                "j": DataArray([0, 2, 1], dims="a"),
            }
            assert_equal(actual.isel(**indexers2), expected.isel(**indexers2))

    def test_compatible_to_netcdf(self) -> None:
        # make sure it can be saved as a netcdf
        with self.create_datasets() as (actual, expected):
            with create_tmp_file() as tmp_file:
                actual.to_netcdf(tmp_file)
                with open_dataset(tmp_file) as actual2:
                    assert_equal(actual2, expected)

    @requires_dask
    def test_dask(self) -> None:
        with self.create_datasets(chunks={"j": 2}) as (actual, expected):
            assert_equal(actual, expected)


@network
@requires_scipy_or_netCDF4
@requires_pydap
class TestPydapOnline(TestPydap):
    @contextlib.contextmanager
    def create_dap2_datasets(self, **kwargs):
        # in pydap 3.5.0, urls defaults to dap2.
        url = "http://test.opendap.org/opendap/data/nc/bears.nc"
        actual = open_dataset(url, engine="pydap", **kwargs)
        # pydap <3.5.6 converts to unicode dtype=|U. Not what
        # xarray expects. Thus force to bytes dtype. pydap >=3.5.6
        # does not convert to unicode. https://github.com/pydap/pydap/issues/510
        actual["bears"].values = actual["bears"].values.astype("S")
        with open_example_dataset("bears.nc") as expected:
            yield actual, expected

    def output_grid_deprecation_warning_dap2dataset(self):
        with pytest.warns(DeprecationWarning, match="`output_grid` is deprecated"):
            with self.create_dap2_datasets(output_grid=True) as (actual, expected):
                assert_equal(actual, expected)

    def create_dap4_dataset(self, **kwargs):
        url = "dap4://test.opendap.org/opendap/data/nc/bears.nc"
        actual = open_dataset(url, engine="pydap", **kwargs)
        with open_example_dataset("bears.nc") as expected:
            # workaround to restore string which is converted to byte
            # only needed for pydap <3.5.6 https://github.com/pydap/pydap/issues/510
            expected["bears"].values = expected["bears"].values.astype("S")
            yield actual, expected

    def test_session(self) -> None:
        from requests import Session

        session = Session()  # blank requests.Session object
        with mock.patch("pydap.client.open_url") as mock_func:
            xr.backends.PydapDataStore.open("http://test.url", session=session)
        mock_func.assert_called_with(
            url="http://test.url",
            application=None,
            session=session,
            output_grid=False,
            timeout=120,
            verify=True,
            user_charset=None,
        )


class TestEncodingInvalid:
    def test_extract_nc4_variable_encoding(self) -> None:
        var = xr.Variable(("x",), [1, 2, 3], {}, {"foo": "bar"})
        with pytest.raises(ValueError, match=r"unexpected encoding"):
            _extract_nc4_variable_encoding(var, raise_on_invalid=True)

        var = xr.Variable(("x",), [1, 2, 3], {}, {"chunking": (2, 1)})
        encoding = _extract_nc4_variable_encoding(var)
        assert {} == encoding

        # regression test
        var = xr.Variable(("x",), [1, 2, 3], {}, {"shuffle": True})
        encoding = _extract_nc4_variable_encoding(var, raise_on_invalid=True)
        assert {"shuffle": True} == encoding

        # Variables with unlim dims must be chunked on output.
        var = xr.Variable(("x",), [1, 2, 3], {}, {"contiguous": True})
        encoding = _extract_nc4_variable_encoding(var, unlimited_dims=("x",))
        assert {} == encoding

    @requires_netCDF4
    def test_extract_nc4_variable_encoding_netcdf4(self):
        # New netCDF4 1.6.0 compression argument.
        var = xr.Variable(("x",), [1, 2, 3], {}, {"compression": "szlib"})
        _extract_nc4_variable_encoding(var, backend="netCDF4", raise_on_invalid=True)

    @pytest.mark.xfail
    def test_extract_h5nc_encoding(self) -> None:
        # not supported with h5netcdf (yet)
        var = xr.Variable(("x",), [1, 2, 3], {}, {"least_significant_digit": 2})
        with pytest.raises(ValueError, match=r"unexpected encoding"):
            _extract_nc4_variable_encoding(var, raise_on_invalid=True)


class MiscObject:
    pass


@requires_netCDF4
class TestValidateAttrs:
    def test_validating_attrs(self) -> None:
        def new_dataset():
            return Dataset({"data": ("y", np.arange(10.0))}, {"y": np.arange(10)})

        def new_dataset_and_dataset_attrs():
            ds = new_dataset()
            return ds, ds.attrs

        def new_dataset_and_data_attrs():
            ds = new_dataset()
            return ds, ds.data.attrs

        def new_dataset_and_coord_attrs():
            ds = new_dataset()
            return ds, ds.coords["y"].attrs

        for new_dataset_and_attrs in [
            new_dataset_and_dataset_attrs,
            new_dataset_and_data_attrs,
            new_dataset_and_coord_attrs,
        ]:
            ds, attrs = new_dataset_and_attrs()

            attrs[123] = "test"
            with pytest.raises(TypeError, match=r"Invalid name for attr: 123"):
                ds.to_netcdf("test.nc")

            ds, attrs = new_dataset_and_attrs()
            attrs[MiscObject()] = "test"
            with pytest.raises(TypeError, match=r"Invalid name for attr: "):
                ds.to_netcdf("test.nc")

            ds, attrs = new_dataset_and_attrs()
            attrs[""] = "test"
            with pytest.raises(ValueError, match=r"Invalid name for attr '':"):
                ds.to_netcdf("test.nc")

            # This one should work
            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = "test"
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = {"a": 5}
            with pytest.raises(TypeError, match=r"Invalid value for attr 'test'"):
                ds.to_netcdf("test.nc")

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = MiscObject()
            with pytest.raises(TypeError, match=r"Invalid value for attr 'test'"):
                ds.to_netcdf("test.nc")

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = 5
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = 3.14
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = [1, 2, 3, 4]
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = (1.9, 2.5)
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = np.arange(5)
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = "This is a string"
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)

            ds, attrs = new_dataset_and_attrs()
            attrs["test"] = ""
            with create_tmp_file() as tmp_file:
                ds.to_netcdf(tmp_file)


@requires_scipy_or_netCDF4
class TestDataArrayToNetCDF:
    def test_dataarray_to_netcdf_no_name(self) -> None:
        original_da = DataArray(np.arange(12).reshape((3, 4)))

        with create_tmp_file() as tmp:
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)

    def test_dataarray_to_netcdf_with_name(self) -> None:
        original_da = DataArray(np.arange(12).reshape((3, 4)), name="test")

        with create_tmp_file() as tmp:
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)

    def test_dataarray_to_netcdf_coord_name_clash(self) -> None:
        original_da = DataArray(
            np.arange(12).reshape((3, 4)), dims=["x", "y"], name="x"
        )

        with create_tmp_file() as tmp:
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)

    def test_open_dataarray_options(self) -> None:
        data = DataArray(np.arange(5), coords={"y": ("x", range(5))}, dims=["x"])

        with create_tmp_file() as tmp:
            data.to_netcdf(tmp)

            expected = data.drop_vars("y")
            with open_dataarray(tmp, drop_variables=["y"]) as loaded:
                assert_identical(expected, loaded)

    @requires_scipy
    def test_dataarray_to_netcdf_return_bytes(self) -> None:
        # regression test for GH1410
        data = xr.DataArray([1, 2, 3])
        with pytest.warns(
            FutureWarning,
            match=re.escape("return value of to_netcdf() without a target"),
        ):
            output = data.to_netcdf(engine="scipy")
        assert isinstance(output, bytes)

    def test_dataarray_to_netcdf_no_name_pathlib(self) -> None:
        original_da = DataArray(np.arange(12).reshape((3, 4)))

        with create_tmp_file() as tmps:
            tmp = Path(tmps)
            original_da.to_netcdf(tmp)

            with open_dataarray(tmp) as loaded_da:
                assert_identical(original_da, loaded_da)


@requires_zarr
class TestDataArrayToZarr:
    def skip_if_zarr_python_3_and_zip_store(self, store) -> None:
        if has_zarr_v3 and isinstance(store, zarr.storage.ZipStore):
            pytest.skip(
                reason="zarr-python 3.x doesn't support reopening ZipStore with a new mode."
            )

    def test_dataarray_to_zarr_no_name(self, tmp_store) -> None:
        self.skip_if_zarr_python_3_and_zip_store(tmp_store)
        original_da = DataArray(np.arange(12).reshape((3, 4)))

        original_da.to_zarr(tmp_store)

        with open_dataarray(tmp_store, engine="zarr") as loaded_da:
            assert_identical(original_da, loaded_da)

    def test_dataarray_to_zarr_with_name(self, tmp_store) -> None:
        self.skip_if_zarr_python_3_and_zip_store(tmp_store)
        original_da = DataArray(np.arange(12).reshape((3, 4)), name="test")

        original_da.to_zarr(tmp_store)

        with open_dataarray(tmp_store, engine="zarr") as loaded_da:
            assert_identical(original_da, loaded_da)

    def test_dataarray_to_zarr_coord_name_clash(self, tmp_store) -> None:
        self.skip_if_zarr_python_3_and_zip_store(tmp_store)
        original_da = DataArray(
            np.arange(12).reshape((3, 4)), dims=["x", "y"], name="x"
        )

        original_da.to_zarr(tmp_store)

        with open_dataarray(tmp_store, engine="zarr") as loaded_da:
            assert_identical(original_da, loaded_da)

    def test_open_dataarray_options(self, tmp_store) -> None:
        self.skip_if_zarr_python_3_and_zip_store(tmp_store)
        data = DataArray(np.arange(5), coords={"y": ("x", range(1, 6))}, dims=["x"])

        data.to_zarr(tmp_store)

        expected = data.drop_vars("y")
        with open_dataarray(tmp_store, engine="zarr", drop_variables=["y"]) as loaded:
            assert_identical(expected, loaded)

    @requires_dask
    def test_dataarray_to_zarr_compute_false(self, tmp_store) -> None:
        from dask.delayed import Delayed

        skip_if_zarr_format_3(tmp_store)
        original_da = DataArray(np.arange(12).reshape((3, 4)))

        output = original_da.to_zarr(tmp_store, compute=False)
        assert isinstance(output, Delayed)
        output.compute()
        with open_dataarray(tmp_store, engine="zarr") as loaded_da:
            assert_identical(original_da, loaded_da)

    @requires_dask
    def test_dataarray_to_zarr_align_chunks_true(self, tmp_store) -> None:
        # TODO: Improve data integrity checks when using Dask.
        #   Detecting automatic alignment issues in Dask can be tricky,
        #   as unintended misalignment might lead to subtle data corruption.
        #   For now, ensure that the parameter is present, but explore
        #   more robust verification methods to confirm data consistency.

        skip_if_zarr_format_3(tmp_store)
        arr = DataArray(
            np.arange(4), dims=["a"], coords={"a": np.arange(4)}, name="foo"
        ).chunk(a=(2, 1, 1))

        arr.to_zarr(
            tmp_store,
            align_chunks=True,
            encoding={"foo": {"chunks": (3,)}},
        )
        with open_dataarray(tmp_store, engine="zarr") as loaded_da:
            assert_identical(arr, loaded_da)


@requires_scipy_or_netCDF4
def test_no_warning_from_dask_effective_get() -> None:
    with create_tmp_file() as tmpfile:
        with assert_no_warnings():
            ds = Dataset()
            ds.to_netcdf(tmpfile)


@requires_scipy_or_netCDF4
def test_source_encoding_always_present() -> None:
    # Test for GH issue #2550.
    rnddata = np.random.randn(10)
    original = Dataset({"foo": ("x", rnddata)})
    with create_tmp_file() as tmp:
        original.to_netcdf(tmp)
        with open_dataset(tmp) as ds:
            assert ds.encoding["source"] == tmp


@requires_scipy_or_netCDF4
def test_source_encoding_always_present_with_pathlib() -> None:
    # Test for GH issue #5888.
    rnddata = np.random.randn(10)
    original = Dataset({"foo": ("x", rnddata)})
    with create_tmp_file() as tmp:
        original.to_netcdf(tmp)
        with open_dataset(Path(tmp)) as ds:
            assert ds.encoding["source"] == tmp


@requires_h5netcdf
@requires_fsspec
def test_source_encoding_always_present_with_fsspec() -> None:
    import fsspec

    rnddata = np.random.randn(10)
    original = Dataset({"foo": ("x", rnddata)})
    with create_tmp_file() as tmp:
        original.to_netcdf(tmp)

        fs = fsspec.filesystem("file")
        with fs.open(tmp) as f, open_dataset(f) as ds:
            assert ds.encoding["source"] == tmp
        with fs.open(tmp) as f, open_mfdataset([f]) as ds:
            assert "foo" in ds


def _assert_no_dates_out_of_range_warning(record):
    undesired_message = "dates out of range"
    for warning in record:
        assert undesired_message not in str(warning.message)


@requires_scipy_or_netCDF4
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_standard_calendar_default_in_range(calendar) -> None:
    x = [0, 1]
    time = [0, 720]
    units_date = "2000-01-01"
    units = "days since 2000-01-01"
    original = DataArray(x, [("time", time)], name="x").to_dataset()
    for v in ["x", "time"]:
        original[v].attrs["units"] = units
        original[v].attrs["calendar"] = calendar

    x_timedeltas = np.array(x).astype("timedelta64[D]")
    time_timedeltas = np.array(time).astype("timedelta64[D]")
    decoded_x = np.datetime64(units_date, "ns") + x_timedeltas
    decoded_time = np.datetime64(units_date, "ns") + time_timedeltas
    expected_x = DataArray(decoded_x, [("time", decoded_time)], name="x")
    expected_time = DataArray(decoded_time, [("time", decoded_time)], name="time")

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with warnings.catch_warnings(record=True) as record:
            with open_dataset(tmp_file) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)
            _assert_no_dates_out_of_range_warning(record)


@requires_cftime
@requires_scipy_or_netCDF4
@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
def test_use_cftime_standard_calendar_default_out_of_range(calendar) -> None:
    # todo: check, if we still need to test for two dates
    import cftime

    x = [0, 1]
    time = [0, 720]
    units = "days since 1582-01-01"
    original = DataArray(x, [("time", time)], name="x").to_dataset()
    for v in ["x", "time"]:
        original[v].attrs["units"] = units
        original[v].attrs["calendar"] = calendar

    decoded_x = cftime.num2date(x, units, calendar, only_use_cftime_datetimes=True)
    decoded_time = cftime.num2date(
        time, units, calendar, only_use_cftime_datetimes=True
    )
    expected_x = DataArray(decoded_x, [("time", decoded_time)], name="x")
    expected_time = DataArray(decoded_time, [("time", decoded_time)], name="time")

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.warns(SerializationWarning):
            with open_dataset(tmp_file) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)


@requires_cftime
@requires_scipy_or_netCDF4
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_true(calendar, units_year) -> None:
    import cftime

    x = [0, 1]
    time = [0, 720]
    units = f"days since {units_year}-01-01"
    original = DataArray(x, [("time", time)], name="x").to_dataset()
    for v in ["x", "time"]:
        original[v].attrs["units"] = units
        original[v].attrs["calendar"] = calendar

    decoded_x = cftime.num2date(x, units, calendar, only_use_cftime_datetimes=True)
    decoded_time = cftime.num2date(
        time, units, calendar, only_use_cftime_datetimes=True
    )
    expected_x = DataArray(decoded_x, [("time", decoded_time)], name="x")
    expected_time = DataArray(decoded_time, [("time", decoded_time)], name="time")

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with warnings.catch_warnings(record=True) as record:
            decoder = CFDatetimeCoder(use_cftime=True)
            with open_dataset(tmp_file, decode_times=decoder) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)
            _assert_no_dates_out_of_range_warning(record)


@requires_scipy_or_netCDF4
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
@pytest.mark.xfail
# (   has_numpy_2, reason="https://github.com/pandas-dev/pandas/issues/56996")
def test_use_cftime_false_standard_calendar_in_range(calendar) -> None:
    x = [0, 1]
    time = [0, 720]
    units_date = "2000-01-01"
    units = "days since 2000-01-01"
    original = DataArray(x, [("time", time)], name="x").to_dataset()
    for v in ["x", "time"]:
        original[v].attrs["units"] = units
        original[v].attrs["calendar"] = calendar

    x_timedeltas = np.array(x).astype("timedelta64[D]")
    time_timedeltas = np.array(time).astype("timedelta64[D]")
    decoded_x = np.datetime64(units_date, "ns") + x_timedeltas
    decoded_time = np.datetime64(units_date, "ns") + time_timedeltas
    expected_x = DataArray(decoded_x, [("time", decoded_time)], name="x")
    expected_time = DataArray(decoded_time, [("time", decoded_time)], name="time")

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with warnings.catch_warnings(record=True) as record:
            coder = xr.coders.CFDatetimeCoder(use_cftime=False)
            with open_dataset(tmp_file, decode_times=coder) as ds:
                assert_identical(expected_x, ds.x)
                assert_identical(expected_time, ds.time)
            _assert_no_dates_out_of_range_warning(record)


@requires_scipy_or_netCDF4
@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
def test_use_cftime_false_standard_calendar_out_of_range(calendar) -> None:
    x = [0, 1]
    time = [0, 720]
    units = "days since 1582-01-01"
    original = DataArray(x, [("time", time)], name="x").to_dataset()
    for v in ["x", "time"]:
        original[v].attrs["units"] = units
        original[v].attrs["calendar"] = calendar

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.raises((OutOfBoundsDatetime, ValueError)):
            decoder = CFDatetimeCoder(use_cftime=False)
            open_dataset(tmp_file, decode_times=decoder)


@requires_scipy_or_netCDF4
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_false_nonstandard_calendar(calendar, units_year) -> None:
    x = [0, 1]
    time = [0, 720]
    units = f"days since {units_year}"
    original = DataArray(x, [("time", time)], name="x").to_dataset()
    for v in ["x", "time"]:
        original[v].attrs["units"] = units
        original[v].attrs["calendar"] = calendar

    with create_tmp_file() as tmp_file:
        original.to_netcdf(tmp_file)
        with pytest.raises((OutOfBoundsDatetime, ValueError)):
            decoder = CFDatetimeCoder(use_cftime=False)
            open_dataset(tmp_file, decode_times=decoder)


@pytest.mark.parametrize("engine", ["netcdf4", "scipy"])
def test_invalid_netcdf_raises(engine) -> None:
    data = create_test_data()
    with pytest.raises(ValueError, match=r"unrecognized option 'invalid_netcdf'"):
        data.to_netcdf("foo.nc", engine=engine, invalid_netcdf=True)


@requires_zarr
def test_encode_zarr_attr_value() -> None:
    # array -> list
    arr = np.array([1, 2, 3])
    expected1 = [1, 2, 3]
    actual1 = backends.zarr.encode_zarr_attr_value(arr)
    assert isinstance(actual1, list)
    assert actual1 == expected1

    # scalar array -> scalar
    sarr = np.array(1)[()]
    expected2 = 1
    actual2 = backends.zarr.encode_zarr_attr_value(sarr)
    assert isinstance(actual2, int)
    assert actual2 == expected2

    # string -> string (no change)
    expected3 = "foo"
    actual3 = backends.zarr.encode_zarr_attr_value(expected3)
    assert isinstance(actual3, str)
    assert actual3 == expected3


@requires_zarr
def test_extract_zarr_variable_encoding() -> None:
    var = xr.Variable("x", [1, 2])
    actual = backends.zarr.extract_zarr_variable_encoding(var, zarr_format=3)
    assert "chunks" in actual
    assert actual["chunks"] == ("auto" if has_zarr_v3 else None)

    var = xr.Variable("x", [1, 2], encoding={"chunks": (1,)})
    actual = backends.zarr.extract_zarr_variable_encoding(var, zarr_format=3)
    assert actual["chunks"] == (1,)

    # does not raise on invalid
    var = xr.Variable("x", [1, 2], encoding={"foo": (1,)})
    actual = backends.zarr.extract_zarr_variable_encoding(var, zarr_format=3)

    # raises on invalid
    var = xr.Variable("x", [1, 2], encoding={"foo": (1,)})
    with pytest.raises(ValueError, match=r"unexpected encoding parameters"):
        actual = backends.zarr.extract_zarr_variable_encoding(
            var, raise_on_invalid=True, zarr_format=3
        )


@requires_zarr
@requires_fsspec
@pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
def test_open_fsspec() -> None:
    import fsspec

    if not hasattr(zarr.storage, "FSStore") or not hasattr(
        zarr.storage.FSStore, "getitems"
    ):
        pytest.skip("zarr too old")

    ds = open_dataset(os.path.join(os.path.dirname(__file__), "data", "example_1.nc"))

    m = fsspec.filesystem("memory")
    mm = m.get_mapper("out1.zarr")
    ds.to_zarr(mm)  # old interface
    ds0 = ds.copy()
    # pd.to_timedelta returns ns-precision, but the example data is in second precision
    # so we need to fix this
    ds0["time"] = ds.time + np.timedelta64(1, "D")
    mm = m.get_mapper("out2.zarr")
    ds0.to_zarr(mm)  # old interface

    # single dataset
    url = "memory://out2.zarr"
    ds2 = open_dataset(url, engine="zarr")
    xr.testing.assert_equal(ds0, ds2)

    # single dataset with caching
    url = "simplecache::memory://out2.zarr"
    ds2 = open_dataset(url, engine="zarr")
    xr.testing.assert_equal(ds0, ds2)

    # open_mfdataset requires dask
    if has_dask:
        # multi dataset
        url = "memory://out*.zarr"
        ds2 = open_mfdataset(url, engine="zarr")
        xr.testing.assert_equal(xr.concat([ds, ds0], dim="time"), ds2)

        # multi dataset with caching
        url = "simplecache::memory://out*.zarr"
        ds2 = open_mfdataset(url, engine="zarr")
        xr.testing.assert_equal(xr.concat([ds, ds0], dim="time"), ds2)


@requires_h5netcdf
@requires_netCDF4
def test_load_single_value_h5netcdf(tmp_path: Path) -> None:
    """Test that numeric single-element vector attributes are handled fine.

    At present (h5netcdf v0.8.1), the h5netcdf exposes single-valued numeric variable
    attributes as arrays of length 1, as opposed to scalars for the NetCDF4
    backend.  This was leading to a ValueError upon loading a single value from
    a file, see #4471.  Test that loading causes no failure.
    """
    ds = xr.Dataset(
        {
            "test": xr.DataArray(
                np.array([0]), dims=("x",), attrs={"scale_factor": 1, "add_offset": 0}
            )
        }
    )
    ds.to_netcdf(tmp_path / "test.nc")
    with xr.open_dataset(tmp_path / "test.nc", engine="h5netcdf") as ds2:
        ds2["test"][0].load()


@requires_zarr
@requires_dask
@pytest.mark.parametrize(
    "chunks", ["auto", -1, {}, {"x": "auto"}, {"x": -1}, {"x": "auto", "y": -1}]
)
def test_open_dataset_chunking_zarr(chunks, tmp_path: Path) -> None:
    encoded_chunks = 100
    dask_arr = da.from_array(
        np.ones((500, 500), dtype="float64"), chunks=encoded_chunks
    )
    ds = xr.Dataset(
        {
            "test": xr.DataArray(
                dask_arr,
                dims=("x", "y"),
            )
        }
    )
    ds["test"].encoding["chunks"] = encoded_chunks
    ds.to_zarr(tmp_path / "test.zarr")

    with dask.config.set({"array.chunk-size": "1MiB"}):
        expected = ds.chunk(chunks)
        with open_dataset(
            tmp_path / "test.zarr", engine="zarr", chunks=chunks
        ) as actual:
            xr.testing.assert_chunks_equal(actual, expected)


@requires_zarr
@requires_dask
@pytest.mark.parametrize(
    "chunks", ["auto", -1, {}, {"x": "auto"}, {"x": -1}, {"x": "auto", "y": -1}]
)
@pytest.mark.filterwarnings("ignore:The specified chunks separate")
def test_chunking_consintency(chunks, tmp_path: Path) -> None:
    encoded_chunks: dict[str, Any] = {}
    dask_arr = da.from_array(
        np.ones((500, 500), dtype="float64"), chunks=encoded_chunks
    )
    ds = xr.Dataset(
        {
            "test": xr.DataArray(
                dask_arr,
                dims=("x", "y"),
            )
        }
    )
    ds["test"].encoding["chunks"] = encoded_chunks
    ds.to_zarr(tmp_path / "test.zarr")
    ds.to_netcdf(tmp_path / "test.nc")

    with dask.config.set({"array.chunk-size": "1MiB"}):
        expected = ds.chunk(chunks)
        with xr.open_dataset(
            tmp_path / "test.zarr", engine="zarr", chunks=chunks
        ) as actual:
            xr.testing.assert_chunks_equal(actual, expected)

        with xr.open_dataset(tmp_path / "test.nc", chunks=chunks) as actual:
            xr.testing.assert_chunks_equal(actual, expected)


def _check_guess_can_open_and_open(entrypoint, obj, engine, expected):
    assert entrypoint.guess_can_open(obj)
    with open_dataset(obj, engine=engine) as actual:
        assert_identical(expected, actual)


@requires_netCDF4
def test_netcdf4_entrypoint(tmp_path: Path) -> None:
    entrypoint = NetCDF4BackendEntrypoint()
    ds = create_test_data()

    path = tmp_path / "foo"
    ds.to_netcdf(path, format="NETCDF3_CLASSIC")
    _check_guess_can_open_and_open(entrypoint, path, engine="netcdf4", expected=ds)
    _check_guess_can_open_and_open(entrypoint, str(path), engine="netcdf4", expected=ds)

    path = tmp_path / "bar"
    ds.to_netcdf(path, format="NETCDF4_CLASSIC")
    _check_guess_can_open_and_open(entrypoint, path, engine="netcdf4", expected=ds)
    _check_guess_can_open_and_open(entrypoint, str(path), engine="netcdf4", expected=ds)

    assert entrypoint.guess_can_open("http://something/remote")
    assert entrypoint.guess_can_open("something-local.nc")
    assert entrypoint.guess_can_open("something-local.nc4")
    assert entrypoint.guess_can_open("something-local.cdf")
    assert not entrypoint.guess_can_open("not-found-and-no-extension")

    path = tmp_path / "baz"
    with open(path, "wb") as f:
        f.write(b"not-a-netcdf-file")
    assert not entrypoint.guess_can_open(path)


@requires_scipy
def test_scipy_entrypoint(tmp_path: Path) -> None:
    entrypoint = ScipyBackendEntrypoint()
    ds = create_test_data()

    path = tmp_path / "foo"
    ds.to_netcdf(path, engine="scipy")
    _check_guess_can_open_and_open(entrypoint, path, engine="scipy", expected=ds)
    _check_guess_can_open_and_open(entrypoint, str(path), engine="scipy", expected=ds)
    with open(path, "rb") as f:
        _check_guess_can_open_and_open(entrypoint, f, engine="scipy", expected=ds)

    with pytest.warns(
        FutureWarning, match=re.escape("return value of to_netcdf() without a target")
    ):
        contents = ds.to_netcdf(engine="scipy")
    _check_guess_can_open_and_open(entrypoint, contents, engine="scipy", expected=ds)
    _check_guess_can_open_and_open(
        entrypoint, BytesIO(contents), engine="scipy", expected=ds
    )

    path = tmp_path / "foo.nc.gz"
    with gzip.open(path, mode="wb") as f:
        f.write(contents)
    _check_guess_can_open_and_open(entrypoint, path, engine="scipy", expected=ds)
    _check_guess_can_open_and_open(entrypoint, str(path), engine="scipy", expected=ds)

    assert entrypoint.guess_can_open("something-local.nc")
    assert entrypoint.guess_can_open("something-local.nc.gz")
    assert not entrypoint.guess_can_open("not-found-and-no-extension")
    assert not entrypoint.guess_can_open(b"not-a-netcdf-file")


@requires_h5netcdf
def test_h5netcdf_entrypoint(tmp_path: Path) -> None:
    entrypoint = H5netcdfBackendEntrypoint()
    ds = create_test_data()

    path = tmp_path / "foo"
    ds.to_netcdf(path, engine="h5netcdf")
    _check_guess_can_open_and_open(entrypoint, path, engine="h5netcdf", expected=ds)
    _check_guess_can_open_and_open(
        entrypoint, str(path), engine="h5netcdf", expected=ds
    )
    with open(path, "rb") as f:
        _check_guess_can_open_and_open(entrypoint, f, engine="h5netcdf", expected=ds)

    assert entrypoint.guess_can_open("something-local.nc")
    assert entrypoint.guess_can_open("something-local.nc4")
    assert entrypoint.guess_can_open("something-local.cdf")
    assert not entrypoint.guess_can_open("not-found-and-no-extension")


@requires_netCDF4
@pytest.mark.parametrize("str_type", (str, np.str_))
def test_write_file_from_np_str(str_type: type[str | np.str_], tmpdir: str) -> None:
    # https://github.com/pydata/xarray/pull/5264
    scenarios = [str_type(v) for v in ["scenario_a", "scenario_b", "scenario_c"]]
    years = range(2015, 2100 + 1)
    tdf = pd.DataFrame(
        data=np.random.random((len(scenarios), len(years))),
        columns=years,
        index=scenarios,
    )
    tdf.index.name = "scenario"
    tdf.columns.name = "year"
    tdf = cast(pd.DataFrame, tdf.stack())
    tdf.name = "tas"

    txr = tdf.to_xarray()

    txr.to_netcdf(tmpdir.join("test.nc"))


@requires_zarr
@requires_netCDF4
class TestNCZarr:
    @property
    def netcdfc_version(self):
        return Version(nc4.getlibversion().split()[0].split("-development")[0])

    def _create_nczarr(self, filename):
        if self.netcdfc_version < Version("4.8.1"):
            pytest.skip("requires netcdf-c>=4.8.1")
        if platform.system() == "Windows" and self.netcdfc_version == Version("4.8.1"):
            # Bug in netcdf-c==4.8.1 (typo: Nan instead of NaN)
            # https://github.com/Unidata/netcdf-c/issues/2265
            pytest.skip("netcdf-c==4.8.1 has issues on Windows")

        ds = create_test_data()
        # Drop dim3: netcdf-c does not support dtype='<U1'
        # https://github.com/Unidata/netcdf-c/issues/2259
        ds = ds.drop_vars("dim3")

        ds.to_netcdf(f"file://{filename}#mode=nczarr")
        return ds

    def test_open_nczarr(self) -> None:
        with create_tmp_file(suffix=".zarr") as tmp:
            expected = self._create_nczarr(tmp)
            actual = xr.open_zarr(tmp, consolidated=False)
            assert_identical(expected, actual)

    def test_overwriting_nczarr(self) -> None:
        with create_tmp_file(suffix=".zarr") as tmp:
            ds = self._create_nczarr(tmp)
            expected = ds[["var1"]]
            expected.to_zarr(tmp, mode="w")
            actual = xr.open_zarr(tmp, consolidated=False)
            assert_identical(expected, actual)

    @pytest.mark.parametrize("mode", ["a", "r+"])
    @pytest.mark.filterwarnings("ignore:.*non-consolidated metadata.*")
    def test_raise_writing_to_nczarr(self, mode) -> None:
        if self.netcdfc_version > Version("4.8.1"):
            pytest.skip("netcdf-c>4.8.1 adds the _ARRAY_DIMENSIONS attribute")

        with create_tmp_file(suffix=".zarr") as tmp:
            ds = self._create_nczarr(tmp)
            with pytest.raises(
                KeyError, match="missing the attribute `_ARRAY_DIMENSIONS`,"
            ):
                ds.to_zarr(tmp, mode=mode)


@requires_netCDF4
@requires_dask
@pytest.mark.usefixtures("default_zarr_format")
def test_pickle_open_mfdataset_dataset():
    with open_example_mfdataset(["bears.nc"]) as ds:
        assert_identical(ds, pickle.loads(pickle.dumps(ds)))


@requires_zarr
@pytest.mark.usefixtures("default_zarr_format")
def test_zarr_closing_internal_zip_store():
    store_name = "tmp.zarr.zip"
    original_da = DataArray(np.arange(12).reshape((3, 4)))
    original_da.to_zarr(store_name, mode="w")

    with open_dataarray(store_name, engine="zarr") as loaded_da:
        assert_identical(original_da, loaded_da)


@requires_zarr
@pytest.mark.parametrize("create_default_indexes", [True, False])
def test_zarr_create_default_indexes(tmp_path, create_default_indexes) -> None:
    from xarray.core.indexes import PandasIndex

    store_path = tmp_path / "tmp.zarr"
    original_ds = xr.Dataset({"data": ("x", np.arange(3))}, coords={"x": [-1, 0, 1]})
    original_ds.to_zarr(store_path, mode="w")

    with open_dataset(
        store_path, engine="zarr", create_default_indexes=create_default_indexes
    ) as loaded_ds:
        if create_default_indexes:
            assert list(loaded_ds.xindexes) == ["x"] and isinstance(
                loaded_ds.xindexes["x"], PandasIndex
            )
        else:
            assert len(loaded_ds.xindexes) == 0


@requires_zarr
@pytest.mark.usefixtures("default_zarr_format")
def test_raises_key_error_on_invalid_zarr_store(tmp_path):
    root = zarr.open_group(tmp_path / "tmp.zarr")
    if Version(zarr.__version__) < Version("3.0.0"):
        root.create_dataset("bar", shape=(3, 5), dtype=np.float32)
    else:
        root.create_array("bar", shape=(3, 5), dtype=np.float32)
    with pytest.raises(KeyError, match=r"xarray to determine variable dimensions"):
        xr.open_zarr(tmp_path / "tmp.zarr", consolidated=False)


@requires_zarr
@pytest.mark.usefixtures("default_zarr_format")
class TestZarrRegionAuto:
    """These are separated out since we should not need to test this logic with every store."""

    @contextlib.contextmanager
    def create_zarr_target(self):
        with create_tmp_file(suffix=".zarr") as tmp:
            yield tmp

    @contextlib.contextmanager
    def create(self):
        x = np.arange(0, 50, 10)
        y = np.arange(0, 20, 2)
        data = np.ones((5, 10))
        ds = xr.Dataset(
            {"test": xr.DataArray(data, dims=("x", "y"), coords={"x": x, "y": y})}
        )
        with self.create_zarr_target() as target:
            self.save(target, ds)
            yield target, ds

    def save(self, target, ds, **kwargs):
        ds.to_zarr(target, **kwargs)

    @pytest.mark.parametrize(
        "region",
        [
            pytest.param("auto", id="full-auto"),
            pytest.param({"x": "auto", "y": slice(6, 8)}, id="mixed-auto"),
        ],
    )
    def test_zarr_region_auto(self, region):
        with self.create() as (target, ds):
            ds_region = 1 + ds.isel(x=slice(2, 4), y=slice(6, 8))
            self.save(target, ds_region, region=region)
            ds_updated = xr.open_zarr(target)

            expected = ds.copy()
            expected["test"][2:4, 6:8] += 1
            assert_identical(ds_updated, expected)

    def test_zarr_region_auto_noncontiguous(self):
        with self.create() as (target, ds):
            with pytest.raises(ValueError):
                self.save(target, ds.isel(x=[0, 2, 3], y=[5, 6]), region="auto")

            dsnew = ds.copy()
            dsnew["x"] = dsnew.x + 5
            with pytest.raises(KeyError):
                self.save(target, dsnew, region="auto")

    def test_zarr_region_index_write(self, tmp_path):
        region: Mapping[str, slice] | Literal["auto"]
        region_slice = dict(x=slice(2, 4), y=slice(6, 8))

        with self.create() as (target, ds):
            ds_region = 1 + ds.isel(region_slice)
            for region in [region_slice, "auto"]:  # type: ignore[assignment]
                with patch.object(
                    ZarrStore,
                    "set_variables",
                    side_effect=ZarrStore.set_variables,
                    autospec=True,
                ) as mock:
                    self.save(target, ds_region, region=region, mode="r+")

                    # should write the data vars but never the index vars with auto mode
                    for call in mock.call_args_list:
                        written_variables = call.args[1].keys()
                        assert "test" in written_variables
                        assert "x" not in written_variables
                        assert "y" not in written_variables

    def test_zarr_region_append(self):
        with self.create() as (target, ds):
            x_new = np.arange(40, 70, 10)
            data_new = np.ones((3, 10))
            ds_new = xr.Dataset(
                {
                    "test": xr.DataArray(
                        data_new,
                        dims=("x", "y"),
                        coords={"x": x_new, "y": ds.y},
                    )
                }
            )

            # Now it is valid to use auto region detection with the append mode,
            # but it is still unsafe to modify dimensions or metadata using the region
            # parameter.
            with pytest.raises(KeyError):
                self.save(target, ds_new, mode="a", append_dim="x", region="auto")

    def test_zarr_region(self):
        with self.create() as (target, ds):
            ds_transposed = ds.transpose("y", "x")
            ds_region = 1 + ds_transposed.isel(x=[0], y=[0])
            self.save(target, ds_region, region={"x": slice(0, 1), "y": slice(0, 1)})

            # Write without region
            self.save(target, ds_transposed, mode="r+")

    @requires_dask
    def test_zarr_region_chunk_partial(self):
        """
        Check that writing to partial chunks with `region` fails, assuming `safe_chunks=False`.
        """
        ds = (
            xr.DataArray(np.arange(120).reshape(4, 3, -1), dims=list("abc"))
            .rename("var1")
            .to_dataset()
        )

        with self.create_zarr_target() as target:
            self.save(target, ds.chunk(5), compute=False, mode="w")
            with pytest.raises(ValueError):
                for r in range(ds.sizes["a"]):
                    self.save(
                        target, ds.chunk(3).isel(a=[r]), region=dict(a=slice(r, r + 1))
                    )

    @requires_dask
    def test_zarr_append_chunk_partial(self):
        t_coords = np.array([np.datetime64("2020-01-01").astype("datetime64[ns]")])
        data = np.ones((10, 10))

        da = xr.DataArray(
            data.reshape((-1, 10, 10)),
            dims=["time", "x", "y"],
            coords={"time": t_coords},
            name="foo",
        )
        new_time = np.array([np.datetime64("2021-01-01").astype("datetime64[ns]")])
        da2 = xr.DataArray(
            data.reshape((-1, 10, 10)),
            dims=["time", "x", "y"],
            coords={"time": new_time},
            name="foo",
        )

        with self.create_zarr_target() as target:
            self.save(target, da, mode="w", encoding={"foo": {"chunks": (5, 5, 1)}})

            with pytest.raises(ValueError, match="encoding was provided"):
                self.save(
                    target,
                    da2,
                    append_dim="time",
                    mode="a",
                    encoding={"foo": {"chunks": (1, 1, 1)}},
                )

            # chunking with dask sidesteps the encoding check, so we need a different check
            with pytest.raises(ValueError, match="Specified Zarr chunks"):
                self.save(
                    target,
                    da2.chunk({"x": 1, "y": 1, "time": 1}),
                    append_dim="time",
                    mode="a",
                )

    @requires_dask
    def test_zarr_region_chunk_partial_offset(self):
        # https://github.com/pydata/xarray/pull/8459#issuecomment-1819417545
        with self.create_zarr_target() as store:
            data = np.ones((30,))
            da = xr.DataArray(
                data, dims=["x"], coords={"x": range(30)}, name="foo"
            ).chunk(x=10)
            self.save(store, da, compute=False)

            self.save(store, da.isel(x=slice(10)).chunk(x=(10,)), region="auto")

            self.save(
                store,
                da.isel(x=slice(5, 25)).chunk(x=(10, 10)),
                safe_chunks=False,
                region="auto",
            )

            with pytest.raises(ValueError):
                self.save(
                    store, da.isel(x=slice(5, 25)).chunk(x=(10, 10)), region="auto"
                )

    @requires_dask
    def test_zarr_safe_chunk_append_dim(self):
        with self.create_zarr_target() as store:
            data = np.ones((20,))
            da = xr.DataArray(
                data, dims=["x"], coords={"x": range(20)}, name="foo"
            ).chunk(x=5)

            self.save(store, da.isel(x=slice(0, 7)), safe_chunks=True, mode="w")
            with pytest.raises(ValueError):
                # If the first chunk is smaller than the border size then raise an error
                self.save(
                    store,
                    da.isel(x=slice(7, 11)).chunk(x=(2, 2)),
                    append_dim="x",
                    safe_chunks=True,
                )

            self.save(store, da.isel(x=slice(0, 7)), safe_chunks=True, mode="w")
            # If the first chunk is of the size of the border size then it is valid
            self.save(
                store,
                da.isel(x=slice(7, 11)).chunk(x=(3, 1)),
                safe_chunks=True,
                append_dim="x",
            )
            assert xr.open_zarr(store)["foo"].equals(da.isel(x=slice(0, 11)))

            self.save(store, da.isel(x=slice(0, 7)), safe_chunks=True, mode="w")
            # If the first chunk is of the size of the border size + N * zchunk then it is valid
            self.save(
                store,
                da.isel(x=slice(7, 17)).chunk(x=(8, 2)),
                safe_chunks=True,
                append_dim="x",
            )
            assert xr.open_zarr(store)["foo"].equals(da.isel(x=slice(0, 17)))

            self.save(store, da.isel(x=slice(0, 7)), safe_chunks=True, mode="w")
            with pytest.raises(ValueError):
                # If the first chunk is valid but the other are not then raise an error
                self.save(
                    store,
                    da.isel(x=slice(7, 14)).chunk(x=(3, 3, 1)),
                    append_dim="x",
                    safe_chunks=True,
                )

            self.save(store, da.isel(x=slice(0, 7)), safe_chunks=True, mode="w")
            with pytest.raises(ValueError):
                # If the first chunk have a size bigger than the border size but not enough
                # to complete the size of the next chunk then an error must be raised
                self.save(
                    store,
                    da.isel(x=slice(7, 14)).chunk(x=(4, 3)),
                    append_dim="x",
                    safe_chunks=True,
                )

            self.save(store, da.isel(x=slice(0, 7)), safe_chunks=True, mode="w")
            # Append with a single chunk it's totally valid,
            # and it does not matter the size of the chunk
            self.save(
                store,
                da.isel(x=slice(7, 19)).chunk(x=-1),
                append_dim="x",
                safe_chunks=True,
            )
            assert xr.open_zarr(store)["foo"].equals(da.isel(x=slice(0, 19)))

    @requires_dask
    @pytest.mark.parametrize("mode", ["r+", "a"])
    def test_zarr_safe_chunk_region(self, mode: Literal["r+", "a"]):
        with self.create_zarr_target() as store:
            arr = xr.DataArray(
                list(range(11)), dims=["a"], coords={"a": list(range(11))}, name="foo"
            ).chunk(a=3)
            self.save(store, arr, mode="w")

            with pytest.raises(ValueError):
                # There are two Dask chunks on the same Zarr chunk,
                # which means that it is unsafe in any mode
                self.save(
                    store,
                    arr.isel(a=slice(0, 3)).chunk(a=(2, 1)),
                    region="auto",
                    mode=mode,
                )

            with pytest.raises(ValueError):
                # the first chunk is covering the border size, but it is not
                # completely covering the second chunk, which means that it is
                # unsafe in any mode
                self.save(
                    store,
                    arr.isel(a=slice(1, 5)).chunk(a=(3, 1)),
                    region="auto",
                    mode=mode,
                )

            with pytest.raises(ValueError):
                # The first chunk is safe but the other two chunks are overlapping with
                # the same Zarr chunk
                self.save(
                    store,
                    arr.isel(a=slice(0, 5)).chunk(a=(3, 1, 1)),
                    region="auto",
                    mode=mode,
                )

            # Fully update two contiguous chunks is safe in any mode
            self.save(store, arr.isel(a=slice(3, 9)), region="auto", mode=mode)

            # The last chunk is considered full based on their current size (2)
            self.save(store, arr.isel(a=slice(9, 11)), region="auto", mode=mode)
            self.save(
                store, arr.isel(a=slice(6, None)).chunk(a=-1), region="auto", mode=mode
            )

            # Write the last chunk of a region partially is safe in "a" mode
            self.save(store, arr.isel(a=slice(3, 8)), region="auto", mode="a")
            with pytest.raises(ValueError):
                # with "r+" mode it is invalid to write partial chunk
                self.save(store, arr.isel(a=slice(3, 8)), region="auto", mode="r+")

            # This is safe with mode "a", the border size is covered by the first chunk of Dask
            self.save(
                store, arr.isel(a=slice(1, 4)).chunk(a=(2, 1)), region="auto", mode="a"
            )
            with pytest.raises(ValueError):
                # This is considered unsafe in mode "r+" because it is writing in a partial chunk
                self.save(
                    store,
                    arr.isel(a=slice(1, 4)).chunk(a=(2, 1)),
                    region="auto",
                    mode="r+",
                )

            # This is safe on mode "a" because there is a single dask chunk
            self.save(
                store, arr.isel(a=slice(1, 5)).chunk(a=(4,)), region="auto", mode="a"
            )
            with pytest.raises(ValueError):
                # This is unsafe on mode "r+", because the Dask chunk is partially writing
                # in the first chunk of Zarr
                self.save(
                    store,
                    arr.isel(a=slice(1, 5)).chunk(a=(4,)),
                    region="auto",
                    mode="r+",
                )

            # The first chunk is completely covering the first Zarr chunk
            # and the last chunk is a partial one
            self.save(
                store, arr.isel(a=slice(0, 5)).chunk(a=(3, 2)), region="auto", mode="a"
            )

            with pytest.raises(ValueError):
                # The last chunk is partial, so it is considered unsafe on mode "r+"
                self.save(
                    store,
                    arr.isel(a=slice(0, 5)).chunk(a=(3, 2)),
                    region="auto",
                    mode="r+",
                )

            # The first chunk is covering the border size (2 elements)
            # and also the second chunk (3 elements), so it is valid
            self.save(
                store, arr.isel(a=slice(1, 8)).chunk(a=(5, 2)), region="auto", mode="a"
            )

            with pytest.raises(ValueError):
                # The first chunk is not fully covering the first zarr chunk
                self.save(
                    store,
                    arr.isel(a=slice(1, 8)).chunk(a=(5, 2)),
                    region="auto",
                    mode="r+",
                )

            with pytest.raises(ValueError):
                # Validate that the border condition is not affecting the "r+" mode
                self.save(store, arr.isel(a=slice(1, 9)), region="auto", mode="r+")

            self.save(store, arr.isel(a=slice(10, 11)), region="auto", mode="a")
            with pytest.raises(ValueError):
                # Validate that even if we write with a single Dask chunk on the last Zarr
                # chunk it is still unsafe if it is not fully covering it
                # (the last Zarr chunk has size 2)
                self.save(store, arr.isel(a=slice(10, 11)), region="auto", mode="r+")

            # Validate the same as the above test but in the beginning of the last chunk
            self.save(store, arr.isel(a=slice(9, 10)), region="auto", mode="a")
            with pytest.raises(ValueError):
                self.save(store, arr.isel(a=slice(9, 10)), region="auto", mode="r+")

            self.save(
                store, arr.isel(a=slice(7, None)).chunk(a=-1), region="auto", mode="a"
            )
            with pytest.raises(ValueError):
                # Test that even a Dask chunk that covers the last Zarr chunk can be unsafe
                # if it is partial covering other Zarr chunks
                self.save(
                    store,
                    arr.isel(a=slice(7, None)).chunk(a=-1),
                    region="auto",
                    mode="r+",
                )

            with pytest.raises(ValueError):
                # If the chunk is of size equal to the one in the Zarr encoding, but
                # it is partially writing in the first chunk then raise an error
                self.save(
                    store,
                    arr.isel(a=slice(8, None)).chunk(a=3),
                    region="auto",
                    mode="r+",
                )

            with pytest.raises(ValueError):
                self.save(
                    store, arr.isel(a=slice(5, -1)).chunk(a=5), region="auto", mode="r+"
                )

            # Test if the code is detecting the last chunk correctly
            data = np.random.default_rng(0).random((2920, 25, 53))
            ds = xr.Dataset({"temperature": (("time", "lat", "lon"), data)})
            chunks = {"time": 1000, "lat": 25, "lon": 53}
            self.save(store, ds.chunk(chunks), compute=False, mode="w")
            region = {"time": slice(1000, 2000, 1)}
            chunk = ds.isel(region)
            chunk = chunk.chunk()
            self.save(store, chunk.chunk(), region=region)


@requires_h5netcdf
@requires_fsspec
def test_h5netcdf_storage_options() -> None:
    with create_tmp_files(2, allow_cleanup_failure=ON_WINDOWS) as (f1, f2):
        ds1 = create_test_data()
        ds1.to_netcdf(f1, engine="h5netcdf")

        ds2 = create_test_data()
        ds2.to_netcdf(f2, engine="h5netcdf")

        files = [f"file://{f}" for f in [f1, f2]]
        with xr.open_mfdataset(
            files,
            engine="h5netcdf",
            concat_dim="time",
            data_vars="all",
            combine="nested",
            storage_options={"skip_instance_cache": False},
        ) as ds:
            assert_identical(xr.concat([ds1, ds2], dim="time", data_vars="all"), ds)