1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
from __future__ import annotations
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray import DataArray, Dataset, set_options
from xarray.core import duck_array_ops
from xarray.tests import (
assert_allclose,
assert_equal,
assert_identical,
has_dask,
raise_if_dask_computes,
requires_cftime,
)
def test_coarsen_absent_dims_error(ds: Dataset) -> None:
with pytest.raises(
ValueError,
match=r"Window dimensions \('foo',\) not found in Dataset dimensions",
):
ds.coarsen(foo=2)
@pytest.mark.parametrize("dask", [True, False])
@pytest.mark.parametrize(("boundary", "side"), [("trim", "left"), ("pad", "right")])
def test_coarsen_dataset(ds, dask, boundary, side):
if dask and has_dask:
ds = ds.chunk({"x": 4})
actual = ds.coarsen(time=2, x=3, boundary=boundary, side=side).max()
assert_equal(
actual["z1"], ds["z1"].coarsen(x=3, boundary=boundary, side=side).max()
)
# coordinate should be mean by default
assert_equal(
actual["time"], ds["time"].coarsen(time=2, boundary=boundary, side=side).mean()
)
@pytest.mark.parametrize("dask", [True, False])
def test_coarsen_coords(ds, dask):
if dask and has_dask:
ds = ds.chunk({"x": 4})
# check if coord_func works
actual = ds.coarsen(time=2, x=3, boundary="trim", coord_func={"time": "max"}).max()
assert_equal(actual["z1"], ds["z1"].coarsen(x=3, boundary="trim").max())
assert_equal(actual["time"], ds["time"].coarsen(time=2, boundary="trim").max())
# raise if exact
with pytest.raises(ValueError):
ds.coarsen(x=3).mean()
# should be no error
ds.isel(x=slice(0, 3 * (len(ds["x"]) // 3))).coarsen(x=3).mean()
# working test with pd.time
da = xr.DataArray(
np.linspace(0, 365, num=364),
dims="time",
coords={"time": pd.date_range("1999-12-15", periods=364)},
)
actual = da.coarsen(time=2).mean()
@requires_cftime
def test_coarsen_coords_cftime():
times = xr.date_range("2000", periods=6, use_cftime=True)
da = xr.DataArray(range(6), [("time", times)])
actual = da.coarsen(time=3).mean()
expected_times = xr.date_range("2000-01-02", freq="3D", periods=2, use_cftime=True)
np.testing.assert_array_equal(actual.time, expected_times)
@pytest.mark.parametrize(
"funcname, argument",
[
("reduce", (np.mean,)),
("mean", ()),
],
)
def test_coarsen_keep_attrs(funcname, argument) -> None:
global_attrs = {"units": "test", "long_name": "testing"}
da_attrs = {"da_attr": "test"}
attrs_coords = {"attrs_coords": "test"}
da_not_coarsend_attrs = {"da_not_coarsend_attr": "test"}
data = np.linspace(10, 15, 100)
coords = np.linspace(1, 10, 100)
ds = Dataset(
data_vars={
"da": ("coord", data, da_attrs),
"da_not_coarsend": ("no_coord", data, da_not_coarsend_attrs),
},
coords={"coord": ("coord", coords, attrs_coords)},
attrs=global_attrs,
)
# attrs are now kept per default
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
result = func(*argument)
assert result.attrs == global_attrs
assert result.da.attrs == da_attrs
assert result.da_not_coarsend.attrs == da_not_coarsend_attrs
assert result.coord.attrs == attrs_coords
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"
# discard attrs
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
assert result.da.attrs == {}
assert result.da_not_coarsend.attrs == {}
assert result.coord.attrs == {}
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"
# test discard attrs using global option
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument)
assert result.attrs == {}
assert result.da.attrs == {}
assert result.da_not_coarsend.attrs == {}
assert result.coord.attrs == {}
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"
# keyword takes precedence over global option
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument, keep_attrs=True)
assert result.attrs == global_attrs
assert result.da.attrs == da_attrs
assert result.da_not_coarsend.attrs == da_not_coarsend_attrs
assert result.coord.attrs == attrs_coords
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=True):
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
assert result.da.attrs == {}
assert result.da_not_coarsend.attrs == {}
assert result.coord.attrs == {}
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"
@pytest.mark.slow
@pytest.mark.parametrize("ds", (1, 2), indirect=True)
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "var", "min", "max", "median"))
def test_coarsen_reduce(ds: Dataset, window, name) -> None:
# Use boundary="trim" to accommodate all window sizes used in tests
coarsen_obj = ds.coarsen(time=window, boundary="trim")
# add nan prefix to numpy methods to get similar behavior as bottleneck
actual = coarsen_obj.reduce(getattr(np, f"nan{name}"))
expected = getattr(coarsen_obj, name)()
assert_allclose(actual, expected)
# make sure the order of data_var are not changed.
assert list(ds.data_vars.keys()) == list(actual.data_vars.keys())
# Make sure the dimension order is restored
for key, src_var in ds.data_vars.items():
assert src_var.dims == actual[key].dims
@pytest.mark.parametrize(
"funcname, argument",
[
("reduce", (np.mean,)),
("mean", ()),
],
)
def test_coarsen_da_keep_attrs(funcname, argument) -> None:
attrs_da = {"da_attr": "test"}
attrs_coords = {"attrs_coords": "test"}
data = np.linspace(10, 15, 100)
coords = np.linspace(1, 10, 100)
da = DataArray(
data,
dims=("coord"),
coords={"coord": ("coord", coords, attrs_coords)},
attrs=attrs_da,
name="name",
)
# attrs are now kept per default
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
result = func(*argument)
assert result.attrs == attrs_da
assert da.coord.attrs == attrs_coords
assert result.name == "name"
# discard attrs
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
# XXX: no assert?
_ = da.coord.attrs == {}
assert result.name == "name"
# test discard attrs using global option
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument)
assert result.attrs == {}
# XXX: no assert?
_ = da.coord.attrs == {}
assert result.name == "name"
# keyword takes precedence over global option
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument, keep_attrs=True)
assert result.attrs == attrs_da
# XXX: no assert?
_ = da.coord.attrs == {}
assert result.name == "name"
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=True):
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
# XXX: no assert?
_ = da.coord.attrs == {}
assert result.name == "name"
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_coarsen_da_reduce(da, window, name) -> None:
if da.isnull().sum() > 1 and window == 1:
pytest.skip("These parameters lead to all-NaN slices")
# Use boundary="trim" to accommodate all window sizes used in tests
coarsen_obj = da.coarsen(time=window, boundary="trim")
# add nan prefix to numpy methods to get similar # behavior as bottleneck
actual = coarsen_obj.reduce(getattr(np, f"nan{name}"))
expected = getattr(coarsen_obj, name)()
assert_allclose(actual, expected)
class TestCoarsenConstruct:
@pytest.mark.parametrize("dask", [True, False])
def test_coarsen_construct(self, dask: bool) -> None:
ds = Dataset(
{
"vart": ("time", np.arange(48), {"a": "b"}),
"varx": ("x", np.arange(10), {"a": "b"}),
"vartx": (("x", "time"), np.arange(480).reshape(10, 48), {"a": "b"}),
"vary": ("y", np.arange(12)),
},
coords={"time": np.arange(48), "y": np.arange(12)},
attrs={"foo": "bar"},
)
if dask and has_dask:
ds = ds.chunk({"x": 4, "time": 10})
expected = xr.Dataset(attrs={"foo": "bar"})
expected["vart"] = (
("year", "month"),
duck_array_ops.reshape(ds.vart.data, (-1, 12)),
{"a": "b"},
)
expected["varx"] = (
("x", "x_reshaped"),
duck_array_ops.reshape(ds.varx.data, (-1, 5)),
{"a": "b"},
)
expected["vartx"] = (
("x", "x_reshaped", "year", "month"),
duck_array_ops.reshape(ds.vartx.data, (2, 5, 4, 12)),
{"a": "b"},
)
expected["vary"] = ds.vary
expected.coords["time"] = (
("year", "month"),
duck_array_ops.reshape(ds.time.data, (-1, 12)),
)
with raise_if_dask_computes():
actual = ds.coarsen(time=12, x=5).construct(
{"time": ("year", "month"), "x": ("x", "x_reshaped")}
)
assert_identical(actual, expected)
with raise_if_dask_computes():
actual = ds.coarsen(time=12, x=5).construct(
time=("year", "month"), x=("x", "x_reshaped")
)
assert_identical(actual, expected)
with raise_if_dask_computes():
actual = ds.coarsen(time=12, x=5).construct(
{"time": ("year", "month"), "x": ("x", "x_reshaped")}, keep_attrs=False
)
for var in actual:
assert actual[var].attrs == {}
assert actual.attrs == {}
with raise_if_dask_computes():
actual = ds.vartx.coarsen(time=12, x=5).construct(
{"time": ("year", "month"), "x": ("x", "x_reshaped")}
)
assert_identical(actual, expected["vartx"])
with pytest.raises(ValueError):
ds.coarsen(time=12).construct(foo="bar")
with pytest.raises(ValueError):
ds.coarsen(time=12, x=2).construct(time=("year", "month"))
with pytest.raises(ValueError):
ds.coarsen(time=12).construct()
with pytest.raises(ValueError):
ds.coarsen(time=12).construct(time="bar")
with pytest.raises(ValueError):
ds.coarsen(time=12).construct(time=("bar",))
def test_coarsen_construct_keeps_all_coords(self):
da = xr.DataArray(np.arange(24), dims=["time"])
da = da.assign_coords(day=365 * da)
result = da.coarsen(time=12).construct(time=("year", "month"))
assert list(da.coords) == list(result.coords)
ds = da.to_dataset(name="T")
result = ds.coarsen(time=12).construct(time=("year", "month"))
assert list(da.coords) == list(result.coords)
|