1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
|
from __future__ import annotations
import warnings
from datetime import datetime, timedelta
from itertools import product, starmap
from typing import Literal
import numpy as np
import pandas as pd
import pytest
from pandas.errors import OutOfBoundsDatetime, OutOfBoundsTimedelta
from xarray import (
DataArray,
Dataset,
Variable,
conventions,
date_range,
decode_cf,
)
from xarray.coders import CFDatetimeCoder, CFTimedeltaCoder
from xarray.coding.times import (
_encode_datetime_with_cftime,
_netcdf_to_numpy_timeunit,
_numpy_to_netcdf_timeunit,
_should_cftime_be_used,
cftime_to_nptime,
decode_cf_datetime,
decode_cf_timedelta,
encode_cf_datetime,
encode_cf_timedelta,
format_cftime_datetime,
infer_datetime_units,
infer_timedelta_units,
)
from xarray.coding.variables import SerializationWarning
from xarray.conventions import _update_bounds_attributes, cf_encoder
from xarray.core.common import contains_cftime_datetimes
from xarray.core.types import PDDatetimeUnitOptions
from xarray.core.utils import is_duck_dask_array
from xarray.testing import assert_equal, assert_identical
from xarray.tests import (
_ALL_CALENDARS,
_NON_STANDARD_CALENDARS,
_STANDARD_CALENDAR_NAMES,
_STANDARD_CALENDARS,
DuckArrayWrapper,
FirstElementAccessibleArray,
_all_cftime_date_types,
arm_xfail,
assert_array_equal,
assert_duckarray_allclose,
assert_duckarray_equal,
assert_no_warnings,
has_cftime,
requires_cftime,
requires_dask,
)
_CF_DATETIME_NUM_DATES_UNITS = [
(np.arange(10), "days since 2000-01-01", "s"),
(np.arange(10).astype("float64"), "days since 2000-01-01", "s"),
(np.arange(10).astype("float32"), "days since 2000-01-01", "s"),
(np.arange(10).reshape(2, 5), "days since 2000-01-01", "s"),
(12300 + np.arange(5), "hours since 1680-01-01 00:00:00", "s"),
# here we add a couple minor formatting errors to test
# the robustness of the parsing algorithm.
(12300 + np.arange(5), "hour since 1680-01-01 00:00:00", "s"),
(12300 + np.arange(5), "Hour since 1680-01-01 00:00:00", "s"),
(12300 + np.arange(5), " Hour since 1680-01-01 00:00:00 ", "s"),
(10, "days since 2000-01-01", "s"),
([10], "daYs since 2000-01-01", "s"),
([[10]], "days since 2000-01-01", "s"),
([10, 10], "days since 2000-01-01", "s"),
(np.array(10), "days since 2000-01-01", "s"),
(0, "days since 1000-01-01", "s"),
([0], "days since 1000-01-01", "s"),
([[0]], "days since 1000-01-01", "s"),
(np.arange(2), "days since 1000-01-01", "s"),
(np.arange(0, 100000, 20000), "days since 1900-01-01", "s"),
(np.arange(0, 100000, 20000), "days since 1-01-01", "s"),
(17093352.0, "hours since 1-1-1 00:00:0.0", "s"),
([0.5, 1.5], "hours since 1900-01-01T00:00:00", "s"),
(0, "milliseconds since 2000-01-01T00:00:00", "s"),
(0, "microseconds since 2000-01-01T00:00:00", "s"),
(np.int32(788961600), "seconds since 1981-01-01", "s"), # GH2002
(12300 + np.arange(5), "hour since 1680-01-01 00:00:00.500000", "us"),
(164375, "days since 1850-01-01 00:00:00", "s"),
(164374.5, "days since 1850-01-01 00:00:00", "s"),
([164374.5, 168360.5], "days since 1850-01-01 00:00:00", "s"),
]
_CF_DATETIME_TESTS = [
num_dates_units + (calendar,)
for num_dates_units, calendar in product(
_CF_DATETIME_NUM_DATES_UNITS, _STANDARD_CALENDAR_NAMES
)
]
@requires_cftime
@pytest.mark.filterwarnings("ignore:Ambiguous reference date string")
@pytest.mark.filterwarnings("ignore:Times can't be serialized faithfully")
@pytest.mark.parametrize(
["num_dates", "units", "minimum_resolution", "calendar"], _CF_DATETIME_TESTS
)
def test_cf_datetime(
num_dates,
units: str,
minimum_resolution: PDDatetimeUnitOptions,
calendar: str,
time_unit: PDDatetimeUnitOptions,
) -> None:
import cftime
expected = cftime.num2date(
num_dates, units, calendar, only_use_cftime_datetimes=True
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = decode_cf_datetime(num_dates, units, calendar, time_unit=time_unit)
if actual.dtype.kind != "O":
if np.timedelta64(1, time_unit) > np.timedelta64(1, minimum_resolution):
expected_unit = minimum_resolution
else:
expected_unit = time_unit
expected = cftime_to_nptime(expected, time_unit=expected_unit)
assert_array_equal(actual, expected)
encoded1, _, _ = encode_cf_datetime(actual, units, calendar)
assert_array_equal(num_dates, encoded1)
if hasattr(num_dates, "ndim") and num_dates.ndim == 1 and "1000" not in units:
# verify that wrapping with a pandas.Index works
# note that it *does not* currently work to put
# non-datetime64 compatible dates into a pandas.Index
encoded2, _, _ = encode_cf_datetime(pd.Index(actual), units, calendar)
assert_array_equal(num_dates, encoded2)
@requires_cftime
def test_decode_cf_datetime_overflow(time_unit: PDDatetimeUnitOptions) -> None:
# checks for
# https://github.com/pydata/pandas/issues/14068
# https://github.com/pydata/xarray/issues/975
from cftime import DatetimeGregorian
datetime = DatetimeGregorian
units = "days since 2000-01-01 00:00:00"
# date after 2262 and before 1678
days = (-117710, 95795)
expected = (datetime(1677, 9, 20), datetime(2262, 4, 12))
for i, day in enumerate(days):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
result = decode_cf_datetime(
day, units, calendar="standard", time_unit=time_unit
)
assert result == expected[i]
# additional check to see if type/dtypes are correct
if time_unit == "ns":
assert isinstance(result.item(), datetime)
else:
assert result.dtype == np.dtype(f"=M8[{time_unit}]")
def test_decode_cf_datetime_non_standard_units() -> None:
expected = pd.date_range(periods=100, start="1970-01-01", freq="h")
# netCDFs from madis.noaa.gov use this format for their time units
# they cannot be parsed by cftime, but pd.Timestamp works
units = "hours since 1-1-1970"
actual = decode_cf_datetime(np.arange(100), units)
assert_array_equal(actual, expected)
@requires_cftime
def test_decode_cf_datetime_non_iso_strings() -> None:
# datetime strings that are _almost_ ISO compliant but not quite,
# but which cftime.num2date can still parse correctly
expected = pd.date_range(periods=100, start="2000-01-01", freq="h")
cases = [
(np.arange(100), "hours since 2000-01-01 0"),
(np.arange(100), "hours since 2000-1-1 0"),
(np.arange(100), "hours since 2000-01-01 0:00"),
]
for num_dates, units in cases:
actual = decode_cf_datetime(num_dates, units)
assert_array_equal(actual, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_inside_timestamp_range(
calendar, time_unit: PDDatetimeUnitOptions
) -> None:
import cftime
units = "hours since 0001-01-01"
times = pd.date_range(
"2001-04-01-00", end="2001-04-30-23", unit=time_unit, freq="h"
)
# to_pydatetime() will return microsecond
time = cftime.date2num(times.to_pydatetime(), units, calendar=calendar)
expected = times.values
# for cftime we get "us" resolution
# ns resolution is handled by cftime due to the reference date
# being out of bounds, but the times themselves are
# representable with nanosecond resolution.
actual = decode_cf_datetime(time, units, calendar=calendar, time_unit=time_unit)
assert actual.dtype == np.dtype(f"=M8[{time_unit}]")
assert_array_equal(actual, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_non_standard_calendar_inside_timestamp_range(calendar) -> None:
import cftime
units = "days since 0001-01-01"
times = pd.date_range("2001-04-01-00", end="2001-04-30-23", freq="h")
non_standard_time = cftime.date2num(times.to_pydatetime(), units, calendar=calendar)
expected = cftime.num2date(
non_standard_time, units, calendar=calendar, only_use_cftime_datetimes=True
)
expected_dtype = np.dtype("O")
actual = decode_cf_datetime(non_standard_time, units, calendar=calendar)
assert actual.dtype == expected_dtype
assert_array_equal(actual, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_dates_outside_timestamp_range(
calendar, time_unit: PDDatetimeUnitOptions
) -> None:
import cftime
units = "days since 0001-01-01"
times = [datetime(1, 4, 1, h) for h in range(1, 5)]
time = cftime.date2num(times, units, calendar=calendar)
expected = cftime.num2date(
time, units, calendar=calendar, only_use_cftime_datetimes=True
)
if calendar == "proleptic_gregorian" and time_unit != "ns":
expected = cftime_to_nptime(expected, time_unit=time_unit)
expected_date_type = type(expected[0])
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = decode_cf_datetime(time, units, calendar=calendar, time_unit=time_unit)
assert all(isinstance(value, expected_date_type) for value in actual)
assert_array_equal(actual, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
@pytest.mark.parametrize("num_time", [735368, [735368], [[735368]]])
def test_decode_standard_calendar_single_element_inside_timestamp_range(
calendar,
time_unit: PDDatetimeUnitOptions,
num_time,
) -> None:
units = "days since 0001-01-01"
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = decode_cf_datetime(
num_time, units, calendar=calendar, time_unit=time_unit
)
assert actual.dtype == np.dtype(f"=M8[{time_unit}]")
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_non_standard_calendar_single_element_inside_timestamp_range(
calendar,
) -> None:
units = "days since 0001-01-01"
for num_time in [735368, [735368], [[735368]]]:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = decode_cf_datetime(num_time, units, calendar=calendar)
assert actual.dtype == np.dtype("O")
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_single_element_outside_timestamp_range(calendar) -> None:
import cftime
units = "days since 0001-01-01"
for days in [1, 1470376]:
for num_time in [days, [days], [[days]]]:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = decode_cf_datetime(num_time, units, calendar=calendar)
expected = cftime.num2date(
days, units, calendar, only_use_cftime_datetimes=True
)
assert isinstance(actual.item(), type(expected))
@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_multidim_time_inside_timestamp_range(
calendar,
time_unit: PDDatetimeUnitOptions,
) -> None:
import cftime
units = "days since 0001-01-01"
times1 = pd.date_range("2001-04-01", end="2001-04-05", freq="D")
times2 = pd.date_range("2001-05-01", end="2001-05-05", freq="D")
time1 = cftime.date2num(times1.to_pydatetime(), units, calendar=calendar)
time2 = cftime.date2num(times2.to_pydatetime(), units, calendar=calendar)
mdim_time = np.empty((len(time1), 2))
mdim_time[:, 0] = time1
mdim_time[:, 1] = time2
expected1 = times1.values
expected2 = times2.values
actual = decode_cf_datetime(
mdim_time, units, calendar=calendar, time_unit=time_unit
)
assert actual.dtype == np.dtype(f"=M8[{time_unit}]")
assert_array_equal(actual[:, 0], expected1)
assert_array_equal(actual[:, 1], expected2)
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_nonstandard_calendar_multidim_time_inside_timestamp_range(
calendar,
) -> None:
import cftime
units = "days since 0001-01-01"
times1 = pd.date_range("2001-04-01", end="2001-04-05", freq="D")
times2 = pd.date_range("2001-05-01", end="2001-05-05", freq="D")
time1 = cftime.date2num(times1.to_pydatetime(), units, calendar=calendar)
time2 = cftime.date2num(times2.to_pydatetime(), units, calendar=calendar)
mdim_time = np.empty((len(time1), 2))
mdim_time[:, 0] = time1
mdim_time[:, 1] = time2
if cftime.__name__ == "cftime":
expected1 = cftime.num2date(
time1, units, calendar, only_use_cftime_datetimes=True
)
expected2 = cftime.num2date(
time2, units, calendar, only_use_cftime_datetimes=True
)
else:
expected1 = cftime.num2date(time1, units, calendar)
expected2 = cftime.num2date(time2, units, calendar)
expected_dtype = np.dtype("O")
actual = decode_cf_datetime(mdim_time, units, calendar=calendar)
assert actual.dtype == expected_dtype
assert_array_equal(actual[:, 0], expected1)
assert_array_equal(actual[:, 1], expected2)
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_multidim_time_outside_timestamp_range(
calendar, time_unit: PDDatetimeUnitOptions
) -> None:
import cftime
units = "days since 0001-01-01"
times1 = [datetime(1, 4, day) for day in range(1, 6)]
times2 = [datetime(1, 5, day) for day in range(1, 6)]
time1 = cftime.date2num(times1, units, calendar=calendar)
time2 = cftime.date2num(times2, units, calendar=calendar)
mdim_time = np.empty((len(time1), 2))
mdim_time[:, 0] = time1
mdim_time[:, 1] = time2
expected1 = cftime.num2date(time1, units, calendar, only_use_cftime_datetimes=True)
expected2 = cftime.num2date(time2, units, calendar, only_use_cftime_datetimes=True)
if calendar == "proleptic_gregorian" and time_unit != "ns":
expected1 = cftime_to_nptime(expected1, time_unit=time_unit)
expected2 = cftime_to_nptime(expected2, time_unit=time_unit)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Unable to decode time axis")
actual = decode_cf_datetime(
mdim_time, units, calendar=calendar, time_unit=time_unit
)
dtype: np.dtype
dtype = np.dtype("O")
if calendar == "proleptic_gregorian" and time_unit != "ns":
dtype = np.dtype(f"=M8[{time_unit}]")
assert actual.dtype == dtype
assert_array_equal(actual[:, 0], expected1)
assert_array_equal(actual[:, 1], expected2)
@requires_cftime
@pytest.mark.parametrize(
("calendar", "num_time"),
[("360_day", 720058.0), ("all_leap", 732059.0), ("366_day", 732059.0)],
)
def test_decode_non_standard_calendar_single_element(calendar, num_time) -> None:
import cftime
units = "days since 0001-01-01"
actual = decode_cf_datetime(num_time, units, calendar=calendar)
expected = np.asarray(
cftime.num2date(num_time, units, calendar, only_use_cftime_datetimes=True)
)
assert actual.dtype == np.dtype("O")
assert expected == actual
@requires_cftime
def test_decode_360_day_calendar() -> None:
import cftime
calendar = "360_day"
# ensure leap year doesn't matter
for year in [2010, 2011, 2012, 2013, 2014]:
units = f"days since {year}-01-01"
num_times = np.arange(100)
expected = cftime.num2date(
num_times, units, calendar, only_use_cftime_datetimes=True
)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
actual = decode_cf_datetime(num_times, units, calendar=calendar)
assert len(w) == 0
assert actual.dtype == np.dtype("O")
assert_array_equal(actual, expected)
@requires_cftime
def test_decode_abbreviation() -> None:
"""Test making sure we properly fall back to cftime on abbreviated units."""
import cftime
val = np.array([1586628000000.0])
units = "msecs since 1970-01-01T00:00:00Z"
actual = decode_cf_datetime(val, units)
expected = cftime_to_nptime(cftime.num2date(val, units))
assert_array_equal(actual, expected)
@arm_xfail
@requires_cftime
@pytest.mark.parametrize(
["num_dates", "units", "expected_list"],
[
([np.nan], "days since 2000-01-01", ["NaT"]),
([np.nan, 0], "days since 2000-01-01", ["NaT", "2000-01-01T00:00:00Z"]),
(
[np.nan, 0, 1],
"days since 2000-01-01",
["NaT", "2000-01-01T00:00:00Z", "2000-01-02T00:00:00Z"],
),
],
)
def test_cf_datetime_nan(num_dates, units, expected_list) -> None:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "All-NaN")
actual = decode_cf_datetime(num_dates, units)
# use pandas because numpy will deprecate timezone-aware conversions
expected = pd.to_datetime(expected_list).to_numpy(dtype="datetime64[ns]")
assert_array_equal(expected, actual)
@requires_cftime
def test_decoded_cf_datetime_array_2d(time_unit: PDDatetimeUnitOptions) -> None:
# regression test for GH1229
variable = Variable(
("x", "y"), np.array([[0, 1], [2, 3]]), {"units": "days since 2000-01-01"}
)
result = CFDatetimeCoder(time_unit=time_unit).decode(variable)
assert result.dtype == f"datetime64[{time_unit}]"
expected = pd.date_range("2000-01-01", periods=4).values.reshape(2, 2)
assert_array_equal(np.asarray(result), expected)
@pytest.mark.parametrize("decode_times", [True, False])
@pytest.mark.parametrize("mask_and_scale", [True, False])
def test_decode_datetime_mask_and_scale(
decode_times: bool, mask_and_scale: bool
) -> None:
attrs = {
"units": "nanoseconds since 1970-01-01",
"calendar": "proleptic_gregorian",
"_FillValue": np.int16(-1),
"add_offset": 100000.0,
}
encoded = Variable(["time"], np.array([0, -1, 1], "int16"), attrs=attrs)
decoded = conventions.decode_cf_variable(
"foo", encoded, mask_and_scale=mask_and_scale, decode_times=decode_times
)
result = conventions.encode_cf_variable(decoded, name="foo")
assert_identical(encoded, result)
assert encoded.dtype == result.dtype
FREQUENCIES_TO_ENCODING_UNITS = {
"ns": "nanoseconds",
"us": "microseconds",
"ms": "milliseconds",
"s": "seconds",
"min": "minutes",
"h": "hours",
"D": "days",
}
@pytest.mark.parametrize(("freq", "units"), FREQUENCIES_TO_ENCODING_UNITS.items())
def test_infer_datetime_units(freq, units) -> None:
dates = pd.date_range("2000", periods=2, freq=freq)
expected = f"{units} since 2000-01-01 00:00:00"
assert expected == infer_datetime_units(dates)
@pytest.mark.parametrize(
["dates", "expected"],
[
(
pd.to_datetime(["1900-01-01", "1900-01-02", "NaT"], unit="ns"),
"days since 1900-01-01 00:00:00",
),
(
pd.to_datetime(["NaT", "1900-01-01"], unit="ns"),
"days since 1900-01-01 00:00:00",
),
(pd.to_datetime(["NaT"], unit="ns"), "days since 1970-01-01 00:00:00"),
],
)
def test_infer_datetime_units_with_NaT(dates, expected) -> None:
assert expected == infer_datetime_units(dates)
_CFTIME_DATETIME_UNITS_TESTS = [
([(1900, 1, 1), (1900, 1, 1)], "days since 1900-01-01 00:00:00.000000"),
(
[(1900, 1, 1), (1900, 1, 2), (1900, 1, 2, 0, 0, 1)],
"seconds since 1900-01-01 00:00:00.000000",
),
(
[(1900, 1, 1), (1900, 1, 8), (1900, 1, 16)],
"days since 1900-01-01 00:00:00.000000",
),
]
@requires_cftime
@pytest.mark.parametrize(
"calendar", _NON_STANDARD_CALENDARS + ["gregorian", "proleptic_gregorian"]
)
@pytest.mark.parametrize(("date_args", "expected"), _CFTIME_DATETIME_UNITS_TESTS)
def test_infer_cftime_datetime_units(calendar, date_args, expected) -> None:
date_type = _all_cftime_date_types()[calendar]
dates = list(starmap(date_type, date_args))
assert expected == infer_datetime_units(dates)
@pytest.mark.filterwarnings("ignore:Timedeltas can't be serialized faithfully")
@pytest.mark.parametrize(
["timedeltas", "units", "numbers"],
[
("1D", "days", np.int64(1)),
(["1D", "2D", "3D"], "days", np.array([1, 2, 3], "int64")),
("1h", "hours", np.int64(1)),
("1ms", "milliseconds", np.int64(1)),
("1us", "microseconds", np.int64(1)),
("1ns", "nanoseconds", np.int64(1)),
(["NaT", "0s", "1s"], None, [np.iinfo(np.int64).min, 0, 1]),
(["30m", "60m"], "hours", [0.5, 1.0]),
("NaT", "days", np.iinfo(np.int64).min),
(["NaT", "NaT"], "days", [np.iinfo(np.int64).min, np.iinfo(np.int64).min]),
],
)
def test_cf_timedelta(timedeltas, units, numbers) -> None:
if timedeltas == "NaT":
timedeltas = np.timedelta64("NaT", "ns")
else:
timedeltas = pd.to_timedelta(timedeltas).to_numpy()
numbers = np.array(numbers)
expected = numbers
actual, _ = encode_cf_timedelta(timedeltas, units)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
if units is not None:
expected = timedeltas
actual = decode_cf_timedelta(numbers, units)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
expected = np.timedelta64("NaT", "ns")
actual = decode_cf_timedelta(np.array(np.nan), "days")
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
def test_cf_timedelta_2d() -> None:
units = "days"
numbers = np.atleast_2d([1, 2, 3])
timedeltas = np.atleast_2d(pd.to_timedelta(["1D", "2D", "3D"]).to_numpy())
expected = timedeltas
actual = decode_cf_timedelta(numbers, units)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
@pytest.mark.parametrize("encoding_unit", FREQUENCIES_TO_ENCODING_UNITS.values())
def test_decode_cf_timedelta_time_unit(
time_unit: PDDatetimeUnitOptions, encoding_unit
) -> None:
encoded = 1
encoding_unit_as_numpy = _netcdf_to_numpy_timeunit(encoding_unit)
if np.timedelta64(1, time_unit) > np.timedelta64(1, encoding_unit_as_numpy):
expected = np.timedelta64(encoded, encoding_unit_as_numpy)
else:
expected = np.timedelta64(encoded, encoding_unit_as_numpy).astype(
f"timedelta64[{time_unit}]"
)
result = decode_cf_timedelta(encoded, encoding_unit, time_unit)
assert result == expected
assert result.dtype == expected.dtype
def test_decode_cf_timedelta_time_unit_out_of_bounds(
time_unit: PDDatetimeUnitOptions,
) -> None:
# Define a scale factor that will guarantee overflow with the given
# time_unit.
scale_factor = np.timedelta64(1, time_unit) // np.timedelta64(1, "ns")
encoded = scale_factor * 300 * 365
with pytest.raises(OutOfBoundsTimedelta):
decode_cf_timedelta(encoded, "days", time_unit)
def test_cf_timedelta_roundtrip_large_value(time_unit: PDDatetimeUnitOptions) -> None:
value = np.timedelta64(np.iinfo(np.int64).max, time_unit)
encoded, units = encode_cf_timedelta(value)
decoded = decode_cf_timedelta(encoded, units, time_unit=time_unit)
assert value == decoded
assert value.dtype == decoded.dtype
@pytest.mark.parametrize(
["deltas", "expected"],
[
(pd.to_timedelta(["1 day", "2 days"]), "days"),
(pd.to_timedelta(["1h", "1 day 1 hour"]), "hours"),
(pd.to_timedelta(["1m", "2m", np.nan]), "minutes"),
(pd.to_timedelta(["1m3s", "1m4s"]), "seconds"),
],
)
def test_infer_timedelta_units(deltas, expected) -> None:
assert expected == infer_timedelta_units(deltas)
@requires_cftime
@pytest.mark.parametrize(
["date_args", "expected"],
[
((1, 2, 3, 4, 5, 6), "0001-02-03 04:05:06.000000"),
((10, 2, 3, 4, 5, 6), "0010-02-03 04:05:06.000000"),
((100, 2, 3, 4, 5, 6), "0100-02-03 04:05:06.000000"),
((1000, 2, 3, 4, 5, 6), "1000-02-03 04:05:06.000000"),
],
)
def test_format_cftime_datetime(date_args, expected) -> None:
date_types = _all_cftime_date_types()
for date_type in date_types.values():
result = format_cftime_datetime(date_type(*date_args))
assert result == expected
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_cf(calendar, time_unit: PDDatetimeUnitOptions) -> None:
days = [1.0, 2.0, 3.0]
# TODO: GH5690 — do we want to allow this type for `coords`?
da = DataArray(days, coords=[days], dims=["time"], name="test")
ds = da.to_dataset()
for v in ["test", "time"]:
ds[v].attrs["units"] = "days since 2001-01-01"
ds[v].attrs["calendar"] = calendar
if not has_cftime and calendar not in _STANDARD_CALENDAR_NAMES:
with pytest.raises(ValueError):
ds = decode_cf(ds)
else:
ds = decode_cf(ds, decode_times=CFDatetimeCoder(time_unit=time_unit))
if calendar not in _STANDARD_CALENDAR_NAMES:
assert ds.test.dtype == np.dtype("O")
else:
assert ds.test.dtype == np.dtype(f"=M8[{time_unit}]")
def test_decode_cf_time_bounds(time_unit: PDDatetimeUnitOptions) -> None:
da = DataArray(
np.arange(6, dtype="int64").reshape((3, 2)),
coords={"time": [1, 2, 3]},
dims=("time", "nbnd"),
name="time_bnds",
)
attrs = {
"units": "days since 2001-01",
"calendar": "standard",
"bounds": "time_bnds",
}
ds = da.to_dataset()
ds["time"].attrs.update(attrs)
_update_bounds_attributes(ds.variables)
assert ds.variables["time_bnds"].attrs == {
"units": "days since 2001-01",
"calendar": "standard",
}
dsc = decode_cf(ds, decode_times=CFDatetimeCoder(time_unit=time_unit))
assert dsc.time_bnds.dtype == np.dtype(f"=M8[{time_unit}]")
dsc = decode_cf(ds, decode_times=False)
assert dsc.time_bnds.dtype == np.dtype("int64")
# Do not overwrite existing attrs
ds = da.to_dataset()
ds["time"].attrs.update(attrs)
bnd_attr = {"units": "hours since 2001-01", "calendar": "noleap"}
ds["time_bnds"].attrs.update(bnd_attr)
_update_bounds_attributes(ds.variables)
assert ds.variables["time_bnds"].attrs == bnd_attr
# If bounds variable not available do not complain
ds = da.to_dataset()
ds["time"].attrs.update(attrs)
ds["time"].attrs["bounds"] = "fake_var"
_update_bounds_attributes(ds.variables)
@requires_cftime
def test_encode_time_bounds() -> None:
time = pd.date_range("2000-01-16", periods=1)
time_bounds = pd.date_range("2000-01-01", periods=2, freq="MS")
ds = Dataset(dict(time=time, time_bounds=time_bounds))
ds.time.attrs = {"bounds": "time_bounds"}
ds.time.encoding = {"calendar": "noleap", "units": "days since 2000-01-01"}
expected = {}
# expected['time'] = Variable(data=np.array([15]), dims=['time'])
expected["time_bounds"] = Variable(data=np.array([0, 31]), dims=["time_bounds"])
encoded, _ = cf_encoder(ds.variables, ds.attrs)
assert_equal(encoded["time_bounds"], expected["time_bounds"])
assert "calendar" not in encoded["time_bounds"].attrs
assert "units" not in encoded["time_bounds"].attrs
# if time_bounds attrs are same as time attrs, it doesn't matter
ds.time_bounds.encoding = {"calendar": "noleap", "units": "days since 2000-01-01"}
encoded, _ = cf_encoder(dict(ds.variables.items()), ds.attrs)
assert_equal(encoded["time_bounds"], expected["time_bounds"])
assert "calendar" not in encoded["time_bounds"].attrs
assert "units" not in encoded["time_bounds"].attrs
# for CF-noncompliant case of time_bounds attrs being different from
# time attrs; preserve them for faithful roundtrip
ds.time_bounds.encoding = {"calendar": "noleap", "units": "days since 1849-01-01"}
encoded, _ = cf_encoder(dict(ds.variables.items()), ds.attrs)
with pytest.raises(AssertionError):
assert_equal(encoded["time_bounds"], expected["time_bounds"])
assert "calendar" not in encoded["time_bounds"].attrs
assert encoded["time_bounds"].attrs["units"] == ds.time_bounds.encoding["units"]
ds.time.encoding = {}
with pytest.warns(UserWarning):
cf_encoder(ds.variables, ds.attrs)
@pytest.fixture(params=_ALL_CALENDARS)
def calendar(request):
return request.param
@pytest.fixture
def times(calendar):
import cftime
return cftime.num2date(
np.arange(4),
units="hours since 2000-01-01",
calendar=calendar,
only_use_cftime_datetimes=True,
)
@pytest.fixture
def data(times):
data = np.random.rand(2, 2, 4)
lons = np.linspace(0, 11, 2)
lats = np.linspace(0, 20, 2)
return DataArray(
data, coords=[lons, lats, times], dims=["lon", "lat", "time"], name="data"
)
@pytest.fixture
def times_3d(times):
lons = np.linspace(0, 11, 2)
lats = np.linspace(0, 20, 2)
times_arr = np.random.choice(times, size=(2, 2, 4))
return DataArray(
times_arr, coords=[lons, lats, times], dims=["lon", "lat", "time"], name="data"
)
@requires_cftime
def test_contains_cftime_datetimes_1d(data) -> None:
assert contains_cftime_datetimes(data.time.variable)
@requires_cftime
@requires_dask
def test_contains_cftime_datetimes_dask_1d(data) -> None:
assert contains_cftime_datetimes(data.time.variable.chunk())
@requires_cftime
def test_contains_cftime_datetimes_3d(times_3d) -> None:
assert contains_cftime_datetimes(times_3d.variable)
@requires_cftime
@requires_dask
def test_contains_cftime_datetimes_dask_3d(times_3d) -> None:
assert contains_cftime_datetimes(times_3d.variable.chunk())
@pytest.mark.parametrize("non_cftime_data", [DataArray([]), DataArray([1, 2])])
def test_contains_cftime_datetimes_non_cftimes(non_cftime_data) -> None:
assert not contains_cftime_datetimes(non_cftime_data.variable)
@requires_dask
@pytest.mark.parametrize("non_cftime_data", [DataArray([]), DataArray([1, 2])])
def test_contains_cftime_datetimes_non_cftimes_dask(non_cftime_data) -> None:
assert not contains_cftime_datetimes(non_cftime_data.variable.chunk())
@requires_cftime
@pytest.mark.parametrize("shape", [(24,), (8, 3), (2, 4, 3)])
def test_encode_cf_datetime_overflow(shape) -> None:
# Test for fix to GH 2272
dates = pd.date_range("2100", periods=24).values.reshape(shape)
units = "days since 1800-01-01"
calendar = "standard"
num, _, _ = encode_cf_datetime(dates, units, calendar)
roundtrip = decode_cf_datetime(num, units, calendar)
np.testing.assert_array_equal(dates, roundtrip)
def test_encode_expected_failures() -> None:
dates = pd.date_range("2000", periods=3)
with pytest.raises(ValueError, match="invalid time units"):
encode_cf_datetime(dates, units="days after 2000-01-01")
with pytest.raises(ValueError, match="invalid reference date"):
encode_cf_datetime(dates, units="days since NO_YEAR")
def test_encode_cf_datetime_pandas_min() -> None:
# GH 2623
dates = pd.date_range("2000", periods=3)
num, units, calendar = encode_cf_datetime(dates)
expected_num = np.array([0.0, 1.0, 2.0])
expected_units = "days since 2000-01-01 00:00:00"
expected_calendar = "proleptic_gregorian"
np.testing.assert_array_equal(num, expected_num)
assert units == expected_units
assert calendar == expected_calendar
@requires_cftime
def test_encode_cf_datetime_invalid_pandas_valid_cftime() -> None:
num, units, calendar = encode_cf_datetime(
pd.date_range("2000", periods=3),
# Pandas fails to parse this unit, but cftime is quite happy with it
"days since 1970-01-01 00:00:00 00",
"standard",
)
expected_num = [10957, 10958, 10959]
expected_units = "days since 1970-01-01 00:00:00 00"
expected_calendar = "standard"
assert_array_equal(num, expected_num)
assert units == expected_units
assert calendar == expected_calendar
@requires_cftime
def test_time_units_with_timezone_roundtrip(calendar) -> None:
# Regression test for GH 2649
expected_units = "days since 2000-01-01T00:00:00-05:00"
expected_num_dates = np.array([1, 2, 3])
dates = decode_cf_datetime(expected_num_dates, expected_units, calendar)
# Check that dates were decoded to UTC; here the hours should all
# equal 5.
result_hours = DataArray(dates).dt.hour
expected_hours = DataArray([5, 5, 5])
assert_equal(result_hours, expected_hours)
# Check that the encoded values are accurately roundtripped.
result_num_dates, result_units, result_calendar = encode_cf_datetime(
dates, expected_units, calendar
)
if calendar in _STANDARD_CALENDARS:
assert_duckarray_equal(result_num_dates, expected_num_dates)
else:
# cftime datetime arithmetic is not quite exact.
assert_duckarray_allclose(result_num_dates, expected_num_dates)
assert result_units == expected_units
assert result_calendar == calendar
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_default_standard_calendar_in_range(calendar) -> None:
numerical_dates = [0, 1]
units = "days since 2000-01-01"
expected = pd.date_range("2000", periods=2)
with assert_no_warnings():
result = decode_cf_datetime(numerical_dates, units, calendar)
np.testing.assert_array_equal(result, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
@pytest.mark.parametrize("units_year", [1500, 1580])
def test_use_cftime_default_standard_calendar_out_of_range(
calendar, units_year
) -> None:
from cftime import num2date
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
expected = num2date(
numerical_dates, units, calendar, only_use_cftime_datetimes=True
)
with pytest.warns(SerializationWarning):
result = decode_cf_datetime(numerical_dates, units, calendar)
np.testing.assert_array_equal(result, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_default_non_standard_calendar(
calendar, units_year, time_unit: PDDatetimeUnitOptions
) -> None:
from cftime import num2date
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
expected = num2date(
numerical_dates, units, calendar, only_use_cftime_datetimes=True
)
if time_unit == "ns" and units_year == 2500:
with pytest.warns(SerializationWarning, match="Unable to decode time axis"):
result = decode_cf_datetime(
numerical_dates, units, calendar, time_unit=time_unit
)
else:
with assert_no_warnings():
result = decode_cf_datetime(
numerical_dates, units, calendar, time_unit=time_unit
)
np.testing.assert_array_equal(result, expected)
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_true(calendar, units_year) -> None:
from cftime import num2date
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
expected = num2date(
numerical_dates, units, calendar, only_use_cftime_datetimes=True
)
with assert_no_warnings():
result = decode_cf_datetime(numerical_dates, units, calendar, use_cftime=True)
np.testing.assert_array_equal(result, expected)
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_false_standard_calendar_in_range(calendar) -> None:
numerical_dates = [0, 1]
units = "days since 2000-01-01"
expected = pd.date_range("2000", periods=2)
with assert_no_warnings():
result = decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
np.testing.assert_array_equal(result, expected)
@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
@pytest.mark.parametrize("units_year", [1500, 1582])
def test_use_cftime_false_standard_calendar_out_of_range(calendar, units_year) -> None:
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
with pytest.raises(OutOfBoundsDatetime):
decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_false_non_standard_calendar(calendar, units_year) -> None:
numerical_dates = [0, 1]
units = f"days since {units_year}-01-01"
with pytest.raises(OutOfBoundsDatetime):
decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_ambiguous_time_warns(calendar) -> None:
# GH 4422, 4506
from cftime import num2date
# we don't decode non-standard calendards with
# pandas so expect no warning will be emitted
is_standard_calendar = calendar in _STANDARD_CALENDAR_NAMES
dates = [1, 2, 3]
units = "days since 1-1-1"
expected = num2date(dates, units, calendar=calendar, only_use_cftime_datetimes=True)
if is_standard_calendar:
with pytest.warns(SerializationWarning) as record:
result = decode_cf_datetime(dates, units, calendar=calendar)
relevant_warnings = [
r
for r in record.list
if str(r.message).startswith("Ambiguous reference date string: 1-1-1")
]
assert len(relevant_warnings) == 1
else:
with assert_no_warnings():
result = decode_cf_datetime(dates, units, calendar=calendar)
np.testing.assert_array_equal(result, expected)
@pytest.mark.filterwarnings("ignore:Times can't be serialized faithfully")
@pytest.mark.parametrize("encoding_units", FREQUENCIES_TO_ENCODING_UNITS.values())
@pytest.mark.parametrize("freq", FREQUENCIES_TO_ENCODING_UNITS.keys())
@pytest.mark.parametrize("use_cftime", [True, False])
def test_encode_cf_datetime_defaults_to_correct_dtype(
encoding_units, freq, use_cftime
) -> None:
if not has_cftime and use_cftime:
pytest.skip("Test requires cftime")
if (freq == "ns" or encoding_units == "nanoseconds") and use_cftime:
pytest.skip("Nanosecond frequency is not valid for cftime dates.")
times = date_range("2000", periods=3, freq=freq, use_cftime=use_cftime)
units = f"{encoding_units} since 2000-01-01"
encoded, _units, _ = encode_cf_datetime(times, units)
numpy_timeunit = _netcdf_to_numpy_timeunit(encoding_units)
encoding_units_as_timedelta = np.timedelta64(1, numpy_timeunit)
if pd.to_timedelta(1, freq) >= encoding_units_as_timedelta:
assert encoded.dtype == np.int64
else:
assert encoded.dtype == np.float64
@pytest.mark.parametrize("freq", FREQUENCIES_TO_ENCODING_UNITS.keys())
def test_encode_decode_roundtrip_datetime64(
freq, time_unit: PDDatetimeUnitOptions
) -> None:
# See GH 4045. Prior to GH 4684 this test would fail for frequencies of
# "s", "ms", "us", and "ns".
initial_time = pd.date_range("1678-01-01", periods=1)
times = initial_time.append(pd.date_range("1968", periods=2, freq=freq))
variable = Variable(["time"], times)
encoded = conventions.encode_cf_variable(variable)
decoded = conventions.decode_cf_variable(
"time", encoded, decode_times=CFDatetimeCoder(time_unit=time_unit)
)
assert_equal(variable, decoded)
@requires_cftime
@pytest.mark.parametrize("freq", ["us", "ms", "s", "min", "h", "D"])
def test_encode_decode_roundtrip_cftime(freq) -> None:
initial_time = date_range("0001", periods=1, use_cftime=True)
times = initial_time.append(
date_range("0001", periods=2, freq=freq, use_cftime=True)
+ timedelta(days=291000 * 365)
)
variable = Variable(["time"], times)
encoded = conventions.encode_cf_variable(variable)
decoder = CFDatetimeCoder(use_cftime=True)
decoded = conventions.decode_cf_variable("time", encoded, decode_times=decoder)
assert_equal(variable, decoded)
@requires_cftime
def test__encode_datetime_with_cftime() -> None:
# See GH 4870. cftime versions > 1.4.0 required us to adapt the
# way _encode_datetime_with_cftime was written.
import cftime
calendar = "gregorian"
times = cftime.num2date([0, 1], "hours since 2000-01-01", calendar)
encoding_units = "days since 2000-01-01"
# Since netCDF files do not support storing float128 values, we ensure that
# float64 values are used by setting longdouble=False in num2date. This try
# except logic can be removed when xarray's minimum version of cftime is at
# least 1.6.2.
try:
expected = cftime.date2num(times, encoding_units, calendar, longdouble=False)
except TypeError:
expected = cftime.date2num(times, encoding_units, calendar)
result = _encode_datetime_with_cftime(times, encoding_units, calendar)
np.testing.assert_equal(result, expected)
@requires_cftime
def test_round_trip_standard_calendar_cftime_datetimes_pre_reform() -> None:
from cftime import DatetimeGregorian
dates = np.array([DatetimeGregorian(1, 1, 1), DatetimeGregorian(2000, 1, 1)])
encoded = encode_cf_datetime(dates, "seconds since 2000-01-01", "standard")
with pytest.warns(SerializationWarning, match="Unable to decode time axis"):
decoded = decode_cf_datetime(*encoded)
np.testing.assert_equal(decoded, dates)
@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
def test_encode_cf_datetime_gregorian_proleptic_gregorian_mismatch_error(
calendar: str,
time_unit: PDDatetimeUnitOptions,
) -> None:
if time_unit == "ns":
pytest.skip("datetime64[ns] values can only be defined post reform")
dates = np.array(["0001-01-01", "2001-01-01"], dtype=f"datetime64[{time_unit}]")
with pytest.raises(ValueError, match="proleptic_gregorian"):
encode_cf_datetime(dates, "seconds since 2000-01-01", calendar)
@pytest.mark.parametrize("calendar", ["gregorian", "Gregorian", "GREGORIAN"])
def test_decode_encode_roundtrip_with_non_lowercase_letters(
calendar, time_unit: PDDatetimeUnitOptions
) -> None:
# See GH 5093.
times = [0, 1]
units = "days since 2000-01-01"
attrs = {"calendar": calendar, "units": units}
variable = Variable(["time"], times, attrs)
decoded = conventions.decode_cf_variable(
"time", variable, decode_times=CFDatetimeCoder(time_unit=time_unit)
)
encoded = conventions.encode_cf_variable(decoded)
# Previously this would erroneously be an array of cftime.datetime
# objects. We check here that it is decoded properly to np.datetime64.
assert np.issubdtype(decoded.dtype, np.datetime64)
# Use assert_identical to ensure that the calendar attribute maintained its
# original form throughout the roundtripping process, uppercase letters and
# all.
assert_identical(variable, encoded)
@requires_cftime
def test_should_cftime_be_used_source_outside_range():
src = date_range(
"1000-01-01", periods=100, freq="MS", calendar="noleap", use_cftime=True
)
with pytest.raises(
ValueError, match="Source time range is not valid for numpy datetimes."
):
_should_cftime_be_used(src, "standard", False)
@requires_cftime
def test_should_cftime_be_used_target_not_npable():
src = date_range(
"2000-01-01", periods=100, freq="MS", calendar="noleap", use_cftime=True
)
with pytest.raises(
ValueError, match="Calendar 'noleap' is only valid with cftime."
):
_should_cftime_be_used(src, "noleap", False)
@pytest.mark.parametrize(
"dtype",
[np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64],
)
def test_decode_cf_datetime_varied_integer_dtypes(dtype):
units = "seconds since 2018-08-22T03:23:03Z"
num_dates = dtype(50)
# Set use_cftime=False to ensure we cannot mask a failure by falling back
# to cftime.
result = decode_cf_datetime(num_dates, units, use_cftime=False)
expected = np.asarray(np.datetime64("2018-08-22T03:23:53", "ns"))
np.testing.assert_equal(result, expected)
@requires_cftime
def test_decode_cf_datetime_uint64_with_cftime():
units = "days since 1700-01-01"
num_dates = np.uint64(182621)
result = decode_cf_datetime(num_dates, units)
expected = np.asarray(np.datetime64("2200-01-01", "ns"))
np.testing.assert_equal(result, expected)
def test_decode_cf_datetime_uint64_with_pandas_overflow_error():
units = "nanoseconds since 1970-01-01"
calendar = "standard"
num_dates = np.uint64(1_000_000 * 86_400 * 360 * 500_000)
with pytest.raises(OutOfBoundsTimedelta):
decode_cf_datetime(num_dates, units, calendar, use_cftime=False)
@requires_cftime
def test_decode_cf_datetime_uint64_with_cftime_overflow_error():
units = "microseconds since 1700-01-01"
calendar = "360_day"
num_dates = np.uint64(1_000_000 * 86_400 * 360 * 500_000)
with pytest.raises(OverflowError):
decode_cf_datetime(num_dates, units, calendar)
@pytest.mark.parametrize("use_cftime", [True, False])
def test_decode_0size_datetime(use_cftime):
# GH1329
if use_cftime and not has_cftime:
pytest.skip()
dtype = object if use_cftime else "=M8[ns]"
expected = np.array([], dtype=dtype)
actual = decode_cf_datetime(
np.zeros(shape=0, dtype=np.int64),
units="days since 1970-01-01 00:00:00",
calendar="proleptic_gregorian",
use_cftime=use_cftime,
)
np.testing.assert_equal(expected, actual)
def test_decode_float_datetime():
num_dates = np.array([1867128, 1867134, 1867140], dtype="float32")
units = "hours since 1800-01-01"
calendar = "standard"
expected = np.array(
["2013-01-01T00:00:00", "2013-01-01T06:00:00", "2013-01-01T12:00:00"],
dtype="datetime64[ns]",
)
actual = decode_cf_datetime(
num_dates, units=units, calendar=calendar, use_cftime=False
)
np.testing.assert_equal(actual, expected)
@pytest.mark.parametrize("time_unit", ["ms", "us", "ns"])
def test_decode_float_datetime_with_decimals(
time_unit: PDDatetimeUnitOptions,
) -> None:
# test resolution enhancement for floats
values = np.array([0, 0.125, 0.25, 0.375, 0.75, 1.0], dtype="float32")
expected = np.array(
[
"2000-01-01T00:00:00.000",
"2000-01-01T00:00:00.125",
"2000-01-01T00:00:00.250",
"2000-01-01T00:00:00.375",
"2000-01-01T00:00:00.750",
"2000-01-01T00:00:01.000",
],
dtype=f"=M8[{time_unit}]",
)
units = "seconds since 2000-01-01"
calendar = "standard"
actual = decode_cf_datetime(values, units, calendar, time_unit=time_unit)
assert actual.dtype == expected.dtype
np.testing.assert_equal(actual, expected)
@pytest.mark.parametrize(
"time_unit, num", [("s", 0.123), ("ms", 0.1234), ("us", 0.1234567)]
)
def test_coding_float_datetime_warning(
time_unit: PDDatetimeUnitOptions, num: float
) -> None:
units = "seconds since 2000-01-01"
calendar = "standard"
values = np.array([num], dtype="float32")
with pytest.warns(
SerializationWarning,
match=f"Can't decode floating point datetimes to {time_unit!r}",
):
decode_cf_datetime(values, units, calendar, time_unit=time_unit)
@requires_cftime
def test_scalar_unit() -> None:
# test that a scalar units (often NaN when using to_netcdf) does not raise an error
variable = Variable(("x", "y"), np.array([[0, 1], [2, 3]]), {"units": np.nan})
result = CFDatetimeCoder().decode(variable)
assert np.isnan(result.attrs["units"])
@requires_cftime
def test_contains_cftime_lazy() -> None:
import cftime
from xarray.core.common import _contains_cftime_datetimes
times = np.array(
[cftime.DatetimeGregorian(1, 1, 2, 0), cftime.DatetimeGregorian(1, 1, 2, 0)],
dtype=object,
)
array = FirstElementAccessibleArray(times)
assert _contains_cftime_datetimes(array)
@pytest.mark.parametrize(
"timestr, format, dtype, fill_value, use_encoding",
[
("1677-09-21T00:12:43.145224193", "ns", np.int64, 20, True),
("1970-09-21T00:12:44.145224808", "ns", np.float64, 1e30, True),
(
"1677-09-21T00:12:43.145225216",
"ns",
np.float64,
-9.223372036854776e18,
True,
),
("1677-09-21T00:12:43.145224193", "ns", np.int64, None, False),
("1677-09-21T00:12:43.145225", "us", np.int64, None, False),
("1970-01-01T00:00:01.000001", "us", np.int64, None, False),
("1677-09-21T00:21:52.901038080", "ns", np.float32, 20.0, True),
],
)
def test_roundtrip_datetime64_nanosecond_precision(
timestr: str,
format: Literal["ns", "us"],
dtype: np.typing.DTypeLike,
fill_value: int | float | None,
use_encoding: bool,
time_unit: PDDatetimeUnitOptions,
) -> None:
# test for GH7817
time = np.datetime64(timestr, format)
times = [np.datetime64("1970-01-01T00:00:00", format), np.datetime64("NaT"), time]
if use_encoding:
encoding = dict(dtype=dtype, _FillValue=fill_value)
else:
encoding = {}
var = Variable(["time"], times, encoding=encoding)
assert var.dtype == np.dtype(f"=M8[{format}]")
encoded_var = conventions.encode_cf_variable(var)
assert (
encoded_var.attrs["units"]
== f"{_numpy_to_netcdf_timeunit(format)} since 1970-01-01 00:00:00"
)
assert encoded_var.attrs["calendar"] == "proleptic_gregorian"
assert encoded_var.data.dtype == dtype
decoded_var = conventions.decode_cf_variable(
"foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
)
result_unit = (
format
if np.timedelta64(1, format) <= np.timedelta64(1, time_unit)
else time_unit
)
assert decoded_var.dtype == np.dtype(f"=M8[{result_unit}]")
assert (
decoded_var.encoding["units"]
== f"{_numpy_to_netcdf_timeunit(format)} since 1970-01-01 00:00:00"
)
assert decoded_var.encoding["dtype"] == dtype
assert decoded_var.encoding["calendar"] == "proleptic_gregorian"
assert_identical(var, decoded_var)
def test_roundtrip_datetime64_nanosecond_precision_warning(
time_unit: PDDatetimeUnitOptions,
) -> None:
# test warning if times can't be serialized faithfully
times = [
np.datetime64("1970-01-01T00:01:00", time_unit),
np.datetime64("NaT", time_unit),
np.datetime64("1970-01-02T00:01:00", time_unit),
]
units = "days since 1970-01-10T01:01:00"
needed_units = "hours"
new_units = f"{needed_units} since 1970-01-10T01:01:00"
encoding = dict(dtype=None, _FillValue=20, units=units)
var = Variable(["time"], times, encoding=encoding)
with pytest.warns(UserWarning, match=f"Resolution of {needed_units!r} needed."):
encoded_var = conventions.encode_cf_variable(var)
assert encoded_var.dtype == np.float64
assert encoded_var.attrs["units"] == units
assert encoded_var.attrs["_FillValue"] == 20.0
decoded_var = conventions.decode_cf_variable("foo", encoded_var)
assert_identical(var, decoded_var)
encoding = dict(dtype="int64", _FillValue=20, units=units)
var = Variable(["time"], times, encoding=encoding)
with pytest.warns(
UserWarning, match=f"Serializing with units {new_units!r} instead."
):
encoded_var = conventions.encode_cf_variable(var)
assert encoded_var.dtype == np.int64
assert encoded_var.attrs["units"] == new_units
assert encoded_var.attrs["_FillValue"] == 20
decoded_var = conventions.decode_cf_variable(
"foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
)
assert_identical(var, decoded_var)
encoding = dict(dtype="float64", _FillValue=20, units=units)
var = Variable(["time"], times, encoding=encoding)
with warnings.catch_warnings():
warnings.simplefilter("error")
encoded_var = conventions.encode_cf_variable(var)
assert encoded_var.dtype == np.float64
assert encoded_var.attrs["units"] == units
assert encoded_var.attrs["_FillValue"] == 20.0
decoded_var = conventions.decode_cf_variable(
"foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
)
assert_identical(var, decoded_var)
encoding = dict(dtype="int64", _FillValue=20, units=new_units)
var = Variable(["time"], times, encoding=encoding)
with warnings.catch_warnings():
warnings.simplefilter("error")
encoded_var = conventions.encode_cf_variable(var)
assert encoded_var.dtype == np.int64
assert encoded_var.attrs["units"] == new_units
assert encoded_var.attrs["_FillValue"] == 20
decoded_var = conventions.decode_cf_variable(
"foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
)
assert_identical(var, decoded_var)
@pytest.mark.parametrize(
"dtype, fill_value",
[(np.int64, 20), (np.int64, np.iinfo(np.int64).min), (np.float64, 1e30)],
)
def test_roundtrip_timedelta64_nanosecond_precision(
dtype: np.typing.DTypeLike,
fill_value: int | float,
time_unit: PDDatetimeUnitOptions,
) -> None:
# test for GH7942
one_day = np.timedelta64(1, "ns")
nat = np.timedelta64("nat", "ns")
timedelta_values = (np.arange(5) * one_day).astype("timedelta64[ns]")
timedelta_values[2] = nat
timedelta_values[4] = nat
encoding = dict(dtype=dtype, _FillValue=fill_value, units="nanoseconds")
var = Variable(["time"], timedelta_values, encoding=encoding)
encoded_var = conventions.encode_cf_variable(var)
decoded_var = conventions.decode_cf_variable(
"foo",
encoded_var,
decode_times=CFDatetimeCoder(time_unit=time_unit),
decode_timedelta=CFTimedeltaCoder(time_unit=time_unit),
)
assert_identical(var, decoded_var)
def test_roundtrip_timedelta64_nanosecond_precision_warning() -> None:
# test warning if timedeltas can't be serialized faithfully
one_day = np.timedelta64(1, "D")
nat = np.timedelta64("nat", "ns")
timedelta_values = (np.arange(5) * one_day).astype("timedelta64[ns]")
timedelta_values[2] = nat
timedelta_values[4] = np.timedelta64(12, "h").astype("timedelta64[ns]")
units = "days"
needed_units = "hours"
wmsg = (
f"Timedeltas can't be serialized faithfully with requested units {units!r}. "
f"Serializing with units {needed_units!r} instead."
)
encoding = dict(dtype=np.int64, _FillValue=20, units=units)
var = Variable(["time"], timedelta_values, encoding=encoding)
with pytest.warns(UserWarning, match=wmsg):
encoded_var = conventions.encode_cf_variable(var)
assert encoded_var.dtype == np.int64
assert encoded_var.attrs["units"] == needed_units
assert encoded_var.attrs["_FillValue"] == 20
decoded_var = conventions.decode_cf_variable(
"foo", encoded_var, decode_timedelta=CFTimedeltaCoder(time_unit="ns")
)
assert_identical(var, decoded_var)
assert decoded_var.encoding["dtype"] == np.int64
_TEST_ROUNDTRIP_FLOAT_TIMES_TESTS = {
"GH-8271": (
20.0,
np.array(
["1970-01-01 00:00:00", "1970-01-01 06:00:00", "NaT"],
dtype="datetime64[ns]",
),
"days since 1960-01-01",
np.array([3653, 3653.25, 20.0]),
),
"GH-9488-datetime64[ns]": (
1.0e20,
np.array(["2010-01-01 12:00:00", "NaT"], dtype="datetime64[ns]"),
"seconds since 2010-01-01",
np.array([43200, 1.0e20]),
),
"GH-9488-timedelta64[ns]": (
1.0e20,
np.array([1_000_000_000, "NaT"], dtype="timedelta64[ns]"),
"seconds",
np.array([1.0, 1.0e20]),
),
}
@pytest.mark.parametrize(
("fill_value", "times", "units", "encoded_values"),
_TEST_ROUNDTRIP_FLOAT_TIMES_TESTS.values(),
ids=_TEST_ROUNDTRIP_FLOAT_TIMES_TESTS.keys(),
)
def test_roundtrip_float_times(fill_value, times, units, encoded_values) -> None:
# Regression test for GitHub issues #8271 and #9488
var = Variable(
["time"],
times,
encoding=dict(dtype=np.float64, _FillValue=fill_value, units=units),
)
encoded_var = conventions.encode_cf_variable(var)
np.testing.assert_array_equal(encoded_var, encoded_values)
assert encoded_var.attrs["units"] == units
assert encoded_var.attrs["_FillValue"] == fill_value
decoded_var = conventions.decode_cf_variable(
"foo", encoded_var, decode_timedelta=CFTimedeltaCoder(time_unit="ns")
)
assert_identical(var, decoded_var)
assert decoded_var.encoding["units"] == units
assert decoded_var.encoding["_FillValue"] == fill_value
_ENCODE_DATETIME64_VIA_DASK_TESTS = {
"pandas-encoding-with-prescribed-units-and-dtype": (
"D",
"days since 1700-01-01",
np.dtype("int32"),
),
"mixed-cftime-pandas-encoding-with-prescribed-units-and-dtype": pytest.param(
"250YS", "days since 1700-01-01", np.dtype("int32"), marks=requires_cftime
),
"pandas-encoding-with-default-units-and-dtype": ("250YS", None, None),
}
@requires_dask
@pytest.mark.parametrize(
("freq", "units", "dtype"),
_ENCODE_DATETIME64_VIA_DASK_TESTS.values(),
ids=_ENCODE_DATETIME64_VIA_DASK_TESTS.keys(),
)
def test_encode_cf_datetime_datetime64_via_dask(
freq, units, dtype, time_unit: PDDatetimeUnitOptions
) -> None:
import dask.array
times_pd = pd.date_range(start="1700", freq=freq, periods=3, unit=time_unit)
times = dask.array.from_array(times_pd, chunks=1)
encoded_times, encoding_units, encoding_calendar = encode_cf_datetime(
times, units, None, dtype
)
assert is_duck_dask_array(encoded_times)
assert encoded_times.chunks == times.chunks
if units is not None and dtype is not None:
assert encoding_units == units
assert encoded_times.dtype == dtype
else:
expected_netcdf_time_unit = _numpy_to_netcdf_timeunit(time_unit)
assert encoding_units == f"{expected_netcdf_time_unit} since 1970-01-01"
assert encoded_times.dtype == np.dtype("int64")
assert encoding_calendar == "proleptic_gregorian"
decoded_times = decode_cf_datetime(
encoded_times, encoding_units, encoding_calendar, time_unit=time_unit
)
np.testing.assert_equal(decoded_times, times)
assert decoded_times.dtype == times.dtype
@requires_dask
@pytest.mark.parametrize(
("range_function", "start", "units", "dtype"),
[
(pd.date_range, "2000", None, np.dtype("int32")),
(pd.date_range, "2000", "days since 2000-01-01", None),
(pd.timedelta_range, "0D", None, np.dtype("int32")),
(pd.timedelta_range, "0D", "days", None),
],
)
def test_encode_via_dask_cannot_infer_error(
range_function, start, units, dtype
) -> None:
values = range_function(start=start, freq="D", periods=3)
encoding = dict(units=units, dtype=dtype)
variable = Variable(["time"], values, encoding=encoding).chunk({"time": 1})
with pytest.raises(ValueError, match="When encoding chunked arrays"):
conventions.encode_cf_variable(variable)
@requires_cftime
@requires_dask
@pytest.mark.parametrize(
("units", "dtype"), [("days since 1700-01-01", np.dtype("int32")), (None, None)]
)
def test_encode_cf_datetime_cftime_datetime_via_dask(units, dtype) -> None:
import dask.array
calendar = "standard"
times_idx = date_range(
start="1700", freq="D", periods=3, calendar=calendar, use_cftime=True
)
times = dask.array.from_array(times_idx, chunks=1)
encoded_times, encoding_units, encoding_calendar = encode_cf_datetime(
times, units, None, dtype
)
assert is_duck_dask_array(encoded_times)
assert encoded_times.chunks == times.chunks
if units is not None and dtype is not None:
assert encoding_units == units
assert encoded_times.dtype == dtype
else:
assert encoding_units == "microseconds since 1970-01-01"
assert encoded_times.dtype == np.int64
assert encoding_calendar == calendar
decoded_times = decode_cf_datetime(
encoded_times, encoding_units, encoding_calendar, use_cftime=True
)
np.testing.assert_equal(decoded_times, times)
@pytest.mark.parametrize(
"use_cftime", [False, pytest.param(True, marks=requires_cftime)]
)
@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_datetime_units_change(use_cftime, use_dask) -> None:
times = date_range(start="2000", freq="12h", periods=3, use_cftime=use_cftime)
encoding = dict(units="days since 2000-01-01", dtype=np.dtype("int64"))
variable = Variable(["time"], times, encoding=encoding)
if use_dask:
variable = variable.chunk({"time": 1})
with pytest.raises(ValueError, match="Times can't be serialized"):
conventions.encode_cf_variable(variable).compute()
else:
with pytest.warns(UserWarning, match="Times can't be serialized"):
encoded = conventions.encode_cf_variable(variable)
if use_cftime:
expected_units = "hours since 2000-01-01 00:00:00.000000"
else:
expected_units = "hours since 2000-01-01"
assert encoded.attrs["units"] == expected_units
decoded = conventions.decode_cf_variable(
"name", encoded, decode_times=CFDatetimeCoder(use_cftime=use_cftime)
)
assert_equal(variable, decoded)
@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_datetime_precision_loss_regression_test(use_dask) -> None:
# Regression test for
# https://github.com/pydata/xarray/issues/9134#issuecomment-2191446463
times = date_range("2000", periods=5, freq="ns")
encoding = dict(units="seconds since 1970-01-01", dtype=np.dtype("int64"))
variable = Variable(["time"], times, encoding=encoding)
if use_dask:
variable = variable.chunk({"time": 1})
with pytest.raises(ValueError, match="Times can't be serialized"):
conventions.encode_cf_variable(variable).compute()
else:
with pytest.warns(UserWarning, match="Times can't be serialized"):
encoded = conventions.encode_cf_variable(variable)
decoded = conventions.decode_cf_variable("name", encoded)
assert_equal(variable, decoded)
@requires_dask
@pytest.mark.parametrize(
("units", "dtype"), [("days", np.dtype("int32")), (None, None)]
)
def test_encode_cf_timedelta_via_dask(
units: str | None, dtype: np.dtype | None, time_unit: PDDatetimeUnitOptions
) -> None:
import dask.array
times_pd = pd.timedelta_range(start="0D", freq="D", periods=3, unit=time_unit) # type: ignore[call-arg]
times = dask.array.from_array(times_pd, chunks=1)
encoded_times, encoding_units = encode_cf_timedelta(times, units, dtype)
assert is_duck_dask_array(encoded_times)
assert encoded_times.chunks == times.chunks
if units is not None and dtype is not None:
assert encoding_units == units
assert encoded_times.dtype == dtype
else:
assert encoding_units == _numpy_to_netcdf_timeunit(time_unit)
assert encoded_times.dtype == np.dtype("int64")
decoded_times = decode_cf_timedelta(
encoded_times, encoding_units, time_unit=time_unit
)
np.testing.assert_equal(decoded_times, times)
assert decoded_times.dtype == times.dtype
@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_timedelta_units_change(use_dask) -> None:
timedeltas = pd.timedelta_range(start="0h", freq="12h", periods=3)
encoding = dict(units="days", dtype=np.dtype("int64"))
variable = Variable(["time"], timedeltas, encoding=encoding)
if use_dask:
variable = variable.chunk({"time": 1})
with pytest.raises(ValueError, match="Timedeltas can't be serialized"):
conventions.encode_cf_variable(variable).compute()
else:
# In this case we automatically modify the encoding units to continue
# encoding with integer values.
with pytest.warns(UserWarning, match="Timedeltas can't be serialized"):
encoded = conventions.encode_cf_variable(variable)
assert encoded.attrs["units"] == "hours"
decoded = conventions.decode_cf_variable(
"name", encoded, decode_timedelta=CFTimedeltaCoder(time_unit="ns")
)
assert_equal(variable, decoded)
@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_timedelta_small_dtype_missing_value(use_dask) -> None:
# Regression test for GitHub issue #9134
timedeltas = np.array([1, 2, "NaT", 4], dtype="timedelta64[D]").astype(
"timedelta64[ns]"
)
encoding = dict(units="days", dtype=np.dtype("int16"), _FillValue=np.int16(-1))
variable = Variable(["time"], timedeltas, encoding=encoding)
if use_dask:
variable = variable.chunk({"time": 1})
encoded = conventions.encode_cf_variable(variable)
decoded = conventions.decode_cf_variable("name", encoded, decode_timedelta=True)
assert_equal(variable, decoded)
_DECODE_TIMEDELTA_VIA_UNITS_TESTS = {
"default": (True, None, np.dtype("timedelta64[ns]"), True),
"decode_timedelta=True": (True, True, np.dtype("timedelta64[ns]"), False),
"decode_timedelta=False": (True, False, np.dtype("int64"), False),
"inherit-time_unit-from-decode_times": (
CFDatetimeCoder(time_unit="s"),
None,
np.dtype("timedelta64[s]"),
True,
),
"set-time_unit-via-CFTimedeltaCoder-decode_times=True": (
True,
CFTimedeltaCoder(time_unit="s"),
np.dtype("timedelta64[s]"),
False,
),
"set-time_unit-via-CFTimedeltaCoder-decode_times=False": (
False,
CFTimedeltaCoder(time_unit="s"),
np.dtype("timedelta64[s]"),
False,
),
"override-time_unit-from-decode_times": (
CFDatetimeCoder(time_unit="ns"),
CFTimedeltaCoder(time_unit="s"),
np.dtype("timedelta64[s]"),
False,
),
}
@pytest.mark.parametrize(
("decode_times", "decode_timedelta", "expected_dtype", "warns"),
list(_DECODE_TIMEDELTA_VIA_UNITS_TESTS.values()),
ids=list(_DECODE_TIMEDELTA_VIA_UNITS_TESTS.keys()),
)
def test_decode_timedelta_via_units(
decode_times, decode_timedelta, expected_dtype, warns
) -> None:
timedeltas = pd.timedelta_range(0, freq="D", periods=3)
attrs = {"units": "days"}
var = Variable(["time"], timedeltas, encoding=attrs)
encoded = Variable(["time"], np.array([0, 1, 2]), attrs=attrs)
if warns:
with pytest.warns(
FutureWarning,
match="xarray will not decode the variable 'foo' into a timedelta64 dtype",
):
decoded = conventions.decode_cf_variable(
"foo",
encoded,
decode_times=decode_times,
decode_timedelta=decode_timedelta,
)
else:
decoded = conventions.decode_cf_variable(
"foo", encoded, decode_times=decode_times, decode_timedelta=decode_timedelta
)
if decode_timedelta is False:
assert_equal(encoded, decoded)
else:
assert_equal(var, decoded)
assert decoded.dtype == expected_dtype
_DECODE_TIMEDELTA_VIA_DTYPE_TESTS = {
"default": (True, None, "ns", np.dtype("timedelta64[ns]")),
"decode_timedelta=False": (True, False, "ns", np.dtype("int64")),
"decode_timedelta=True": (True, True, "ns", np.dtype("timedelta64[ns]")),
"use-original-units": (True, True, "s", np.dtype("timedelta64[s]")),
"inherit-time_unit-from-decode_times": (
CFDatetimeCoder(time_unit="s"),
None,
"ns",
np.dtype("timedelta64[s]"),
),
"set-time_unit-via-CFTimedeltaCoder-decode_times=True": (
True,
CFTimedeltaCoder(time_unit="s"),
"ns",
np.dtype("timedelta64[s]"),
),
"set-time_unit-via-CFTimedeltaCoder-decode_times=False": (
False,
CFTimedeltaCoder(time_unit="s"),
"ns",
np.dtype("timedelta64[s]"),
),
"override-time_unit-from-decode_times": (
CFDatetimeCoder(time_unit="ns"),
CFTimedeltaCoder(time_unit="s"),
"ns",
np.dtype("timedelta64[s]"),
),
"decode-different-units": (
True,
CFTimedeltaCoder(time_unit="us"),
"s",
np.dtype("timedelta64[us]"),
),
}
@pytest.mark.parametrize(
("decode_times", "decode_timedelta", "original_unit", "expected_dtype"),
list(_DECODE_TIMEDELTA_VIA_DTYPE_TESTS.values()),
ids=list(_DECODE_TIMEDELTA_VIA_DTYPE_TESTS.keys()),
)
def test_decode_timedelta_via_dtype(
decode_times, decode_timedelta, original_unit, expected_dtype
) -> None:
timedeltas = pd.timedelta_range(0, freq="D", periods=3, unit=original_unit) # type: ignore[call-arg]
encoding = {"units": "days"}
var = Variable(["time"], timedeltas, encoding=encoding)
encoded = conventions.encode_cf_variable(var)
assert encoded.attrs["dtype"] == f"timedelta64[{original_unit}]"
assert encoded.attrs["units"] == encoding["units"]
decoded = conventions.decode_cf_variable(
"foo", encoded, decode_times=decode_times, decode_timedelta=decode_timedelta
)
if decode_timedelta is False:
assert_equal(encoded, decoded)
else:
assert_equal(var, decoded)
assert decoded.dtype == expected_dtype
def test_lazy_decode_timedelta_unexpected_dtype() -> None:
attrs = {"units": "seconds"}
encoded = Variable(["time"], [0, 0.5, 1], attrs=attrs)
decoded = conventions.decode_cf_variable(
"foo", encoded, decode_timedelta=CFTimedeltaCoder(time_unit="s")
)
expected_dtype_upon_lazy_decoding = np.dtype("timedelta64[s]")
assert decoded.dtype == expected_dtype_upon_lazy_decoding
expected_dtype_upon_loading = np.dtype("timedelta64[ms]")
with pytest.warns(SerializationWarning, match="Can't decode floating"):
assert decoded.load().dtype == expected_dtype_upon_loading
def test_lazy_decode_timedelta_error() -> None:
attrs = {"units": "seconds"}
encoded = Variable(["time"], [0, np.iinfo(np.int64).max, 1], attrs=attrs)
decoded = conventions.decode_cf_variable(
"foo", encoded, decode_timedelta=CFTimedeltaCoder(time_unit="ms")
)
with pytest.raises(OutOfBoundsTimedelta, match="overflow"):
decoded.load()
@pytest.mark.parametrize(
"calendar",
[
"standard",
pytest.param(
"360_day", marks=pytest.mark.skipif(not has_cftime, reason="no cftime")
),
],
)
def test_duck_array_decode_times(calendar) -> None:
from xarray.core.indexing import LazilyIndexedArray
days = LazilyIndexedArray(DuckArrayWrapper(np.array([1.0, 2.0, 3.0])))
var = Variable(
["time"], days, {"units": "days since 2001-01-01", "calendar": calendar}
)
decoded = conventions.decode_cf_variable(
"foo", var, decode_times=CFDatetimeCoder(use_cftime=None)
)
if calendar not in _STANDARD_CALENDAR_NAMES:
assert decoded.dtype == np.dtype("O")
else:
assert decoded.dtype == np.dtype("=M8[ns]")
@pytest.mark.parametrize("decode_timedelta", [True, False])
@pytest.mark.parametrize("mask_and_scale", [True, False])
def test_decode_timedelta_mask_and_scale(
decode_timedelta: bool, mask_and_scale: bool
) -> None:
attrs = {
"dtype": "timedelta64[ns]",
"units": "nanoseconds",
"_FillValue": np.int16(-1),
"add_offset": 100000.0,
}
encoded = Variable(["time"], np.array([0, -1, 1], "int16"), attrs=attrs)
decoded = conventions.decode_cf_variable(
"foo", encoded, mask_and_scale=mask_and_scale, decode_timedelta=decode_timedelta
)
result = conventions.encode_cf_variable(decoded, name="foo")
assert_identical(encoded, result)
assert encoded.dtype == result.dtype
def test_decode_floating_point_timedelta_no_serialization_warning() -> None:
attrs = {"units": "seconds"}
encoded = Variable(["time"], [0, 0.1, 0.2], attrs=attrs)
decoded = conventions.decode_cf_variable("foo", encoded, decode_timedelta=True)
with assert_no_warnings():
decoded.load()
def test_timedelta64_coding_via_dtype(time_unit: PDDatetimeUnitOptions) -> None:
timedeltas = np.array([0, 1, "NaT"], dtype=f"timedelta64[{time_unit}]")
variable = Variable(["time"], timedeltas)
expected_units = _numpy_to_netcdf_timeunit(time_unit)
encoded = conventions.encode_cf_variable(variable)
assert encoded.attrs["dtype"] == f"timedelta64[{time_unit}]"
assert encoded.attrs["units"] == expected_units
decoded = conventions.decode_cf_variable("timedeltas", encoded)
assert decoded.encoding["dtype"] == np.dtype("int64")
assert decoded.encoding["units"] == expected_units
assert_identical(decoded, variable)
assert decoded.dtype == variable.dtype
reencoded = conventions.encode_cf_variable(decoded)
assert_identical(reencoded, encoded)
assert reencoded.dtype == encoded.dtype
def test_timedelta_coding_via_dtype_non_pandas_coarse_resolution_warning() -> None:
attrs = {"dtype": "timedelta64[D]", "units": "days"}
encoded = Variable(["time"], [0, 1, 2], attrs=attrs)
with pytest.warns(UserWarning, match="xarray only supports"):
decoded = conventions.decode_cf_variable("timedeltas", encoded)
expected_array = np.array([0, 1, 2], dtype="timedelta64[D]")
expected_array = expected_array.astype("timedelta64[s]")
expected = Variable(["time"], expected_array)
assert_identical(decoded, expected)
assert decoded.dtype == np.dtype("timedelta64[s]")
@pytest.mark.xfail(reason="xarray does not recognize picoseconds as time-like")
def test_timedelta_coding_via_dtype_non_pandas_fine_resolution_warning() -> None:
attrs = {"dtype": "timedelta64[ps]", "units": "picoseconds"}
encoded = Variable(["time"], [0, 1000, 2000], attrs=attrs)
with pytest.warns(UserWarning, match="xarray only supports"):
decoded = conventions.decode_cf_variable("timedeltas", encoded)
expected_array = np.array([0, 1000, 2000], dtype="timedelta64[ps]")
expected_array = expected_array.astype("timedelta64[ns]")
expected = Variable(["time"], expected_array)
assert_identical(decoded, expected)
assert decoded.dtype == np.dtype("timedelta64[ns]")
def test_timedelta_decode_via_dtype_invalid_encoding() -> None:
attrs = {"dtype": "timedelta64[s]", "units": "seconds"}
encoding = {"units": "foo"}
encoded = Variable(["time"], [0, 1, 2], attrs=attrs, encoding=encoding)
with pytest.raises(ValueError, match="failed to prevent"):
conventions.decode_cf_variable("timedeltas", encoded)
@pytest.mark.parametrize("attribute", ["dtype", "units"])
def test_timedelta_encode_via_dtype_invalid_attribute(attribute) -> None:
timedeltas = pd.timedelta_range(0, freq="D", periods=3)
attrs = {attribute: "foo"}
variable = Variable(["time"], timedeltas, attrs=attrs)
with pytest.raises(ValueError, match="failed to prevent"):
conventions.encode_cf_variable(variable)
@pytest.mark.parametrize(
("decode_via_units", "decode_via_dtype", "attrs", "expect_timedelta64"),
[
(True, True, {"units": "seconds"}, True),
(True, False, {"units": "seconds"}, True),
(False, True, {"units": "seconds"}, False),
(False, False, {"units": "seconds"}, False),
(True, True, {"dtype": "timedelta64[s]", "units": "seconds"}, True),
(True, False, {"dtype": "timedelta64[s]", "units": "seconds"}, True),
(False, True, {"dtype": "timedelta64[s]", "units": "seconds"}, True),
(False, False, {"dtype": "timedelta64[s]", "units": "seconds"}, False),
],
ids=lambda x: f"{x!r}",
)
def test_timedelta_decoding_options(
decode_via_units, decode_via_dtype, attrs, expect_timedelta64
) -> None:
array = np.array([0, 1, 2], dtype=np.dtype("int64"))
encoded = Variable(["time"], array, attrs=attrs)
# Confirm we decode to the expected dtype.
decode_timedelta = CFTimedeltaCoder(
time_unit="s",
decode_via_units=decode_via_units,
decode_via_dtype=decode_via_dtype,
)
decoded = conventions.decode_cf_variable(
"foo", encoded, decode_timedelta=decode_timedelta
)
if expect_timedelta64:
assert decoded.dtype == np.dtype("timedelta64[s]")
else:
assert decoded.dtype == np.dtype("int64")
# Confirm we exactly roundtrip.
reencoded = conventions.encode_cf_variable(decoded)
expected = encoded.copy()
if "dtype" not in attrs and decode_via_units:
expected.attrs["dtype"] = "timedelta64[s]"
assert_identical(reencoded, expected)
def test_timedelta_encoding_explicit_non_timedelta64_dtype() -> None:
encoding = {"dtype": np.dtype("int32")}
timedeltas = pd.timedelta_range(0, freq="D", periods=3)
variable = Variable(["time"], timedeltas, encoding=encoding)
encoded = conventions.encode_cf_variable(variable)
assert encoded.attrs["units"] == "days"
assert encoded.attrs["dtype"] == "timedelta64[ns]"
assert encoded.dtype == np.dtype("int32")
decoded = conventions.decode_cf_variable("foo", encoded)
assert_identical(decoded, variable)
reencoded = conventions.encode_cf_variable(decoded)
assert_identical(reencoded, encoded)
assert encoded.attrs["units"] == "days"
assert encoded.attrs["dtype"] == "timedelta64[ns]"
assert encoded.dtype == np.dtype("int32")
@pytest.mark.parametrize("mask_attribute", ["_FillValue", "missing_value"])
def test_timedelta64_coding_via_dtype_with_mask(
time_unit: PDDatetimeUnitOptions, mask_attribute: str
) -> None:
timedeltas = np.array([0, 1, "NaT"], dtype=f"timedelta64[{time_unit}]")
mask = 10
variable = Variable(["time"], timedeltas, encoding={mask_attribute: mask})
expected_dtype = f"timedelta64[{time_unit}]"
expected_units = _numpy_to_netcdf_timeunit(time_unit)
encoded = conventions.encode_cf_variable(variable)
assert encoded.attrs["dtype"] == expected_dtype
assert encoded.attrs["units"] == expected_units
assert encoded.attrs[mask_attribute] == mask
assert encoded[-1] == mask
decoded = conventions.decode_cf_variable("timedeltas", encoded)
assert decoded.encoding["dtype"] == np.dtype("int64")
assert decoded.encoding["units"] == expected_units
assert decoded.encoding[mask_attribute] == mask
assert np.isnat(decoded[-1])
assert_identical(decoded, variable)
assert decoded.dtype == variable.dtype
reencoded = conventions.encode_cf_variable(decoded)
assert_identical(reencoded, encoded)
assert reencoded.dtype == encoded.dtype
def test_roundtrip_0size_timedelta(time_unit: PDDatetimeUnitOptions) -> None:
# regression test for GitHub issue #10310
encoding = {"units": "days", "dtype": np.dtype("int64")}
data = np.array([], dtype=f"=m8[{time_unit}]")
decoded = Variable(["time"], data, encoding=encoding)
encoded = conventions.encode_cf_variable(decoded, name="foo")
assert encoded.dtype == encoding["dtype"]
assert encoded.attrs["units"] == encoding["units"]
decoded = conventions.decode_cf_variable("foo", encoded, decode_timedelta=True)
assert decoded.dtype == np.dtype(f"=m8[{time_unit}]")
with assert_no_warnings():
decoded.load()
assert decoded.dtype == np.dtype("=m8[s]")
assert decoded.encoding == encoding
|