File: test_backends_datatree.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (960 lines) | stat: -rw-r--r-- 39,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
from __future__ import annotations

import contextlib
import re
from collections.abc import Callable, Generator, Hashable
from pathlib import Path
from typing import TYPE_CHECKING, Literal, cast

import numpy as np
import pytest

import xarray as xr
from xarray.backends.api import open_datatree, open_groups
from xarray.core.datatree import DataTree
from xarray.testing import assert_equal, assert_identical
from xarray.tests import (
    has_zarr_v3,
    network,
    parametrize_zarr_format,
    requires_dask,
    requires_h5netcdf,
    requires_netCDF4,
    requires_pydap,
    requires_zarr,
)

if TYPE_CHECKING:
    from xarray.core.datatree_io import T_DataTreeNetcdfEngine

with contextlib.suppress(ImportError):
    import netCDF4 as nc4


def diff_chunks(
    comparison: dict[tuple[str, Hashable], bool], tree1: DataTree, tree2: DataTree
) -> str:
    mismatching_variables = [loc for loc, equals in comparison.items() if not equals]

    variable_messages = [
        "\n".join(
            [
                f"L  {path}:{name}: {tree1[path].variables[name].chunksizes}",
                f"R  {path}:{name}: {tree2[path].variables[name].chunksizes}",
            ]
        )
        for path, name in mismatching_variables
    ]
    return "\n".join(["Differing chunk sizes:"] + variable_messages)


def assert_chunks_equal(
    actual: DataTree, expected: DataTree, enforce_dask: bool = False
) -> None:
    __tracebackhide__ = True

    from xarray.namedarray.pycompat import array_type

    dask_array_type = array_type("dask")

    comparison = {
        (path, name): (
            (
                not enforce_dask
                or isinstance(node1.variables[name].data, dask_array_type)
            )
            and node1.variables[name].chunksizes == node2.variables[name].chunksizes
        )
        for path, (node1, node2) in xr.group_subtrees(actual, expected)
        for name in node1.variables.keys()
    }

    assert all(comparison.values()), diff_chunks(comparison, actual, expected)


@pytest.fixture(scope="module")
def unaligned_datatree_nc(tmp_path_factory):
    """Creates a test netCDF4 file with the following unaligned structure, writes it to a /tmp directory
    and returns the file path of the netCDF4 file.

    Group: /
    │   Dimensions:        (lat: 1, lon: 2)
    │   Dimensions without coordinates: lat, lon
    │   Data variables:
    │       root_variable  (lat, lon) float64 16B ...
    └── Group: /Group1
        │   Dimensions:      (lat: 1, lon: 2)
        │   Dimensions without coordinates: lat, lon
        │   Data variables:
        │       group_1_var  (lat, lon) float64 16B ...
        └── Group: /Group1/subgroup1
                Dimensions:        (lat: 2, lon: 2)
                Dimensions without coordinates: lat, lon
                Data variables:
                    subgroup1_var  (lat, lon) float64 32B ...
    """
    filepath = tmp_path_factory.mktemp("data") / "unaligned_subgroups.nc"
    with nc4.Dataset(filepath, "w", format="NETCDF4") as root_group:
        group_1 = root_group.createGroup("/Group1")
        subgroup_1 = group_1.createGroup("/subgroup1")

        root_group.createDimension("lat", 1)
        root_group.createDimension("lon", 2)
        root_group.createVariable("root_variable", np.float64, ("lat", "lon"))

        group_1_var = group_1.createVariable("group_1_var", np.float64, ("lat", "lon"))
        group_1_var[:] = np.array([[0.1, 0.2]])
        group_1_var.units = "K"
        group_1_var.long_name = "air_temperature"

        subgroup_1.createDimension("lat", 2)

        subgroup1_var = subgroup_1.createVariable(
            "subgroup1_var", np.float64, ("lat", "lon")
        )
        subgroup1_var[:] = np.array([[0.1, 0.2]])

    yield filepath


@pytest.fixture(scope="module")
def unaligned_datatree_zarr_factory(
    tmp_path_factory,
) -> Generator[
    Callable[[Literal[2, 3]], Path],
    None,
    None,
]:
    """Creates a zarr store with the following unaligned group hierarchy:
    Group: /
    │   Dimensions:  (y: 3, x: 2)
    │   Dimensions without coordinates: y, x
    │   Data variables:
    │       a        (y) int64 24B ...
    │       set0     (x) int64 16B ...
    └── Group: /Group1
    │   │   Dimensions:  ()
    │   │   Data variables:
    │   │       a        int64 8B ...
    │   │       b        int64 8B ...
    │   └── /Group1/subgroup1
    │           Dimensions:  ()
    │           Data variables:
    │               a        int64 8B ...
    │               b        int64 8B ...
    └── Group: /Group2
            Dimensions:  (y: 2, x: 2)
            Dimensions without coordinates: y, x
            Data variables:
                a        (y) int64 16B ...
                b        (x) float64 16B ...
    """

    def _unaligned_datatree_zarr(zarr_format: Literal[2, 3]) -> Path:
        filepath = tmp_path_factory.mktemp("data") / "unaligned_simple_datatree.zarr"
        root_data = xr.Dataset({"a": ("y", [6, 7, 8]), "set0": ("x", [9, 10])})
        set1_data = xr.Dataset({"a": 0, "b": 1})
        set2_data = xr.Dataset({"a": ("y", [2, 3]), "b": ("x", [0.1, 0.2])})

        root_data.to_zarr(
            filepath,
            mode="w",
            zarr_format=zarr_format,
        )
        set1_data.to_zarr(
            filepath,
            group="/Group1",
            mode="a",
            zarr_format=zarr_format,
        )
        set2_data.to_zarr(
            filepath,
            group="/Group2",
            mode="a",
            zarr_format=zarr_format,
        )
        set1_data.to_zarr(
            filepath,
            group="/Group1/subgroup1",
            mode="a",
            zarr_format=zarr_format,
        )

        return filepath

    yield _unaligned_datatree_zarr


class DatatreeIOBase:
    engine: T_DataTreeNetcdfEngine | None = None

    def test_to_netcdf(self, tmpdir, simple_datatree):
        filepath = tmpdir / "test.nc"
        original_dt = simple_datatree
        original_dt.to_netcdf(filepath, engine=self.engine)

        with open_datatree(filepath, engine=self.engine) as roundtrip_dt:
            assert roundtrip_dt._close is not None
            assert_equal(original_dt, roundtrip_dt)

    def test_decode_cf(self, tmpdir):
        filepath = tmpdir / "test-cf-convention.nc"
        original_dt = xr.DataTree(
            xr.Dataset(
                {
                    "test": xr.DataArray(
                        data=np.array([0, 1, 2], dtype=np.uint16),
                        attrs={"_FillValue": 99},
                    ),
                }
            )
        )
        original_dt.to_netcdf(filepath, engine=self.engine)
        with open_datatree(
            filepath, engine=self.engine, decode_cf=False
        ) as roundtrip_dt:
            assert original_dt["test"].dtype == roundtrip_dt["test"].dtype

    def test_to_netcdf_inherited_coords(self, tmpdir):
        filepath = tmpdir / "test.nc"
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset({"a": (("x",), [1, 2])}, coords={"x": [3, 4]}),
                "/sub": xr.Dataset({"b": (("x",), [5, 6])}),
            }
        )
        original_dt.to_netcdf(filepath, engine=self.engine)

        with open_datatree(filepath, engine=self.engine) as roundtrip_dt:
            assert_equal(original_dt, roundtrip_dt)
            subtree = cast(DataTree, roundtrip_dt["/sub"])
            assert "x" not in subtree.to_dataset(inherit=False).coords

    def test_netcdf_encoding(self, tmpdir, simple_datatree):
        filepath = tmpdir / "test.nc"
        original_dt = simple_datatree

        # add compression
        comp = dict(zlib=True, complevel=9)
        enc = {"/set2": dict.fromkeys(original_dt["/set2"].dataset.data_vars, comp)}

        original_dt.to_netcdf(filepath, encoding=enc, engine=self.engine)
        with open_datatree(filepath, engine=self.engine) as roundtrip_dt:
            assert roundtrip_dt["/set2/a"].encoding["zlib"] == comp["zlib"]
            assert roundtrip_dt["/set2/a"].encoding["complevel"] == comp["complevel"]

            enc["/not/a/group"] = {"foo": "bar"}  # type: ignore[dict-item]
            with pytest.raises(ValueError, match="unexpected encoding group.*"):
                original_dt.to_netcdf(filepath, encoding=enc, engine=self.engine)

    def test_write_subgroup(self, tmpdir):
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset(coords={"x": [1, 2, 3]}),
                "/child": xr.Dataset({"foo": ("x", [4, 5, 6])}),
            }
        ).children["child"]

        expected_dt = original_dt.copy()
        expected_dt.name = None

        filepath = tmpdir / "test.zarr"
        original_dt.to_netcdf(filepath, engine=self.engine)

        with open_datatree(filepath, engine=self.engine) as roundtrip_dt:
            assert_equal(original_dt, roundtrip_dt)
            assert_identical(expected_dt, roundtrip_dt)

    @requires_netCDF4
    def test_no_redundant_dimensions(self, tmpdir):
        # regression test for https://github.com/pydata/xarray/issues/10241
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset(coords={"x": [1, 2, 3]}),
                "/child": xr.Dataset({"foo": ("x", [4, 5, 6])}),
            }
        )
        filepath = tmpdir / "test.zarr"
        original_dt.to_netcdf(filepath, engine=self.engine)

        root = nc4.Dataset(str(filepath))
        child = root.groups["child"]
        assert list(root.dimensions) == ["x"]
        assert list(child.dimensions) == []


@requires_netCDF4
class TestNetCDF4DatatreeIO(DatatreeIOBase):
    engine: T_DataTreeNetcdfEngine | None = "netcdf4"

    def test_open_datatree(self, unaligned_datatree_nc) -> None:
        """Test if `open_datatree` fails to open a netCDF4 with an unaligned group hierarchy."""

        with pytest.raises(
            ValueError,
            match=(
                re.escape(
                    "group '/Group1/subgroup1' is not aligned with its parents:\nGroup:\n"
                )
                + ".*"
            ),
        ):
            open_datatree(unaligned_datatree_nc)

    @requires_dask
    def test_open_datatree_chunks(self, tmpdir, simple_datatree) -> None:
        filepath = tmpdir / "test.nc"

        chunks = {"x": 2, "y": 1}

        root_data = xr.Dataset({"a": ("y", [6, 7, 8]), "set0": ("x", [9, 10])})
        set1_data = xr.Dataset({"a": ("y", [-1, 0, 1]), "b": ("x", [-10, 6])})
        set2_data = xr.Dataset({"a": ("y", [1, 2, 3]), "b": ("x", [0.1, 0.2])})
        original_tree = DataTree.from_dict(
            {
                "/": root_data.chunk(chunks),
                "/group1": set1_data.chunk(chunks),
                "/group2": set2_data.chunk(chunks),
            }
        )
        original_tree.to_netcdf(filepath, engine="netcdf4")

        with open_datatree(filepath, engine="netcdf4", chunks=chunks) as tree:
            xr.testing.assert_identical(tree, original_tree)

            assert_chunks_equal(tree, original_tree, enforce_dask=True)

    def test_open_groups(self, unaligned_datatree_nc) -> None:
        """Test `open_groups` with a netCDF4 file with an unaligned group hierarchy."""
        unaligned_dict_of_datasets = open_groups(unaligned_datatree_nc)

        # Check that group names are keys in the dictionary of `xr.Datasets`
        assert "/" in unaligned_dict_of_datasets.keys()
        assert "/Group1" in unaligned_dict_of_datasets.keys()
        assert "/Group1/subgroup1" in unaligned_dict_of_datasets.keys()
        # Check that group name returns the correct datasets
        with xr.open_dataset(unaligned_datatree_nc, group="/") as expected:
            assert_identical(unaligned_dict_of_datasets["/"], expected)
        with xr.open_dataset(unaligned_datatree_nc, group="Group1") as expected:
            assert_identical(unaligned_dict_of_datasets["/Group1"], expected)
        with xr.open_dataset(
            unaligned_datatree_nc, group="/Group1/subgroup1"
        ) as expected:
            assert_identical(unaligned_dict_of_datasets["/Group1/subgroup1"], expected)

        for ds in unaligned_dict_of_datasets.values():
            ds.close()

    @requires_dask
    def test_open_groups_chunks(self, tmpdir) -> None:
        """Test `open_groups` with chunks on a netcdf4 file."""

        chunks = {"x": 2, "y": 1}
        filepath = tmpdir / "test.nc"

        chunks = {"x": 2, "y": 1}

        root_data = xr.Dataset({"a": ("y", [6, 7, 8]), "set0": ("x", [9, 10])})
        set1_data = xr.Dataset({"a": ("y", [-1, 0, 1]), "b": ("x", [-10, 6])})
        set2_data = xr.Dataset({"a": ("y", [1, 2, 3]), "b": ("x", [0.1, 0.2])})
        original_tree = DataTree.from_dict(
            {
                "/": root_data.chunk(chunks),
                "/group1": set1_data.chunk(chunks),
                "/group2": set2_data.chunk(chunks),
            }
        )
        original_tree.to_netcdf(filepath, mode="w")

        dict_of_datasets = open_groups(filepath, engine="netcdf4", chunks=chunks)

        for path, ds in dict_of_datasets.items():
            assert {k: max(vs) for k, vs in ds.chunksizes.items()} == chunks, (
                f"unexpected chunking for {path}"
            )

        for ds in dict_of_datasets.values():
            ds.close()

    def test_open_groups_to_dict(self, tmpdir) -> None:
        """Create an aligned netCDF4 with the following structure to test `open_groups`
        and `DataTree.from_dict`.
        Group: /
        │   Dimensions:        (lat: 1, lon: 2)
        │   Dimensions without coordinates: lat, lon
        │   Data variables:
        │       root_variable  (lat, lon) float64 16B ...
        └── Group: /Group1
            │   Dimensions:      (lat: 1, lon: 2)
            │   Dimensions without coordinates: lat, lon
            │   Data variables:
            │       group_1_var  (lat, lon) float64 16B ...
            └── Group: /Group1/subgroup1
                    Dimensions:        (lat: 1, lon: 2)
                    Dimensions without coordinates: lat, lon
                    Data variables:
                        subgroup1_var  (lat, lon) float64 16B ...
        """
        filepath = tmpdir + "/all_aligned_child_nodes.nc"
        with nc4.Dataset(filepath, "w", format="NETCDF4") as root_group:
            group_1 = root_group.createGroup("/Group1")
            subgroup_1 = group_1.createGroup("/subgroup1")

            root_group.createDimension("lat", 1)
            root_group.createDimension("lon", 2)
            root_group.createVariable("root_variable", np.float64, ("lat", "lon"))

            group_1_var = group_1.createVariable(
                "group_1_var", np.float64, ("lat", "lon")
            )
            group_1_var[:] = np.array([[0.1, 0.2]])
            group_1_var.units = "K"
            group_1_var.long_name = "air_temperature"

            subgroup1_var = subgroup_1.createVariable(
                "subgroup1_var", np.float64, ("lat", "lon")
            )
            subgroup1_var[:] = np.array([[0.1, 0.2]])

        aligned_dict_of_datasets = open_groups(filepath)
        aligned_dt = DataTree.from_dict(aligned_dict_of_datasets)
        with open_datatree(filepath) as opened_tree:
            assert opened_tree.identical(aligned_dt)
        for ds in aligned_dict_of_datasets.values():
            ds.close()

    def test_open_datatree_specific_group(self, tmpdir, simple_datatree) -> None:
        """Test opening a specific group within a NetCDF file using `open_datatree`."""
        filepath = tmpdir / "test.nc"
        group = "/set1"
        original_dt = simple_datatree
        original_dt.to_netcdf(filepath)
        expected_subtree = original_dt[group].copy()
        expected_subtree.orphan()
        with open_datatree(filepath, group=group, engine=self.engine) as subgroup_tree:
            assert subgroup_tree.root.parent is None
            assert_equal(subgroup_tree, expected_subtree)


@network
@requires_pydap
class TestPyDAPDatatreeIO:
    """Test PyDAP backend for DataTree."""

    engine: T_DataTreeNetcdfEngine | None = "pydap"
    # you can check these by adding a .dmr to urls, and replacing dap4 with http
    unaligned_datatree_url = (
        "dap4://test.opendap.org/opendap/dap4/unaligned_simple_datatree.nc.h5"
    )
    all_aligned_child_nodes_url = (
        "dap4://test.opendap.org/opendap/dap4/all_aligned_child_nodes.nc.h5"
    )
    simplegroup_datatree_url = "dap4://test.opendap.org/opendap/dap4/SimpleGroup.nc4.h5"

    def test_open_datatree(self, url=unaligned_datatree_url) -> None:
        """Test if `open_datatree` fails to open a netCDF4 with an unaligned group hierarchy."""

        with pytest.raises(
            ValueError,
            match=(
                re.escape(
                    "group '/Group1/subgroup1' is not aligned with its parents:\nGroup:\n"
                )
                + ".*"
            ),
        ):
            open_datatree(url, engine=self.engine)

    def test_open_groups(self, url=unaligned_datatree_url) -> None:
        """Test `open_groups` with a netCDF4/HDF5 file with an unaligned group hierarchy."""
        unaligned_dict_of_datasets = open_groups(url, engine=self.engine)

        # Check that group names are keys in the dictionary of `xr.Datasets`
        assert "/" in unaligned_dict_of_datasets.keys()
        assert "/Group1" in unaligned_dict_of_datasets.keys()
        assert "/Group1/subgroup1" in unaligned_dict_of_datasets.keys()
        # Check that group name returns the correct datasets
        with xr.open_dataset(url, engine=self.engine, group="/") as expected:
            assert_identical(unaligned_dict_of_datasets["/"], expected)
        with xr.open_dataset(url, group="Group1", engine=self.engine) as expected:
            assert_identical(unaligned_dict_of_datasets["/Group1"], expected)
        with xr.open_dataset(
            url,
            group="/Group1/subgroup1",
            engine=self.engine,
        ) as expected:
            assert_identical(unaligned_dict_of_datasets["/Group1/subgroup1"], expected)

    def test_inherited_coords(self, url=simplegroup_datatree_url) -> None:
        """Test that `open_datatree` inherits coordinates from root tree.

        This particular h5 file is a test file that inherits the time coordinate from the root
        dataset to the child dataset.

        Group: /
        │   Dimensions:        (time: 1, Z: 1000, nv: 2)
        │   Coordinates:
        |       time: (time)    float32 0.5
        |       Z:    (Z)       float32 -0.0 -1.0 -2.0 ...
        │   Data variables:
        │       Pressure  (Z)   float32 ...
        |       time_bnds (time, nv) float32 ...
        └── Group: /SimpleGroup
            │   Dimensions:      (time: 1, Z: 1000, nv: 2, Y: 40, X: 40)
            │   Coordinates:
            |      Y:   (Y)     int16 1 2 3 4 ...
            |      X:   (X)     int16 1 2 3 4 ...
            |   Inherited coordinates:
            |      time: (time)    float32 0.5
            |      Z:    (Z)       float32 -0.0 -1.0 -2.0 ...
            │   Data variables:
            │       Temperature  (time, Z, Y, X) float32 ...
            |       Salinity     (time, Z, Y, X) float32 ...
        """
        tree = open_datatree(url, engine=self.engine)
        assert set(tree.dims) == {"time", "Z", "nv"}
        assert tree["/SimpleGroup"].coords["time"].dims == ("time",)
        assert tree["/SimpleGroup"].coords["Z"].dims == ("Z",)
        assert tree["/SimpleGroup"].coords["Y"].dims == ("Y",)
        assert tree["/SimpleGroup"].coords["X"].dims == ("X",)
        with xr.open_dataset(url, engine=self.engine, group="/SimpleGroup") as expected:
            assert set(tree["/SimpleGroup"].dims) == set(
                list(expected.dims) + ["Z", "nv"]
            )

    def test_open_groups_to_dict(self, url=all_aligned_child_nodes_url) -> None:
        aligned_dict_of_datasets = open_groups(url, engine=self.engine)
        aligned_dt = DataTree.from_dict(aligned_dict_of_datasets)
        with open_datatree(url, engine=self.engine) as opened_tree:
            assert opened_tree.identical(aligned_dt)


@requires_h5netcdf
class TestH5NetCDFDatatreeIO(DatatreeIOBase):
    engine: T_DataTreeNetcdfEngine | None = "h5netcdf"

    def test_phony_dims_warning(self, tmpdir) -> None:
        filepath = tmpdir + "/phony_dims.nc"
        import h5py

        foo_data = np.arange(125).reshape(5, 5, 5)
        bar_data = np.arange(625).reshape(25, 5, 5)
        var = {"foo1": foo_data, "foo2": bar_data, "foo3": foo_data, "foo4": bar_data}
        with h5py.File(filepath, "w") as f:
            grps = ["bar", "baz"]
            for grp in grps:
                fx = f.create_group(grp)
                for k, v in var.items():
                    fx.create_dataset(k, data=v)

        with pytest.warns(UserWarning, match="The 'phony_dims' kwarg"):
            with open_datatree(filepath, engine=self.engine) as tree:
                assert tree.bar.dims == {
                    "phony_dim_0": 5,
                    "phony_dim_1": 5,
                    "phony_dim_2": 5,
                    "phony_dim_3": 25,
                }

    def test_roundtrip_via_bytes(self, simple_datatree):
        original_dt = simple_datatree
        roundtrip_dt = open_datatree(original_dt.to_netcdf())
        assert_equal(original_dt, roundtrip_dt)

    def test_roundtrip_via_bytes_engine_specified(self, simple_datatree):
        original_dt = simple_datatree
        roundtrip_dt = open_datatree(original_dt.to_netcdf(engine=self.engine))
        assert_equal(original_dt, roundtrip_dt)

    def test_roundtrip_using_filelike_object(self, tmpdir, simple_datatree):
        original_dt = simple_datatree
        filepath = tmpdir + "/test.nc"
        # h5py requires both read and write access when writing, it will
        # work with file-like objects provided they support both, and are
        # seekable.
        with open(filepath, "wb+") as file:
            original_dt.to_netcdf(file, engine=self.engine)
        with open(filepath, "rb") as file:
            with open_datatree(file, engine=self.engine) as roundtrip_dt:
                assert_equal(original_dt, roundtrip_dt)


@requires_zarr
@parametrize_zarr_format
class TestZarrDatatreeIO:
    engine = "zarr"

    def test_to_zarr(self, tmpdir, simple_datatree, zarr_format):
        filepath = str(tmpdir / "test.zarr")
        original_dt = simple_datatree
        original_dt.to_zarr(filepath, zarr_format=zarr_format)

        with open_datatree(filepath, engine="zarr") as roundtrip_dt:
            assert_equal(original_dt, roundtrip_dt)

    def test_zarr_encoding(self, tmpdir, simple_datatree, zarr_format):
        filepath = str(tmpdir / "test.zarr")
        original_dt = simple_datatree

        if zarr_format == 2:
            from numcodecs.blosc import Blosc

            codec = Blosc(cname="zstd", clevel=3, shuffle=2)
            comp = {"compressors": (codec,)} if has_zarr_v3 else {"compressor": codec}
        elif zarr_format == 3:
            # specifying codecs in zarr_format=3 requires importing from zarr 3 namespace
            import numcodecs.zarr3

            comp = {"compressors": (numcodecs.zarr3.Blosc(cname="zstd", clevel=3),)}

        enc = {"/set2": dict.fromkeys(original_dt["/set2"].dataset.data_vars, comp)}
        original_dt.to_zarr(filepath, encoding=enc, zarr_format=zarr_format)

        with open_datatree(filepath, engine="zarr") as roundtrip_dt:
            compressor_key = "compressors" if has_zarr_v3 else "compressor"
            assert (
                roundtrip_dt["/set2/a"].encoding[compressor_key] == comp[compressor_key]
            )

            enc["/not/a/group"] = {"foo": "bar"}  # type: ignore[dict-item]
            with pytest.raises(ValueError, match="unexpected encoding group.*"):
                original_dt.to_zarr(
                    filepath, encoding=enc, engine="zarr", zarr_format=zarr_format
                )

    @pytest.mark.xfail(reason="upstream zarr read-only changes have broken this test")
    def test_to_zarr_zip_store(self, tmpdir, simple_datatree, zarr_format):
        from zarr.storage import ZipStore

        filepath = str(tmpdir / "test.zarr.zip")
        original_dt = simple_datatree
        store = ZipStore(filepath, mode="w")
        original_dt.to_zarr(store, zarr_format=zarr_format)

        with open_datatree(store, engine="zarr") as roundtrip_dt:  # type: ignore[arg-type, unused-ignore]
            assert_equal(original_dt, roundtrip_dt)

    def test_to_zarr_not_consolidated(self, tmpdir, simple_datatree, zarr_format):
        filepath = tmpdir / "test.zarr"
        zmetadata = filepath / ".zmetadata"
        s1zmetadata = filepath / "set1" / ".zmetadata"
        filepath = str(filepath)  # casting to str avoids a pathlib bug in xarray
        original_dt = simple_datatree
        original_dt.to_zarr(filepath, consolidated=False, zarr_format=zarr_format)
        assert not zmetadata.exists()
        assert not s1zmetadata.exists()

        with pytest.warns(RuntimeWarning, match="consolidated"):
            with open_datatree(filepath, engine="zarr") as roundtrip_dt:
                assert_equal(original_dt, roundtrip_dt)

    def test_to_zarr_default_write_mode(self, tmpdir, simple_datatree, zarr_format):
        simple_datatree.to_zarr(str(tmpdir), zarr_format=zarr_format)

        import zarr

        # expected exception type changed in zarr-python v2->v3, see https://github.com/zarr-developers/zarr-python/issues/2821
        expected_exception_type = (
            FileExistsError if has_zarr_v3 else zarr.errors.ContainsGroupError
        )

        # with default settings, to_zarr should not overwrite an existing dir
        with pytest.raises(expected_exception_type):
            simple_datatree.to_zarr(str(tmpdir))

    @requires_dask
    def test_to_zarr_compute_false(
        self, tmp_path: Path, simple_datatree: DataTree, zarr_format: Literal[2, 3]
    ):
        import dask.array as da

        storepath = tmp_path / "test.zarr"
        original_dt = simple_datatree.chunk()
        original_dt.to_zarr(str(storepath), compute=False, zarr_format=zarr_format)

        def assert_expected_zarr_files_exist(
            arr_dir: Path,
            chunks_expected: bool,
            is_scalar: bool,
            zarr_format: Literal[2, 3],
        ) -> None:
            """For one zarr array, check that all expected metadata and chunk data files exist."""
            # TODO: This function is now so complicated that it's practically checking compliance with the whole zarr spec...
            # TODO: Perhaps it would be better to instead trust that zarr-python is spec-compliant and check `DataTree` against zarr-python?
            # TODO: The way to do that would ideally be to use zarr-pythons ability to determine how many chunks have been initialized.

            if zarr_format == 2:
                zarray_file, zattrs_file = (arr_dir / ".zarray"), (arr_dir / ".zattrs")

                assert zarray_file.exists() and zarray_file.is_file()
                assert zattrs_file.exists() and zattrs_file.is_file()

                chunk_file = arr_dir / "0"
                if chunks_expected:
                    # assumes empty chunks were written
                    # (i.e. they did not contain only fill_value and write_empty_chunks was False)
                    assert chunk_file.exists() and chunk_file.is_file()
                else:
                    # either dask array or array of all fill_values
                    assert not chunk_file.exists()
            elif zarr_format == 3:
                metadata_file = arr_dir / "zarr.json"
                assert metadata_file.exists() and metadata_file.is_file()

                chunks_dir = arr_dir / "c"
                chunk_file = chunks_dir / "0"
                if chunks_expected:
                    # assumes empty chunks were written
                    # (i.e. they did not contain only fill_value and write_empty_chunks was False)
                    if is_scalar:
                        # this is the expected behaviour for storing scalars in zarr 3, see https://github.com/pydata/xarray/issues/10147
                        assert chunks_dir.exists() and chunks_dir.is_file()
                    else:
                        assert chunks_dir.exists() and chunks_dir.is_dir()
                        assert chunk_file.exists() and chunk_file.is_file()
                else:
                    assert not chunks_dir.exists()
                    assert not chunk_file.exists()

        DEFAULT_ZARR_FILL_VALUE = 0
        # The default value of write_empty_chunks changed from True->False in zarr-python v2->v3
        WRITE_EMPTY_CHUNKS_DEFAULT = not has_zarr_v3

        for node in original_dt.subtree:
            # inherited variables aren't meant to be written to zarr
            local_node_variables = node.to_dataset(inherit=False).variables
            for name, var in local_node_variables.items():
                var_dir = storepath / node.path.removeprefix("/") / name

                assert_expected_zarr_files_exist(
                    arr_dir=var_dir,
                    # don't expect dask.Arrays to be written to disk, as compute=False
                    # also don't expect numpy arrays containing only zarr's fill_value to be written to disk
                    chunks_expected=(
                        not isinstance(var.data, da.Array)
                        and (
                            var.data != DEFAULT_ZARR_FILL_VALUE
                            or WRITE_EMPTY_CHUNKS_DEFAULT
                        )
                    ),
                    is_scalar=not bool(var.dims),
                    zarr_format=zarr_format,
                )

    def test_to_zarr_inherited_coords(self, tmpdir, zarr_format):
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset({"a": (("x",), [1, 2])}, coords={"x": [3, 4]}),
                "/sub": xr.Dataset({"b": (("x",), [5, 6])}),
            }
        )
        filepath = str(tmpdir / "test.zarr")
        original_dt.to_zarr(filepath, zarr_format=zarr_format)

        with open_datatree(filepath, engine="zarr") as roundtrip_dt:
            assert_equal(original_dt, roundtrip_dt)
            subtree = cast(DataTree, roundtrip_dt["/sub"])
            assert "x" not in subtree.to_dataset(inherit=False).coords

    def test_open_groups_round_trip(self, tmpdir, simple_datatree, zarr_format) -> None:
        """Test `open_groups` opens a zarr store with the `simple_datatree` structure."""
        filepath = str(tmpdir / "test.zarr")
        original_dt = simple_datatree
        original_dt.to_zarr(filepath, zarr_format=zarr_format)

        roundtrip_dict = open_groups(filepath, engine="zarr")
        roundtrip_dt = DataTree.from_dict(roundtrip_dict)

        with open_datatree(filepath, engine="zarr") as opened_tree:
            assert opened_tree.identical(roundtrip_dt)

        for ds in roundtrip_dict.values():
            ds.close()

    @pytest.mark.filterwarnings(
        "ignore:Failed to open Zarr store with consolidated metadata:RuntimeWarning"
    )
    def test_open_datatree(self, unaligned_datatree_zarr_factory, zarr_format) -> None:
        """Test if `open_datatree` fails to open a zarr store with an unaligned group hierarchy."""
        storepath = unaligned_datatree_zarr_factory(zarr_format=zarr_format)

        with pytest.raises(
            ValueError,
            match=(
                re.escape("group '/Group2' is not aligned with its parents:") + ".*"
            ),
        ):
            open_datatree(storepath, engine="zarr")

    @requires_dask
    def test_open_datatree_chunks(self, tmpdir, zarr_format) -> None:
        filepath = str(tmpdir / "test.zarr")

        chunks = {"x": 2, "y": 1}

        root_data = xr.Dataset({"a": ("y", [6, 7, 8]), "set0": ("x", [9, 10])})
        set1_data = xr.Dataset({"a": ("y", [-1, 0, 1]), "b": ("x", [-10, 6])})
        set2_data = xr.Dataset({"a": ("y", [1, 2, 3]), "b": ("x", [0.1, 0.2])})
        original_tree = DataTree.from_dict(
            {
                "/": root_data.chunk(chunks),
                "/group1": set1_data.chunk(chunks),
                "/group2": set2_data.chunk(chunks),
            }
        )
        original_tree.to_zarr(filepath, zarr_format=zarr_format)

        with open_datatree(filepath, engine="zarr", chunks=chunks) as tree:
            xr.testing.assert_identical(tree, original_tree)
            assert_chunks_equal(tree, original_tree, enforce_dask=True)
            # https://github.com/pydata/xarray/issues/10098
            # If the open tasks are not give unique tokens per node, and the
            # dask graph is computed in one go, data won't be uniquely loaded
            # from each node.
            xr.testing.assert_identical(tree.compute(), original_tree)

    @pytest.mark.filterwarnings(
        "ignore:Failed to open Zarr store with consolidated metadata:RuntimeWarning"
    )
    def test_open_groups(self, unaligned_datatree_zarr_factory, zarr_format) -> None:
        """Test `open_groups` with a zarr store of an unaligned group hierarchy."""

        storepath = unaligned_datatree_zarr_factory(zarr_format=zarr_format)
        unaligned_dict_of_datasets = open_groups(storepath, engine="zarr")

        assert "/" in unaligned_dict_of_datasets.keys()
        assert "/Group1" in unaligned_dict_of_datasets.keys()
        assert "/Group1/subgroup1" in unaligned_dict_of_datasets.keys()
        assert "/Group2" in unaligned_dict_of_datasets.keys()
        # Check that group name returns the correct datasets
        with xr.open_dataset(storepath, group="/", engine="zarr") as expected:
            assert_identical(unaligned_dict_of_datasets["/"], expected)
        with xr.open_dataset(storepath, group="Group1", engine="zarr") as expected:
            assert_identical(unaligned_dict_of_datasets["/Group1"], expected)
        with xr.open_dataset(
            storepath, group="/Group1/subgroup1", engine="zarr"
        ) as expected:
            assert_identical(unaligned_dict_of_datasets["/Group1/subgroup1"], expected)
        with xr.open_dataset(storepath, group="/Group2", engine="zarr") as expected:
            assert_identical(unaligned_dict_of_datasets["/Group2"], expected)

        for ds in unaligned_dict_of_datasets.values():
            ds.close()

    @pytest.mark.filterwarnings(
        "ignore:Failed to open Zarr store with consolidated metadata:RuntimeWarning"
    )
    @pytest.mark.parametrize("write_consolidated_metadata", [True, False, None])
    def test_open_datatree_specific_group(
        self,
        tmpdir,
        simple_datatree,
        write_consolidated_metadata,
        zarr_format,
    ) -> None:
        """Test opening a specific group within a Zarr store using `open_datatree`."""
        filepath = str(tmpdir / "test.zarr")
        group = "/set2"
        original_dt = simple_datatree
        original_dt.to_zarr(
            filepath, consolidated=write_consolidated_metadata, zarr_format=zarr_format
        )
        expected_subtree = original_dt[group].copy()
        expected_subtree.orphan()
        with open_datatree(filepath, group=group, engine=self.engine) as subgroup_tree:
            assert subgroup_tree.root.parent is None
            assert_equal(subgroup_tree, expected_subtree)

    @requires_dask
    def test_open_groups_chunks(self, tmpdir, zarr_format) -> None:
        """Test `open_groups` with chunks on a zarr store."""

        chunks = {"x": 2, "y": 1}
        filepath = str(tmpdir / "test.zarr")
        root_data = xr.Dataset({"a": ("y", [6, 7, 8]), "set0": ("x", [9, 10])})
        set1_data = xr.Dataset({"a": ("y", [-1, 0, 1]), "b": ("x", [-10, 6])})
        set2_data = xr.Dataset({"a": ("y", [1, 2, 3]), "b": ("x", [0.1, 0.2])})
        original_tree = DataTree.from_dict(
            {
                "/": root_data.chunk(chunks),
                "/group1": set1_data.chunk(chunks),
                "/group2": set2_data.chunk(chunks),
            }
        )
        original_tree.to_zarr(filepath, mode="w", zarr_format=zarr_format)

        dict_of_datasets = open_groups(filepath, engine="zarr", chunks=chunks)

        for path, ds in dict_of_datasets.items():
            assert {k: max(vs) for k, vs in ds.chunksizes.items()} == chunks, (
                f"unexpected chunking for {path}"
            )

        for ds in dict_of_datasets.values():
            ds.close()

    def test_write_subgroup(self, tmpdir, zarr_format):
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset(coords={"x": [1, 2, 3]}),
                "/child": xr.Dataset({"foo": ("x", [4, 5, 6])}),
            }
        ).children["child"]

        expected_dt = original_dt.copy()
        expected_dt.name = None

        filepath = str(tmpdir / "test.zarr")
        original_dt.to_zarr(filepath, zarr_format=zarr_format)

        with open_datatree(filepath, engine="zarr") as roundtrip_dt:
            assert_equal(original_dt, roundtrip_dt)
            assert_identical(expected_dt, roundtrip_dt)

    @pytest.mark.filterwarnings(
        "ignore:Failed to open Zarr store with consolidated metadata:RuntimeWarning"
    )
    def test_write_inherited_coords_false(self, tmpdir, zarr_format):
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset(coords={"x": [1, 2, 3]}),
                "/child": xr.Dataset({"foo": ("x", [4, 5, 6])}),
            }
        )

        filepath = str(tmpdir / "test.zarr")
        original_dt.to_zarr(
            filepath, write_inherited_coords=False, zarr_format=zarr_format
        )

        with open_datatree(filepath, engine="zarr") as roundtrip_dt:
            assert_identical(original_dt, roundtrip_dt)

        expected_child = original_dt.children["child"].copy(inherit=False)
        expected_child.name = None
        with open_datatree(filepath, group="child", engine="zarr") as roundtrip_child:
            assert_identical(expected_child, roundtrip_child)

    @pytest.mark.filterwarnings(
        "ignore:Failed to open Zarr store with consolidated metadata:RuntimeWarning"
    )
    def test_write_inherited_coords_true(self, tmpdir, zarr_format):
        original_dt = DataTree.from_dict(
            {
                "/": xr.Dataset(coords={"x": [1, 2, 3]}),
                "/child": xr.Dataset({"foo": ("x", [4, 5, 6])}),
            }
        )

        filepath = str(tmpdir / "test.zarr")
        original_dt.to_zarr(
            filepath, write_inherited_coords=True, zarr_format=zarr_format
        )

        with open_datatree(filepath, engine="zarr") as roundtrip_dt:
            assert_identical(original_dt, roundtrip_dt)

        expected_child = original_dt.children["child"].copy(inherit=True)
        expected_child.name = None
        with open_datatree(filepath, group="child", engine="zarr") as roundtrip_child:
            assert_identical(expected_child, roundtrip_child)