File: test_calendar_ops.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (341 lines) | stat: -rw-r--r-- 10,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from __future__ import annotations

import numpy as np
import pandas as pd
import pytest

from xarray import CFTimeIndex, DataArray, Dataset, infer_freq
from xarray.coding.calendar_ops import convert_calendar, interp_calendar
from xarray.coding.cftime_offsets import date_range
from xarray.testing import assert_identical
from xarray.tests import requires_cftime

cftime = pytest.importorskip("cftime")


@pytest.mark.parametrize(
    "source, target, use_cftime, freq",
    [
        ("standard", "noleap", None, "D"),
        ("noleap", "proleptic_gregorian", True, "D"),
        ("noleap", "all_leap", None, "D"),
        ("all_leap", "proleptic_gregorian", False, "4h"),
    ],
)
def test_convert_calendar(source, target, use_cftime, freq):
    src = DataArray(
        date_range("2004-01-01", "2004-12-31", freq=freq, calendar=source),
        dims=("time",),
        name="time",
    )
    da_src = DataArray(
        np.linspace(0, 1, src.size), dims=("time",), coords={"time": src}
    )

    conv = convert_calendar(da_src, target, use_cftime=use_cftime)

    assert conv.time.dt.calendar == target

    if source != "noleap":
        expected_times = date_range(
            "2004-01-01",
            "2004-12-31",
            freq=freq,
            use_cftime=use_cftime,
            calendar=target,
        )
    else:
        expected_times_pre_leap = date_range(
            "2004-01-01",
            "2004-02-28",
            freq=freq,
            use_cftime=use_cftime,
            calendar=target,
        )
        expected_times_post_leap = date_range(
            "2004-03-01",
            "2004-12-31",
            freq=freq,
            use_cftime=use_cftime,
            calendar=target,
        )
        expected_times = expected_times_pre_leap.append(expected_times_post_leap)
    np.testing.assert_array_equal(conv.time, expected_times)


def test_convert_calendar_dataset():
    # Check that variables without a time dimension are not modified
    src = DataArray(
        date_range("2004-01-01", "2004-12-31", freq="D", calendar="standard"),
        dims=("time",),
        name="time",
    )
    da_src = DataArray(
        np.linspace(0, 1, src.size), dims=("time",), coords={"time": src}
    ).expand_dims(lat=[0, 1])
    ds_src = Dataset({"hastime": da_src, "notime": (("lat",), [0, 1])})

    conv = convert_calendar(ds_src, "360_day", align_on="date")

    assert conv.time.dt.calendar == "360_day"
    assert_identical(ds_src.notime, conv.notime)


@pytest.mark.parametrize(
    "source,target,freq",
    [
        ("standard", "360_day", "D"),
        ("360_day", "proleptic_gregorian", "D"),
        ("proleptic_gregorian", "360_day", "4h"),
    ],
)
@pytest.mark.parametrize("align_on", ["date", "year"])
def test_convert_calendar_360_days(source, target, freq, align_on):
    src = DataArray(
        date_range("2004-01-01", "2004-12-30", freq=freq, calendar=source),
        dims=("time",),
        name="time",
    )
    da_src = DataArray(
        np.linspace(0, 1, src.size), dims=("time",), coords={"time": src}
    )

    conv = convert_calendar(da_src, target, align_on=align_on)

    assert conv.time.dt.calendar == target

    if align_on == "date":
        np.testing.assert_array_equal(
            conv.time.resample(time="ME").last().dt.day,
            [30, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
        )
    elif target == "360_day":
        np.testing.assert_array_equal(
            conv.time.resample(time="ME").last().dt.day,
            [30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29],
        )
    else:
        np.testing.assert_array_equal(
            conv.time.resample(time="ME").last().dt.day,
            [30, 29, 30, 30, 31, 30, 30, 31, 30, 31, 29, 31],
        )
    if source == "360_day" and align_on == "year":
        assert conv.size == 360 if freq == "D" else 360 * 4
    else:
        assert conv.size == 359 if freq == "D" else 359 * 4


def test_convert_calendar_360_days_random():
    da_std = DataArray(
        np.linspace(0, 1, 366),
        dims=("time",),
        coords={
            "time": date_range(
                "2004-01-01",
                "2004-12-31",
                freq="D",
                calendar="standard",
                use_cftime=False,
            )
        },
    )
    da_360 = DataArray(
        np.linspace(0, 1, 360),
        dims=("time",),
        coords={
            "time": date_range("2004-01-01", "2004-12-30", freq="D", calendar="360_day")
        },
    )

    conv = convert_calendar(da_std, "360_day", align_on="random")
    conv2 = convert_calendar(da_std, "360_day", align_on="random")
    assert (conv != conv2).any()

    conv = convert_calendar(da_360, "standard", use_cftime=False, align_on="random")
    assert np.datetime64("2004-02-29") not in conv.time
    conv2 = convert_calendar(da_360, "standard", use_cftime=False, align_on="random")
    assert (conv2 != conv).any()

    # Ensure that added days are evenly distributed in the 5 fifths of each year
    conv = convert_calendar(da_360, "noleap", align_on="random", missing=np.nan)
    conv = conv.where(conv.isnull(), drop=True)
    nandoys = conv.time.dt.dayofyear[:366]
    assert all(nandoys < np.array([74, 147, 220, 293, 366]))
    assert all(nandoys > np.array([0, 73, 146, 219, 292]))


@requires_cftime
@pytest.mark.parametrize(
    "source,target,freq",
    [
        ("standard", "noleap", "D"),
        ("noleap", "proleptic_gregorian", "4h"),
        ("noleap", "all_leap", "ME"),
        ("360_day", "noleap", "D"),
        ("noleap", "360_day", "D"),
    ],
)
def test_convert_calendar_missing(source, target, freq):
    src = DataArray(
        date_range(
            "2004-01-01",
            "2004-12-31" if source != "360_day" else "2004-12-30",
            freq=freq,
            calendar=source,
        ),
        dims=("time",),
        name="time",
    )
    da_src = DataArray(
        np.linspace(0, 1, src.size), dims=("time",), coords={"time": src}
    )
    out = convert_calendar(da_src, target, missing=np.nan, align_on="date")

    expected_freq = freq
    assert infer_freq(out.time) == expected_freq

    expected = date_range(
        "2004-01-01",
        "2004-12-31" if target != "360_day" else "2004-12-30",
        freq=freq,
        calendar=target,
    )
    np.testing.assert_array_equal(out.time, expected)

    if freq != "ME":
        out_without_missing = convert_calendar(da_src, target, align_on="date")
        expected_nan = out.isel(time=~out.time.isin(out_without_missing.time))
        assert expected_nan.isnull().all()

        expected_not_nan = out.sel(time=out_without_missing.time)
        assert_identical(expected_not_nan, out_without_missing)


@requires_cftime
def test_convert_calendar_errors():
    src_nl = DataArray(
        date_range("0000-01-01", "0000-12-31", freq="D", calendar="noleap"),
        dims=("time",),
        name="time",
    )
    # no align_on for conversion to 360_day
    with pytest.raises(ValueError, match="Argument `align_on` must be specified"):
        convert_calendar(src_nl, "360_day")

    # Standard doesn't support year 0
    with pytest.raises(
        ValueError, match="Source time coordinate contains dates with year 0"
    ):
        convert_calendar(src_nl, "standard")

    # no align_on for conversion from 360 day
    src_360 = convert_calendar(src_nl, "360_day", align_on="year")
    with pytest.raises(ValueError, match="Argument `align_on` must be specified"):
        convert_calendar(src_360, "noleap")

    # Datetime objects
    da = DataArray([0, 1, 2], dims=("x",), name="x")
    with pytest.raises(ValueError, match="Coordinate x must contain datetime objects."):
        convert_calendar(da, "standard", dim="x")


def test_convert_calendar_dimension_name():
    src = DataArray(
        date_range("2004-01-01", "2004-01-31", freq="D", calendar="noleap"),
        dims=("date",),
        name="date",
    )

    out = convert_calendar(src, "proleptic_gregorian", dim="date")

    np.testing.assert_array_equal(src, out)


def test_convert_calendar_same_calendar():
    src = DataArray(
        date_range("2000-01-01", periods=12, freq="6h", use_cftime=False),
        dims=("time",),
        name="time",
    )
    out = convert_calendar(src, "proleptic_gregorian")
    assert src is out


@pytest.mark.parametrize(
    "source,target",
    [
        ("standard", "noleap"),
        ("noleap", "proleptic_gregorian"),
        ("standard", "360_day"),
        ("360_day", "proleptic_gregorian"),
        ("noleap", "all_leap"),
        ("360_day", "noleap"),
    ],
)
def test_interp_calendar(source, target):
    src = DataArray(
        date_range("2004-01-01", "2004-07-30", freq="D", calendar=source),
        dims=("time",),
        name="time",
    )
    tgt = DataArray(
        date_range("2004-01-01", "2004-07-30", freq="D", calendar=target),
        dims=("time",),
        name="time",
    )
    da_src = DataArray(
        np.linspace(0, 1, src.size), dims=("time",), coords={"time": src}
    )
    conv = interp_calendar(da_src, tgt)

    assert_identical(tgt.time, conv.time)

    np.testing.assert_almost_equal(conv.max(), 1, 2)
    assert conv.min() == 0


@requires_cftime
def test_interp_calendar_errors():
    src_nl = DataArray(
        [1] * 100,
        dims=("time",),
        coords={
            "time": date_range("0000-01-01", periods=100, freq="MS", calendar="noleap")
        },
    )
    tgt_360 = date_range("0001-01-01", "0001-12-30", freq="MS", calendar="standard")

    with pytest.raises(
        ValueError, match="Source time coordinate contains dates with year 0"
    ):
        interp_calendar(src_nl, tgt_360)

    da1 = DataArray([0, 1, 2], dims=("x",), name="x")
    da2 = da1 + 1

    with pytest.raises(
        ValueError, match="Both 'source.x' and 'target' must contain datetime objects."
    ):
        interp_calendar(da1, da2, dim="x")


@requires_cftime
@pytest.mark.parametrize(
    ("source_calendar", "target_calendar", "expected_index"),
    [("standard", "noleap", CFTimeIndex), ("all_leap", "standard", pd.DatetimeIndex)],
)
def test_convert_calendar_produces_time_index(
    source_calendar, target_calendar, expected_index
):
    # https://github.com/pydata/xarray/issues/9138
    time = date_range("2000-01-01", "2002-01-01", freq="D", calendar=source_calendar)
    temperature = np.ones(len(time))
    da = DataArray(
        data=temperature,
        dims=["time"],
        coords=dict(
            time=time,
        ),
    )
    converted = da.convert_calendar(target_calendar)
    assert isinstance(converted.indexes["time"], expected_index)