File: test_coding_times.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (2200 lines) | stat: -rw-r--r-- 80,568 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
from __future__ import annotations

import warnings
from datetime import datetime, timedelta
from itertools import product, starmap
from typing import Literal

import numpy as np
import pandas as pd
import pytest
from pandas.errors import OutOfBoundsDatetime, OutOfBoundsTimedelta

from xarray import (
    DataArray,
    Dataset,
    Variable,
    conventions,
    date_range,
    decode_cf,
)
from xarray.coders import CFDatetimeCoder, CFTimedeltaCoder
from xarray.coding.times import (
    _encode_datetime_with_cftime,
    _netcdf_to_numpy_timeunit,
    _numpy_to_netcdf_timeunit,
    _should_cftime_be_used,
    cftime_to_nptime,
    decode_cf_datetime,
    decode_cf_timedelta,
    encode_cf_datetime,
    encode_cf_timedelta,
    format_cftime_datetime,
    infer_datetime_units,
    infer_timedelta_units,
)
from xarray.coding.variables import SerializationWarning
from xarray.conventions import _update_bounds_attributes, cf_encoder
from xarray.core.common import contains_cftime_datetimes
from xarray.core.types import PDDatetimeUnitOptions
from xarray.core.utils import is_duck_dask_array
from xarray.testing import assert_equal, assert_identical
from xarray.tests import (
    _ALL_CALENDARS,
    _NON_STANDARD_CALENDARS,
    _STANDARD_CALENDAR_NAMES,
    _STANDARD_CALENDARS,
    DuckArrayWrapper,
    FirstElementAccessibleArray,
    _all_cftime_date_types,
    arm_xfail,
    assert_array_equal,
    assert_duckarray_allclose,
    assert_duckarray_equal,
    assert_no_warnings,
    has_cftime,
    requires_cftime,
    requires_dask,
)

_CF_DATETIME_NUM_DATES_UNITS = [
    (np.arange(10), "days since 2000-01-01", "s"),
    (np.arange(10).astype("float64"), "days since 2000-01-01", "s"),
    (np.arange(10).astype("float32"), "days since 2000-01-01", "s"),
    (np.arange(10).reshape(2, 5), "days since 2000-01-01", "s"),
    (12300 + np.arange(5), "hours since 1680-01-01 00:00:00", "s"),
    # here we add a couple minor formatting errors to test
    # the robustness of the parsing algorithm.
    (12300 + np.arange(5), "hour since 1680-01-01  00:00:00", "s"),
    (12300 + np.arange(5), "Hour  since 1680-01-01 00:00:00", "s"),
    (12300 + np.arange(5), " Hour  since  1680-01-01 00:00:00 ", "s"),
    (10, "days since 2000-01-01", "s"),
    ([10], "daYs  since 2000-01-01", "s"),
    ([[10]], "days since 2000-01-01", "s"),
    ([10, 10], "days since 2000-01-01", "s"),
    (np.array(10), "days since 2000-01-01", "s"),
    (0, "days since 1000-01-01", "s"),
    ([0], "days since 1000-01-01", "s"),
    ([[0]], "days since 1000-01-01", "s"),
    (np.arange(2), "days since 1000-01-01", "s"),
    (np.arange(0, 100000, 20000), "days since 1900-01-01", "s"),
    (np.arange(0, 100000, 20000), "days since 1-01-01", "s"),
    (17093352.0, "hours since 1-1-1 00:00:0.0", "s"),
    ([0.5, 1.5], "hours since 1900-01-01T00:00:00", "s"),
    (0, "milliseconds since 2000-01-01T00:00:00", "s"),
    (0, "microseconds since 2000-01-01T00:00:00", "s"),
    (np.int32(788961600), "seconds since 1981-01-01", "s"),  # GH2002
    (12300 + np.arange(5), "hour since 1680-01-01 00:00:00.500000", "us"),
    (164375, "days since 1850-01-01 00:00:00", "s"),
    (164374.5, "days since 1850-01-01 00:00:00", "s"),
    ([164374.5, 168360.5], "days since 1850-01-01 00:00:00", "s"),
]
_CF_DATETIME_TESTS = [
    num_dates_units + (calendar,)
    for num_dates_units, calendar in product(
        _CF_DATETIME_NUM_DATES_UNITS, _STANDARD_CALENDAR_NAMES
    )
]


@requires_cftime
@pytest.mark.filterwarnings("ignore:Ambiguous reference date string")
@pytest.mark.filterwarnings("ignore:Times can't be serialized faithfully")
@pytest.mark.parametrize(
    ["num_dates", "units", "minimum_resolution", "calendar"], _CF_DATETIME_TESTS
)
def test_cf_datetime(
    num_dates,
    units: str,
    minimum_resolution: PDDatetimeUnitOptions,
    calendar: str,
    time_unit: PDDatetimeUnitOptions,
) -> None:
    import cftime

    expected = cftime.num2date(
        num_dates, units, calendar, only_use_cftime_datetimes=True
    )

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "Unable to decode time axis")
        actual = decode_cf_datetime(num_dates, units, calendar, time_unit=time_unit)

    if actual.dtype.kind != "O":
        if np.timedelta64(1, time_unit) > np.timedelta64(1, minimum_resolution):
            expected_unit = minimum_resolution
        else:
            expected_unit = time_unit
        expected = cftime_to_nptime(expected, time_unit=expected_unit)

    assert_array_equal(actual, expected)
    encoded1, _, _ = encode_cf_datetime(actual, units, calendar)

    assert_array_equal(num_dates, encoded1)

    if hasattr(num_dates, "ndim") and num_dates.ndim == 1 and "1000" not in units:
        # verify that wrapping with a pandas.Index works
        # note that it *does not* currently work to put
        # non-datetime64 compatible dates into a pandas.Index
        encoded2, _, _ = encode_cf_datetime(pd.Index(actual), units, calendar)
        assert_array_equal(num_dates, encoded2)


@requires_cftime
def test_decode_cf_datetime_overflow(time_unit: PDDatetimeUnitOptions) -> None:
    # checks for
    # https://github.com/pydata/pandas/issues/14068
    # https://github.com/pydata/xarray/issues/975
    from cftime import DatetimeGregorian

    datetime = DatetimeGregorian
    units = "days since 2000-01-01 00:00:00"

    # date after 2262 and before 1678
    days = (-117710, 95795)
    expected = (datetime(1677, 9, 20), datetime(2262, 4, 12))
    for i, day in enumerate(days):
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "Unable to decode time axis")
            result = decode_cf_datetime(
                day, units, calendar="standard", time_unit=time_unit
            )
        assert result == expected[i]
        # additional check to see if type/dtypes are correct
        if time_unit == "ns":
            assert isinstance(result.item(), datetime)
        else:
            assert result.dtype == np.dtype(f"=M8[{time_unit}]")


def test_decode_cf_datetime_non_standard_units() -> None:
    expected = pd.date_range(periods=100, start="1970-01-01", freq="h")
    # netCDFs from madis.noaa.gov use this format for their time units
    # they cannot be parsed by cftime, but pd.Timestamp works
    units = "hours since 1-1-1970"
    actual = decode_cf_datetime(np.arange(100), units)
    assert_array_equal(actual, expected)


@requires_cftime
def test_decode_cf_datetime_non_iso_strings() -> None:
    # datetime strings that are _almost_ ISO compliant but not quite,
    # but which cftime.num2date can still parse correctly
    expected = pd.date_range(periods=100, start="2000-01-01", freq="h")
    cases = [
        (np.arange(100), "hours since 2000-01-01 0"),
        (np.arange(100), "hours since 2000-1-1 0"),
        (np.arange(100), "hours since 2000-01-01 0:00"),
    ]
    for num_dates, units in cases:
        actual = decode_cf_datetime(num_dates, units)
        assert_array_equal(actual, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_inside_timestamp_range(
    calendar, time_unit: PDDatetimeUnitOptions
) -> None:
    import cftime

    units = "hours since 0001-01-01"
    times = pd.date_range(
        "2001-04-01-00", end="2001-04-30-23", unit=time_unit, freq="h"
    )
    # to_pydatetime() will return microsecond
    time = cftime.date2num(times.to_pydatetime(), units, calendar=calendar)
    expected = times.values
    # for cftime we get "us" resolution
    # ns resolution is handled by cftime due to the reference date
    # being out of bounds, but the times themselves are
    # representable with nanosecond resolution.
    actual = decode_cf_datetime(time, units, calendar=calendar, time_unit=time_unit)
    assert actual.dtype == np.dtype(f"=M8[{time_unit}]")
    assert_array_equal(actual, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_non_standard_calendar_inside_timestamp_range(calendar) -> None:
    import cftime

    units = "days since 0001-01-01"
    times = pd.date_range("2001-04-01-00", end="2001-04-30-23", freq="h")
    non_standard_time = cftime.date2num(times.to_pydatetime(), units, calendar=calendar)

    expected = cftime.num2date(
        non_standard_time, units, calendar=calendar, only_use_cftime_datetimes=True
    )
    expected_dtype = np.dtype("O")

    actual = decode_cf_datetime(non_standard_time, units, calendar=calendar)
    assert actual.dtype == expected_dtype
    assert_array_equal(actual, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_dates_outside_timestamp_range(
    calendar, time_unit: PDDatetimeUnitOptions
) -> None:
    import cftime

    units = "days since 0001-01-01"
    times = [datetime(1, 4, 1, h) for h in range(1, 5)]
    time = cftime.date2num(times, units, calendar=calendar)

    expected = cftime.num2date(
        time, units, calendar=calendar, only_use_cftime_datetimes=True
    )
    if calendar == "proleptic_gregorian" and time_unit != "ns":
        expected = cftime_to_nptime(expected, time_unit=time_unit)
    expected_date_type = type(expected[0])

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "Unable to decode time axis")
        actual = decode_cf_datetime(time, units, calendar=calendar, time_unit=time_unit)
    assert all(isinstance(value, expected_date_type) for value in actual)
    assert_array_equal(actual, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
@pytest.mark.parametrize("num_time", [735368, [735368], [[735368]]])
def test_decode_standard_calendar_single_element_inside_timestamp_range(
    calendar,
    time_unit: PDDatetimeUnitOptions,
    num_time,
) -> None:
    units = "days since 0001-01-01"
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "Unable to decode time axis")
        actual = decode_cf_datetime(
            num_time, units, calendar=calendar, time_unit=time_unit
        )

    assert actual.dtype == np.dtype(f"=M8[{time_unit}]")


@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_non_standard_calendar_single_element_inside_timestamp_range(
    calendar,
) -> None:
    units = "days since 0001-01-01"
    for num_time in [735368, [735368], [[735368]]]:
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "Unable to decode time axis")
            actual = decode_cf_datetime(num_time, units, calendar=calendar)
        assert actual.dtype == np.dtype("O")


@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_single_element_outside_timestamp_range(calendar) -> None:
    import cftime

    units = "days since 0001-01-01"
    for days in [1, 1470376]:
        for num_time in [days, [days], [[days]]]:
            with warnings.catch_warnings():
                warnings.filterwarnings("ignore", "Unable to decode time axis")
                actual = decode_cf_datetime(num_time, units, calendar=calendar)

            expected = cftime.num2date(
                days, units, calendar, only_use_cftime_datetimes=True
            )
            assert isinstance(actual.item(), type(expected))


@requires_cftime
@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_decode_standard_calendar_multidim_time_inside_timestamp_range(
    calendar,
    time_unit: PDDatetimeUnitOptions,
) -> None:
    import cftime

    units = "days since 0001-01-01"
    times1 = pd.date_range("2001-04-01", end="2001-04-05", freq="D")
    times2 = pd.date_range("2001-05-01", end="2001-05-05", freq="D")
    time1 = cftime.date2num(times1.to_pydatetime(), units, calendar=calendar)
    time2 = cftime.date2num(times2.to_pydatetime(), units, calendar=calendar)
    mdim_time = np.empty((len(time1), 2))
    mdim_time[:, 0] = time1
    mdim_time[:, 1] = time2

    expected1 = times1.values
    expected2 = times2.values

    actual = decode_cf_datetime(
        mdim_time, units, calendar=calendar, time_unit=time_unit
    )
    assert actual.dtype == np.dtype(f"=M8[{time_unit}]")
    assert_array_equal(actual[:, 0], expected1)
    assert_array_equal(actual[:, 1], expected2)


@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
def test_decode_nonstandard_calendar_multidim_time_inside_timestamp_range(
    calendar,
) -> None:
    import cftime

    units = "days since 0001-01-01"
    times1 = pd.date_range("2001-04-01", end="2001-04-05", freq="D")
    times2 = pd.date_range("2001-05-01", end="2001-05-05", freq="D")
    time1 = cftime.date2num(times1.to_pydatetime(), units, calendar=calendar)
    time2 = cftime.date2num(times2.to_pydatetime(), units, calendar=calendar)
    mdim_time = np.empty((len(time1), 2))
    mdim_time[:, 0] = time1
    mdim_time[:, 1] = time2

    if cftime.__name__ == "cftime":
        expected1 = cftime.num2date(
            time1, units, calendar, only_use_cftime_datetimes=True
        )
        expected2 = cftime.num2date(
            time2, units, calendar, only_use_cftime_datetimes=True
        )
    else:
        expected1 = cftime.num2date(time1, units, calendar)
        expected2 = cftime.num2date(time2, units, calendar)

    expected_dtype = np.dtype("O")

    actual = decode_cf_datetime(mdim_time, units, calendar=calendar)

    assert actual.dtype == expected_dtype
    assert_array_equal(actual[:, 0], expected1)
    assert_array_equal(actual[:, 1], expected2)


@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_multidim_time_outside_timestamp_range(
    calendar, time_unit: PDDatetimeUnitOptions
) -> None:
    import cftime

    units = "days since 0001-01-01"
    times1 = [datetime(1, 4, day) for day in range(1, 6)]
    times2 = [datetime(1, 5, day) for day in range(1, 6)]
    time1 = cftime.date2num(times1, units, calendar=calendar)
    time2 = cftime.date2num(times2, units, calendar=calendar)
    mdim_time = np.empty((len(time1), 2))
    mdim_time[:, 0] = time1
    mdim_time[:, 1] = time2

    expected1 = cftime.num2date(time1, units, calendar, only_use_cftime_datetimes=True)
    expected2 = cftime.num2date(time2, units, calendar, only_use_cftime_datetimes=True)

    if calendar == "proleptic_gregorian" and time_unit != "ns":
        expected1 = cftime_to_nptime(expected1, time_unit=time_unit)
        expected2 = cftime_to_nptime(expected2, time_unit=time_unit)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "Unable to decode time axis")
        actual = decode_cf_datetime(
            mdim_time, units, calendar=calendar, time_unit=time_unit
        )

    dtype: np.dtype
    dtype = np.dtype("O")
    if calendar == "proleptic_gregorian" and time_unit != "ns":
        dtype = np.dtype(f"=M8[{time_unit}]")

    assert actual.dtype == dtype
    assert_array_equal(actual[:, 0], expected1)
    assert_array_equal(actual[:, 1], expected2)


@requires_cftime
@pytest.mark.parametrize(
    ("calendar", "num_time"),
    [("360_day", 720058.0), ("all_leap", 732059.0), ("366_day", 732059.0)],
)
def test_decode_non_standard_calendar_single_element(calendar, num_time) -> None:
    import cftime

    units = "days since 0001-01-01"

    actual = decode_cf_datetime(num_time, units, calendar=calendar)

    expected = np.asarray(
        cftime.num2date(num_time, units, calendar, only_use_cftime_datetimes=True)
    )
    assert actual.dtype == np.dtype("O")
    assert expected == actual


@requires_cftime
def test_decode_360_day_calendar() -> None:
    import cftime

    calendar = "360_day"
    # ensure leap year doesn't matter
    for year in [2010, 2011, 2012, 2013, 2014]:
        units = f"days since {year}-01-01"
        num_times = np.arange(100)

        expected = cftime.num2date(
            num_times, units, calendar, only_use_cftime_datetimes=True
        )

        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            actual = decode_cf_datetime(num_times, units, calendar=calendar)
            assert len(w) == 0

        assert actual.dtype == np.dtype("O")
        assert_array_equal(actual, expected)


@requires_cftime
def test_decode_abbreviation() -> None:
    """Test making sure we properly fall back to cftime on abbreviated units."""
    import cftime

    val = np.array([1586628000000.0])
    units = "msecs since 1970-01-01T00:00:00Z"
    actual = decode_cf_datetime(val, units)
    expected = cftime_to_nptime(cftime.num2date(val, units))
    assert_array_equal(actual, expected)


@arm_xfail
@requires_cftime
@pytest.mark.parametrize(
    ["num_dates", "units", "expected_list"],
    [
        ([np.nan], "days since 2000-01-01", ["NaT"]),
        ([np.nan, 0], "days since 2000-01-01", ["NaT", "2000-01-01T00:00:00Z"]),
        (
            [np.nan, 0, 1],
            "days since 2000-01-01",
            ["NaT", "2000-01-01T00:00:00Z", "2000-01-02T00:00:00Z"],
        ),
    ],
)
def test_cf_datetime_nan(num_dates, units, expected_list) -> None:
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "All-NaN")
        actual = decode_cf_datetime(num_dates, units)
    # use pandas because numpy will deprecate timezone-aware conversions
    expected = pd.to_datetime(expected_list).to_numpy(dtype="datetime64[ns]")
    assert_array_equal(expected, actual)


@requires_cftime
def test_decoded_cf_datetime_array_2d(time_unit: PDDatetimeUnitOptions) -> None:
    # regression test for GH1229
    variable = Variable(
        ("x", "y"), np.array([[0, 1], [2, 3]]), {"units": "days since 2000-01-01"}
    )
    result = CFDatetimeCoder(time_unit=time_unit).decode(variable)
    assert result.dtype == f"datetime64[{time_unit}]"
    expected = pd.date_range("2000-01-01", periods=4).values.reshape(2, 2)
    assert_array_equal(np.asarray(result), expected)


@pytest.mark.parametrize("decode_times", [True, False])
@pytest.mark.parametrize("mask_and_scale", [True, False])
def test_decode_datetime_mask_and_scale(
    decode_times: bool, mask_and_scale: bool
) -> None:
    attrs = {
        "units": "nanoseconds since 1970-01-01",
        "calendar": "proleptic_gregorian",
        "_FillValue": np.int16(-1),
        "add_offset": 100000.0,
    }
    encoded = Variable(["time"], np.array([0, -1, 1], "int16"), attrs=attrs)
    decoded = conventions.decode_cf_variable(
        "foo", encoded, mask_and_scale=mask_and_scale, decode_times=decode_times
    )
    result = conventions.encode_cf_variable(decoded, name="foo")
    assert_identical(encoded, result)
    assert encoded.dtype == result.dtype


FREQUENCIES_TO_ENCODING_UNITS = {
    "ns": "nanoseconds",
    "us": "microseconds",
    "ms": "milliseconds",
    "s": "seconds",
    "min": "minutes",
    "h": "hours",
    "D": "days",
}


@pytest.mark.parametrize(("freq", "units"), FREQUENCIES_TO_ENCODING_UNITS.items())
def test_infer_datetime_units(freq, units) -> None:
    dates = pd.date_range("2000", periods=2, freq=freq)
    expected = f"{units} since 2000-01-01 00:00:00"
    assert expected == infer_datetime_units(dates)


@pytest.mark.parametrize(
    ["dates", "expected"],
    [
        (
            pd.to_datetime(["1900-01-01", "1900-01-02", "NaT"], unit="ns"),
            "days since 1900-01-01 00:00:00",
        ),
        (
            pd.to_datetime(["NaT", "1900-01-01"], unit="ns"),
            "days since 1900-01-01 00:00:00",
        ),
        (pd.to_datetime(["NaT"], unit="ns"), "days since 1970-01-01 00:00:00"),
    ],
)
def test_infer_datetime_units_with_NaT(dates, expected) -> None:
    assert expected == infer_datetime_units(dates)


_CFTIME_DATETIME_UNITS_TESTS = [
    ([(1900, 1, 1), (1900, 1, 1)], "days since 1900-01-01 00:00:00.000000"),
    (
        [(1900, 1, 1), (1900, 1, 2), (1900, 1, 2, 0, 0, 1)],
        "seconds since 1900-01-01 00:00:00.000000",
    ),
    (
        [(1900, 1, 1), (1900, 1, 8), (1900, 1, 16)],
        "days since 1900-01-01 00:00:00.000000",
    ),
]


@requires_cftime
@pytest.mark.parametrize(
    "calendar", _NON_STANDARD_CALENDARS + ["gregorian", "proleptic_gregorian"]
)
@pytest.mark.parametrize(("date_args", "expected"), _CFTIME_DATETIME_UNITS_TESTS)
def test_infer_cftime_datetime_units(calendar, date_args, expected) -> None:
    date_type = _all_cftime_date_types()[calendar]
    dates = list(starmap(date_type, date_args))
    assert expected == infer_datetime_units(dates)


@pytest.mark.filterwarnings("ignore:Timedeltas can't be serialized faithfully")
@pytest.mark.parametrize(
    ["timedeltas", "units", "numbers"],
    [
        ("1D", "days", np.int64(1)),
        (["1D", "2D", "3D"], "days", np.array([1, 2, 3], "int64")),
        ("1h", "hours", np.int64(1)),
        ("1ms", "milliseconds", np.int64(1)),
        ("1us", "microseconds", np.int64(1)),
        ("1ns", "nanoseconds", np.int64(1)),
        (["NaT", "0s", "1s"], None, [np.iinfo(np.int64).min, 0, 1]),
        (["30m", "60m"], "hours", [0.5, 1.0]),
        ("NaT", "days", np.iinfo(np.int64).min),
        (["NaT", "NaT"], "days", [np.iinfo(np.int64).min, np.iinfo(np.int64).min]),
    ],
)
def test_cf_timedelta(timedeltas, units, numbers) -> None:
    if timedeltas == "NaT":
        timedeltas = np.timedelta64("NaT", "ns")
    else:
        timedeltas = pd.to_timedelta(timedeltas).to_numpy()
    numbers = np.array(numbers)

    expected = numbers
    actual, _ = encode_cf_timedelta(timedeltas, units)
    assert_array_equal(expected, actual)
    assert expected.dtype == actual.dtype

    if units is not None:
        expected = timedeltas
        actual = decode_cf_timedelta(numbers, units)
        assert_array_equal(expected, actual)
        assert expected.dtype == actual.dtype

    expected = np.timedelta64("NaT", "ns")
    actual = decode_cf_timedelta(np.array(np.nan), "days")
    assert_array_equal(expected, actual)
    assert expected.dtype == actual.dtype


def test_cf_timedelta_2d() -> None:
    units = "days"
    numbers = np.atleast_2d([1, 2, 3])

    timedeltas = np.atleast_2d(pd.to_timedelta(["1D", "2D", "3D"]).to_numpy())
    expected = timedeltas

    actual = decode_cf_timedelta(numbers, units)
    assert_array_equal(expected, actual)
    assert expected.dtype == actual.dtype


@pytest.mark.parametrize("encoding_unit", FREQUENCIES_TO_ENCODING_UNITS.values())
def test_decode_cf_timedelta_time_unit(
    time_unit: PDDatetimeUnitOptions, encoding_unit
) -> None:
    encoded = 1
    encoding_unit_as_numpy = _netcdf_to_numpy_timeunit(encoding_unit)
    if np.timedelta64(1, time_unit) > np.timedelta64(1, encoding_unit_as_numpy):
        expected = np.timedelta64(encoded, encoding_unit_as_numpy)
    else:
        expected = np.timedelta64(encoded, encoding_unit_as_numpy).astype(
            f"timedelta64[{time_unit}]"
        )
    result = decode_cf_timedelta(encoded, encoding_unit, time_unit)
    assert result == expected
    assert result.dtype == expected.dtype


def test_decode_cf_timedelta_time_unit_out_of_bounds(
    time_unit: PDDatetimeUnitOptions,
) -> None:
    # Define a scale factor that will guarantee overflow with the given
    # time_unit.
    scale_factor = np.timedelta64(1, time_unit) // np.timedelta64(1, "ns")
    encoded = scale_factor * 300 * 365
    with pytest.raises(OutOfBoundsTimedelta):
        decode_cf_timedelta(encoded, "days", time_unit)


def test_cf_timedelta_roundtrip_large_value(time_unit: PDDatetimeUnitOptions) -> None:
    value = np.timedelta64(np.iinfo(np.int64).max, time_unit)
    encoded, units = encode_cf_timedelta(value)
    decoded = decode_cf_timedelta(encoded, units, time_unit=time_unit)
    assert value == decoded
    assert value.dtype == decoded.dtype


@pytest.mark.parametrize(
    ["deltas", "expected"],
    [
        (pd.to_timedelta(["1 day", "2 days"]), "days"),
        (pd.to_timedelta(["1h", "1 day 1 hour"]), "hours"),
        (pd.to_timedelta(["1m", "2m", np.nan]), "minutes"),
        (pd.to_timedelta(["1m3s", "1m4s"]), "seconds"),
    ],
)
def test_infer_timedelta_units(deltas, expected) -> None:
    assert expected == infer_timedelta_units(deltas)


@requires_cftime
@pytest.mark.parametrize(
    ["date_args", "expected"],
    [
        ((1, 2, 3, 4, 5, 6), "0001-02-03 04:05:06.000000"),
        ((10, 2, 3, 4, 5, 6), "0010-02-03 04:05:06.000000"),
        ((100, 2, 3, 4, 5, 6), "0100-02-03 04:05:06.000000"),
        ((1000, 2, 3, 4, 5, 6), "1000-02-03 04:05:06.000000"),
    ],
)
def test_format_cftime_datetime(date_args, expected) -> None:
    date_types = _all_cftime_date_types()
    for date_type in date_types.values():
        result = format_cftime_datetime(date_type(*date_args))
        assert result == expected


@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_cf(calendar, time_unit: PDDatetimeUnitOptions) -> None:
    days = [1.0, 2.0, 3.0]
    # TODO: GH5690 — do we want to allow this type for `coords`?
    da = DataArray(days, coords=[days], dims=["time"], name="test")
    ds = da.to_dataset()

    for v in ["test", "time"]:
        ds[v].attrs["units"] = "days since 2001-01-01"
        ds[v].attrs["calendar"] = calendar

    if not has_cftime and calendar not in _STANDARD_CALENDAR_NAMES:
        with pytest.raises(ValueError):
            ds = decode_cf(ds)
    else:
        ds = decode_cf(ds, decode_times=CFDatetimeCoder(time_unit=time_unit))

        if calendar not in _STANDARD_CALENDAR_NAMES:
            assert ds.test.dtype == np.dtype("O")
        else:
            assert ds.test.dtype == np.dtype(f"=M8[{time_unit}]")


def test_decode_cf_time_bounds(time_unit: PDDatetimeUnitOptions) -> None:
    da = DataArray(
        np.arange(6, dtype="int64").reshape((3, 2)),
        coords={"time": [1, 2, 3]},
        dims=("time", "nbnd"),
        name="time_bnds",
    )

    attrs = {
        "units": "days since 2001-01",
        "calendar": "standard",
        "bounds": "time_bnds",
    }

    ds = da.to_dataset()
    ds["time"].attrs.update(attrs)
    _update_bounds_attributes(ds.variables)
    assert ds.variables["time_bnds"].attrs == {
        "units": "days since 2001-01",
        "calendar": "standard",
    }
    dsc = decode_cf(ds, decode_times=CFDatetimeCoder(time_unit=time_unit))
    assert dsc.time_bnds.dtype == np.dtype(f"=M8[{time_unit}]")
    dsc = decode_cf(ds, decode_times=False)
    assert dsc.time_bnds.dtype == np.dtype("int64")

    # Do not overwrite existing attrs
    ds = da.to_dataset()
    ds["time"].attrs.update(attrs)
    bnd_attr = {"units": "hours since 2001-01", "calendar": "noleap"}
    ds["time_bnds"].attrs.update(bnd_attr)
    _update_bounds_attributes(ds.variables)
    assert ds.variables["time_bnds"].attrs == bnd_attr

    # If bounds variable not available do not complain
    ds = da.to_dataset()
    ds["time"].attrs.update(attrs)
    ds["time"].attrs["bounds"] = "fake_var"
    _update_bounds_attributes(ds.variables)


@requires_cftime
def test_encode_time_bounds() -> None:
    time = pd.date_range("2000-01-16", periods=1)
    time_bounds = pd.date_range("2000-01-01", periods=2, freq="MS")
    ds = Dataset(dict(time=time, time_bounds=time_bounds))
    ds.time.attrs = {"bounds": "time_bounds"}
    ds.time.encoding = {"calendar": "noleap", "units": "days since 2000-01-01"}

    expected = {}
    # expected['time'] = Variable(data=np.array([15]), dims=['time'])
    expected["time_bounds"] = Variable(data=np.array([0, 31]), dims=["time_bounds"])

    encoded, _ = cf_encoder(ds.variables, ds.attrs)
    assert_equal(encoded["time_bounds"], expected["time_bounds"])
    assert "calendar" not in encoded["time_bounds"].attrs
    assert "units" not in encoded["time_bounds"].attrs

    # if time_bounds attrs are same as time attrs, it doesn't matter
    ds.time_bounds.encoding = {"calendar": "noleap", "units": "days since 2000-01-01"}
    encoded, _ = cf_encoder(dict(ds.variables.items()), ds.attrs)
    assert_equal(encoded["time_bounds"], expected["time_bounds"])
    assert "calendar" not in encoded["time_bounds"].attrs
    assert "units" not in encoded["time_bounds"].attrs

    # for CF-noncompliant case of time_bounds attrs being different from
    # time attrs; preserve them for faithful roundtrip
    ds.time_bounds.encoding = {"calendar": "noleap", "units": "days since 1849-01-01"}
    encoded, _ = cf_encoder(dict(ds.variables.items()), ds.attrs)
    with pytest.raises(AssertionError):
        assert_equal(encoded["time_bounds"], expected["time_bounds"])
    assert "calendar" not in encoded["time_bounds"].attrs
    assert encoded["time_bounds"].attrs["units"] == ds.time_bounds.encoding["units"]

    ds.time.encoding = {}
    with pytest.warns(UserWarning):
        cf_encoder(ds.variables, ds.attrs)


@pytest.fixture(params=_ALL_CALENDARS)
def calendar(request):
    return request.param


@pytest.fixture
def times(calendar):
    import cftime

    return cftime.num2date(
        np.arange(4),
        units="hours since 2000-01-01",
        calendar=calendar,
        only_use_cftime_datetimes=True,
    )


@pytest.fixture
def data(times):
    data = np.random.rand(2, 2, 4)
    lons = np.linspace(0, 11, 2)
    lats = np.linspace(0, 20, 2)
    return DataArray(
        data, coords=[lons, lats, times], dims=["lon", "lat", "time"], name="data"
    )


@pytest.fixture
def times_3d(times):
    lons = np.linspace(0, 11, 2)
    lats = np.linspace(0, 20, 2)
    times_arr = np.random.choice(times, size=(2, 2, 4))
    return DataArray(
        times_arr, coords=[lons, lats, times], dims=["lon", "lat", "time"], name="data"
    )


@requires_cftime
def test_contains_cftime_datetimes_1d(data) -> None:
    assert contains_cftime_datetimes(data.time.variable)


@requires_cftime
@requires_dask
def test_contains_cftime_datetimes_dask_1d(data) -> None:
    assert contains_cftime_datetimes(data.time.variable.chunk())


@requires_cftime
def test_contains_cftime_datetimes_3d(times_3d) -> None:
    assert contains_cftime_datetimes(times_3d.variable)


@requires_cftime
@requires_dask
def test_contains_cftime_datetimes_dask_3d(times_3d) -> None:
    assert contains_cftime_datetimes(times_3d.variable.chunk())


@pytest.mark.parametrize("non_cftime_data", [DataArray([]), DataArray([1, 2])])
def test_contains_cftime_datetimes_non_cftimes(non_cftime_data) -> None:
    assert not contains_cftime_datetimes(non_cftime_data.variable)


@requires_dask
@pytest.mark.parametrize("non_cftime_data", [DataArray([]), DataArray([1, 2])])
def test_contains_cftime_datetimes_non_cftimes_dask(non_cftime_data) -> None:
    assert not contains_cftime_datetimes(non_cftime_data.variable.chunk())


@requires_cftime
@pytest.mark.parametrize("shape", [(24,), (8, 3), (2, 4, 3)])
def test_encode_cf_datetime_overflow(shape) -> None:
    # Test for fix to GH 2272
    dates = pd.date_range("2100", periods=24).values.reshape(shape)
    units = "days since 1800-01-01"
    calendar = "standard"

    num, _, _ = encode_cf_datetime(dates, units, calendar)
    roundtrip = decode_cf_datetime(num, units, calendar)
    np.testing.assert_array_equal(dates, roundtrip)


def test_encode_expected_failures() -> None:
    dates = pd.date_range("2000", periods=3)
    with pytest.raises(ValueError, match="invalid time units"):
        encode_cf_datetime(dates, units="days after 2000-01-01")
    with pytest.raises(ValueError, match="invalid reference date"):
        encode_cf_datetime(dates, units="days since NO_YEAR")


def test_encode_cf_datetime_pandas_min() -> None:
    # GH 2623
    dates = pd.date_range("2000", periods=3)
    num, units, calendar = encode_cf_datetime(dates)
    expected_num = np.array([0.0, 1.0, 2.0])
    expected_units = "days since 2000-01-01 00:00:00"
    expected_calendar = "proleptic_gregorian"
    np.testing.assert_array_equal(num, expected_num)
    assert units == expected_units
    assert calendar == expected_calendar


@requires_cftime
def test_encode_cf_datetime_invalid_pandas_valid_cftime() -> None:
    num, units, calendar = encode_cf_datetime(
        pd.date_range("2000", periods=3),
        # Pandas fails to parse this unit, but cftime is quite happy with it
        "days since 1970-01-01 00:00:00 00",
        "standard",
    )

    expected_num = [10957, 10958, 10959]
    expected_units = "days since 1970-01-01 00:00:00 00"
    expected_calendar = "standard"
    assert_array_equal(num, expected_num)
    assert units == expected_units
    assert calendar == expected_calendar


@requires_cftime
def test_time_units_with_timezone_roundtrip(calendar) -> None:
    # Regression test for GH 2649
    expected_units = "days since 2000-01-01T00:00:00-05:00"
    expected_num_dates = np.array([1, 2, 3])
    dates = decode_cf_datetime(expected_num_dates, expected_units, calendar)

    # Check that dates were decoded to UTC; here the hours should all
    # equal 5.
    result_hours = DataArray(dates).dt.hour
    expected_hours = DataArray([5, 5, 5])
    assert_equal(result_hours, expected_hours)

    # Check that the encoded values are accurately roundtripped.
    result_num_dates, result_units, result_calendar = encode_cf_datetime(
        dates, expected_units, calendar
    )

    if calendar in _STANDARD_CALENDARS:
        assert_duckarray_equal(result_num_dates, expected_num_dates)
    else:
        # cftime datetime arithmetic is not quite exact.
        assert_duckarray_allclose(result_num_dates, expected_num_dates)

    assert result_units == expected_units
    assert result_calendar == calendar


@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_default_standard_calendar_in_range(calendar) -> None:
    numerical_dates = [0, 1]
    units = "days since 2000-01-01"
    expected = pd.date_range("2000", periods=2)

    with assert_no_warnings():
        result = decode_cf_datetime(numerical_dates, units, calendar)
        np.testing.assert_array_equal(result, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
@pytest.mark.parametrize("units_year", [1500, 1580])
def test_use_cftime_default_standard_calendar_out_of_range(
    calendar, units_year
) -> None:
    from cftime import num2date

    numerical_dates = [0, 1]
    units = f"days since {units_year}-01-01"
    expected = num2date(
        numerical_dates, units, calendar, only_use_cftime_datetimes=True
    )

    with pytest.warns(SerializationWarning):
        result = decode_cf_datetime(numerical_dates, units, calendar)
        np.testing.assert_array_equal(result, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_default_non_standard_calendar(
    calendar, units_year, time_unit: PDDatetimeUnitOptions
) -> None:
    from cftime import num2date

    numerical_dates = [0, 1]
    units = f"days since {units_year}-01-01"
    expected = num2date(
        numerical_dates, units, calendar, only_use_cftime_datetimes=True
    )

    if time_unit == "ns" and units_year == 2500:
        with pytest.warns(SerializationWarning, match="Unable to decode time axis"):
            result = decode_cf_datetime(
                numerical_dates, units, calendar, time_unit=time_unit
            )
    else:
        with assert_no_warnings():
            result = decode_cf_datetime(
                numerical_dates, units, calendar, time_unit=time_unit
            )

    np.testing.assert_array_equal(result, expected)


@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_true(calendar, units_year) -> None:
    from cftime import num2date

    numerical_dates = [0, 1]
    units = f"days since {units_year}-01-01"
    expected = num2date(
        numerical_dates, units, calendar, only_use_cftime_datetimes=True
    )

    with assert_no_warnings():
        result = decode_cf_datetime(numerical_dates, units, calendar, use_cftime=True)
        np.testing.assert_array_equal(result, expected)


@pytest.mark.parametrize("calendar", _STANDARD_CALENDARS)
def test_use_cftime_false_standard_calendar_in_range(calendar) -> None:
    numerical_dates = [0, 1]
    units = "days since 2000-01-01"
    expected = pd.date_range("2000", periods=2)

    with assert_no_warnings():
        result = decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)
        np.testing.assert_array_equal(result, expected)


@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
@pytest.mark.parametrize("units_year", [1500, 1582])
def test_use_cftime_false_standard_calendar_out_of_range(calendar, units_year) -> None:
    numerical_dates = [0, 1]
    units = f"days since {units_year}-01-01"
    with pytest.raises(OutOfBoundsDatetime):
        decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)


@pytest.mark.parametrize("calendar", _NON_STANDARD_CALENDARS)
@pytest.mark.parametrize("units_year", [1500, 2000, 2500])
def test_use_cftime_false_non_standard_calendar(calendar, units_year) -> None:
    numerical_dates = [0, 1]
    units = f"days since {units_year}-01-01"
    with pytest.raises(OutOfBoundsDatetime):
        decode_cf_datetime(numerical_dates, units, calendar, use_cftime=False)


@requires_cftime
@pytest.mark.parametrize("calendar", _ALL_CALENDARS)
def test_decode_ambiguous_time_warns(calendar) -> None:
    # GH 4422, 4506
    from cftime import num2date

    # we don't decode non-standard calendards with
    # pandas so expect no warning will be emitted
    is_standard_calendar = calendar in _STANDARD_CALENDAR_NAMES

    dates = [1, 2, 3]
    units = "days since 1-1-1"
    expected = num2date(dates, units, calendar=calendar, only_use_cftime_datetimes=True)

    if is_standard_calendar:
        with pytest.warns(SerializationWarning) as record:
            result = decode_cf_datetime(dates, units, calendar=calendar)
        relevant_warnings = [
            r
            for r in record.list
            if str(r.message).startswith("Ambiguous reference date string: 1-1-1")
        ]
        assert len(relevant_warnings) == 1
    else:
        with assert_no_warnings():
            result = decode_cf_datetime(dates, units, calendar=calendar)

    np.testing.assert_array_equal(result, expected)


@pytest.mark.filterwarnings("ignore:Times can't be serialized faithfully")
@pytest.mark.parametrize("encoding_units", FREQUENCIES_TO_ENCODING_UNITS.values())
@pytest.mark.parametrize("freq", FREQUENCIES_TO_ENCODING_UNITS.keys())
@pytest.mark.parametrize("use_cftime", [True, False])
def test_encode_cf_datetime_defaults_to_correct_dtype(
    encoding_units, freq, use_cftime
) -> None:
    if not has_cftime and use_cftime:
        pytest.skip("Test requires cftime")
    if (freq == "ns" or encoding_units == "nanoseconds") and use_cftime:
        pytest.skip("Nanosecond frequency is not valid for cftime dates.")
    times = date_range("2000", periods=3, freq=freq, use_cftime=use_cftime)
    units = f"{encoding_units} since 2000-01-01"
    encoded, _units, _ = encode_cf_datetime(times, units)

    numpy_timeunit = _netcdf_to_numpy_timeunit(encoding_units)
    encoding_units_as_timedelta = np.timedelta64(1, numpy_timeunit)
    if pd.to_timedelta(1, freq) >= encoding_units_as_timedelta:
        assert encoded.dtype == np.int64
    else:
        assert encoded.dtype == np.float64


@pytest.mark.parametrize("freq", FREQUENCIES_TO_ENCODING_UNITS.keys())
def test_encode_decode_roundtrip_datetime64(
    freq, time_unit: PDDatetimeUnitOptions
) -> None:
    # See GH 4045. Prior to GH 4684 this test would fail for frequencies of
    # "s", "ms", "us", and "ns".
    initial_time = pd.date_range("1678-01-01", periods=1)
    times = initial_time.append(pd.date_range("1968", periods=2, freq=freq))
    variable = Variable(["time"], times)
    encoded = conventions.encode_cf_variable(variable)
    decoded = conventions.decode_cf_variable(
        "time", encoded, decode_times=CFDatetimeCoder(time_unit=time_unit)
    )
    assert_equal(variable, decoded)


@requires_cftime
@pytest.mark.parametrize("freq", ["us", "ms", "s", "min", "h", "D"])
def test_encode_decode_roundtrip_cftime(freq) -> None:
    initial_time = date_range("0001", periods=1, use_cftime=True)
    times = initial_time.append(
        date_range("0001", periods=2, freq=freq, use_cftime=True)
        + timedelta(days=291000 * 365)
    )
    variable = Variable(["time"], times)
    encoded = conventions.encode_cf_variable(variable)
    decoder = CFDatetimeCoder(use_cftime=True)
    decoded = conventions.decode_cf_variable("time", encoded, decode_times=decoder)
    assert_equal(variable, decoded)


@requires_cftime
def test__encode_datetime_with_cftime() -> None:
    # See GH 4870. cftime versions > 1.4.0 required us to adapt the
    # way _encode_datetime_with_cftime was written.
    import cftime

    calendar = "gregorian"
    times = cftime.num2date([0, 1], "hours since 2000-01-01", calendar)

    encoding_units = "days since 2000-01-01"
    # Since netCDF files do not support storing float128 values, we ensure that
    # float64 values are used by setting longdouble=False in num2date.  This try
    # except logic can be removed when xarray's minimum version of cftime is at
    # least 1.6.2.
    try:
        expected = cftime.date2num(times, encoding_units, calendar, longdouble=False)
    except TypeError:
        expected = cftime.date2num(times, encoding_units, calendar)
    result = _encode_datetime_with_cftime(times, encoding_units, calendar)
    np.testing.assert_equal(result, expected)


@requires_cftime
def test_round_trip_standard_calendar_cftime_datetimes_pre_reform() -> None:
    from cftime import DatetimeGregorian

    dates = np.array([DatetimeGregorian(1, 1, 1), DatetimeGregorian(2000, 1, 1)])
    encoded = encode_cf_datetime(dates, "seconds since 2000-01-01", "standard")
    with pytest.warns(SerializationWarning, match="Unable to decode time axis"):
        decoded = decode_cf_datetime(*encoded)
    np.testing.assert_equal(decoded, dates)


@pytest.mark.parametrize("calendar", ["standard", "gregorian"])
def test_encode_cf_datetime_gregorian_proleptic_gregorian_mismatch_error(
    calendar: str,
    time_unit: PDDatetimeUnitOptions,
) -> None:
    if time_unit == "ns":
        pytest.skip("datetime64[ns] values can only be defined post reform")
    dates = np.array(["0001-01-01", "2001-01-01"], dtype=f"datetime64[{time_unit}]")
    with pytest.raises(ValueError, match="proleptic_gregorian"):
        encode_cf_datetime(dates, "seconds since 2000-01-01", calendar)


@pytest.mark.parametrize("calendar", ["gregorian", "Gregorian", "GREGORIAN"])
def test_decode_encode_roundtrip_with_non_lowercase_letters(
    calendar, time_unit: PDDatetimeUnitOptions
) -> None:
    # See GH 5093.
    times = [0, 1]
    units = "days since 2000-01-01"
    attrs = {"calendar": calendar, "units": units}
    variable = Variable(["time"], times, attrs)
    decoded = conventions.decode_cf_variable(
        "time", variable, decode_times=CFDatetimeCoder(time_unit=time_unit)
    )
    encoded = conventions.encode_cf_variable(decoded)

    # Previously this would erroneously be an array of cftime.datetime
    # objects.  We check here that it is decoded properly to np.datetime64.
    assert np.issubdtype(decoded.dtype, np.datetime64)

    # Use assert_identical to ensure that the calendar attribute maintained its
    # original form throughout the roundtripping process, uppercase letters and
    # all.
    assert_identical(variable, encoded)


@requires_cftime
def test_should_cftime_be_used_source_outside_range():
    src = date_range(
        "1000-01-01", periods=100, freq="MS", calendar="noleap", use_cftime=True
    )
    with pytest.raises(
        ValueError, match="Source time range is not valid for numpy datetimes."
    ):
        _should_cftime_be_used(src, "standard", False)


@requires_cftime
def test_should_cftime_be_used_target_not_npable():
    src = date_range(
        "2000-01-01", periods=100, freq="MS", calendar="noleap", use_cftime=True
    )
    with pytest.raises(
        ValueError, match="Calendar 'noleap' is only valid with cftime."
    ):
        _should_cftime_be_used(src, "noleap", False)


@pytest.mark.parametrize(
    "dtype",
    [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64],
)
def test_decode_cf_datetime_varied_integer_dtypes(dtype):
    units = "seconds since 2018-08-22T03:23:03Z"
    num_dates = dtype(50)
    # Set use_cftime=False to ensure we cannot mask a failure by falling back
    # to cftime.
    result = decode_cf_datetime(num_dates, units, use_cftime=False)
    expected = np.asarray(np.datetime64("2018-08-22T03:23:53", "ns"))
    np.testing.assert_equal(result, expected)


@requires_cftime
def test_decode_cf_datetime_uint64_with_cftime():
    units = "days since 1700-01-01"
    num_dates = np.uint64(182621)
    result = decode_cf_datetime(num_dates, units)
    expected = np.asarray(np.datetime64("2200-01-01", "ns"))
    np.testing.assert_equal(result, expected)


def test_decode_cf_datetime_uint64_with_pandas_overflow_error():
    units = "nanoseconds since 1970-01-01"
    calendar = "standard"
    num_dates = np.uint64(1_000_000 * 86_400 * 360 * 500_000)
    with pytest.raises(OutOfBoundsTimedelta):
        decode_cf_datetime(num_dates, units, calendar, use_cftime=False)


@requires_cftime
def test_decode_cf_datetime_uint64_with_cftime_overflow_error():
    units = "microseconds since 1700-01-01"
    calendar = "360_day"
    num_dates = np.uint64(1_000_000 * 86_400 * 360 * 500_000)
    with pytest.raises(OverflowError):
        decode_cf_datetime(num_dates, units, calendar)


@pytest.mark.parametrize("use_cftime", [True, False])
def test_decode_0size_datetime(use_cftime):
    # GH1329
    if use_cftime and not has_cftime:
        pytest.skip()

    dtype = object if use_cftime else "=M8[ns]"
    expected = np.array([], dtype=dtype)
    actual = decode_cf_datetime(
        np.zeros(shape=0, dtype=np.int64),
        units="days since 1970-01-01 00:00:00",
        calendar="proleptic_gregorian",
        use_cftime=use_cftime,
    )
    np.testing.assert_equal(expected, actual)


def test_decode_float_datetime():
    num_dates = np.array([1867128, 1867134, 1867140], dtype="float32")
    units = "hours since 1800-01-01"
    calendar = "standard"

    expected = np.array(
        ["2013-01-01T00:00:00", "2013-01-01T06:00:00", "2013-01-01T12:00:00"],
        dtype="datetime64[ns]",
    )

    actual = decode_cf_datetime(
        num_dates, units=units, calendar=calendar, use_cftime=False
    )
    np.testing.assert_equal(actual, expected)


@pytest.mark.parametrize("time_unit", ["ms", "us", "ns"])
def test_decode_float_datetime_with_decimals(
    time_unit: PDDatetimeUnitOptions,
) -> None:
    # test resolution enhancement for floats
    values = np.array([0, 0.125, 0.25, 0.375, 0.75, 1.0], dtype="float32")
    expected = np.array(
        [
            "2000-01-01T00:00:00.000",
            "2000-01-01T00:00:00.125",
            "2000-01-01T00:00:00.250",
            "2000-01-01T00:00:00.375",
            "2000-01-01T00:00:00.750",
            "2000-01-01T00:00:01.000",
        ],
        dtype=f"=M8[{time_unit}]",
    )

    units = "seconds since 2000-01-01"
    calendar = "standard"
    actual = decode_cf_datetime(values, units, calendar, time_unit=time_unit)
    assert actual.dtype == expected.dtype
    np.testing.assert_equal(actual, expected)


@pytest.mark.parametrize(
    "time_unit, num", [("s", 0.123), ("ms", 0.1234), ("us", 0.1234567)]
)
def test_coding_float_datetime_warning(
    time_unit: PDDatetimeUnitOptions, num: float
) -> None:
    units = "seconds since 2000-01-01"
    calendar = "standard"
    values = np.array([num], dtype="float32")
    with pytest.warns(
        SerializationWarning,
        match=f"Can't decode floating point datetimes to {time_unit!r}",
    ):
        decode_cf_datetime(values, units, calendar, time_unit=time_unit)


@requires_cftime
def test_scalar_unit() -> None:
    # test that a scalar units (often NaN when using to_netcdf) does not raise an error
    variable = Variable(("x", "y"), np.array([[0, 1], [2, 3]]), {"units": np.nan})
    result = CFDatetimeCoder().decode(variable)
    assert np.isnan(result.attrs["units"])


@requires_cftime
def test_contains_cftime_lazy() -> None:
    import cftime

    from xarray.core.common import _contains_cftime_datetimes

    times = np.array(
        [cftime.DatetimeGregorian(1, 1, 2, 0), cftime.DatetimeGregorian(1, 1, 2, 0)],
        dtype=object,
    )
    array = FirstElementAccessibleArray(times)
    assert _contains_cftime_datetimes(array)


@pytest.mark.parametrize(
    "timestr, format, dtype, fill_value, use_encoding",
    [
        ("1677-09-21T00:12:43.145224193", "ns", np.int64, 20, True),
        ("1970-09-21T00:12:44.145224808", "ns", np.float64, 1e30, True),
        (
            "1677-09-21T00:12:43.145225216",
            "ns",
            np.float64,
            -9.223372036854776e18,
            True,
        ),
        ("1677-09-21T00:12:43.145224193", "ns", np.int64, None, False),
        ("1677-09-21T00:12:43.145225", "us", np.int64, None, False),
        ("1970-01-01T00:00:01.000001", "us", np.int64, None, False),
        ("1677-09-21T00:21:52.901038080", "ns", np.float32, 20.0, True),
    ],
)
def test_roundtrip_datetime64_nanosecond_precision(
    timestr: str,
    format: Literal["ns", "us"],
    dtype: np.typing.DTypeLike,
    fill_value: int | float | None,
    use_encoding: bool,
    time_unit: PDDatetimeUnitOptions,
) -> None:
    # test for GH7817
    time = np.datetime64(timestr, format)
    times = [np.datetime64("1970-01-01T00:00:00", format), np.datetime64("NaT"), time]

    if use_encoding:
        encoding = dict(dtype=dtype, _FillValue=fill_value)
    else:
        encoding = {}

    var = Variable(["time"], times, encoding=encoding)
    assert var.dtype == np.dtype(f"=M8[{format}]")

    encoded_var = conventions.encode_cf_variable(var)
    assert (
        encoded_var.attrs["units"]
        == f"{_numpy_to_netcdf_timeunit(format)} since 1970-01-01 00:00:00"
    )
    assert encoded_var.attrs["calendar"] == "proleptic_gregorian"
    assert encoded_var.data.dtype == dtype
    decoded_var = conventions.decode_cf_variable(
        "foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
    )

    result_unit = (
        format
        if np.timedelta64(1, format) <= np.timedelta64(1, time_unit)
        else time_unit
    )
    assert decoded_var.dtype == np.dtype(f"=M8[{result_unit}]")
    assert (
        decoded_var.encoding["units"]
        == f"{_numpy_to_netcdf_timeunit(format)} since 1970-01-01 00:00:00"
    )
    assert decoded_var.encoding["dtype"] == dtype
    assert decoded_var.encoding["calendar"] == "proleptic_gregorian"
    assert_identical(var, decoded_var)


def test_roundtrip_datetime64_nanosecond_precision_warning(
    time_unit: PDDatetimeUnitOptions,
) -> None:
    # test warning if times can't be serialized faithfully
    times = [
        np.datetime64("1970-01-01T00:01:00", time_unit),
        np.datetime64("NaT", time_unit),
        np.datetime64("1970-01-02T00:01:00", time_unit),
    ]
    units = "days since 1970-01-10T01:01:00"
    needed_units = "hours"
    new_units = f"{needed_units} since 1970-01-10T01:01:00"

    encoding = dict(dtype=None, _FillValue=20, units=units)
    var = Variable(["time"], times, encoding=encoding)
    with pytest.warns(UserWarning, match=f"Resolution of {needed_units!r} needed."):
        encoded_var = conventions.encode_cf_variable(var)
    assert encoded_var.dtype == np.float64
    assert encoded_var.attrs["units"] == units
    assert encoded_var.attrs["_FillValue"] == 20.0

    decoded_var = conventions.decode_cf_variable("foo", encoded_var)
    assert_identical(var, decoded_var)

    encoding = dict(dtype="int64", _FillValue=20, units=units)
    var = Variable(["time"], times, encoding=encoding)
    with pytest.warns(
        UserWarning, match=f"Serializing with units {new_units!r} instead."
    ):
        encoded_var = conventions.encode_cf_variable(var)
    assert encoded_var.dtype == np.int64
    assert encoded_var.attrs["units"] == new_units
    assert encoded_var.attrs["_FillValue"] == 20

    decoded_var = conventions.decode_cf_variable(
        "foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
    )
    assert_identical(var, decoded_var)

    encoding = dict(dtype="float64", _FillValue=20, units=units)
    var = Variable(["time"], times, encoding=encoding)
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        encoded_var = conventions.encode_cf_variable(var)
    assert encoded_var.dtype == np.float64
    assert encoded_var.attrs["units"] == units
    assert encoded_var.attrs["_FillValue"] == 20.0

    decoded_var = conventions.decode_cf_variable(
        "foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
    )
    assert_identical(var, decoded_var)

    encoding = dict(dtype="int64", _FillValue=20, units=new_units)
    var = Variable(["time"], times, encoding=encoding)
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        encoded_var = conventions.encode_cf_variable(var)
    assert encoded_var.dtype == np.int64
    assert encoded_var.attrs["units"] == new_units
    assert encoded_var.attrs["_FillValue"] == 20

    decoded_var = conventions.decode_cf_variable(
        "foo", encoded_var, decode_times=CFDatetimeCoder(time_unit=time_unit)
    )
    assert_identical(var, decoded_var)


@pytest.mark.parametrize(
    "dtype, fill_value",
    [(np.int64, 20), (np.int64, np.iinfo(np.int64).min), (np.float64, 1e30)],
)
def test_roundtrip_timedelta64_nanosecond_precision(
    dtype: np.typing.DTypeLike,
    fill_value: int | float,
    time_unit: PDDatetimeUnitOptions,
) -> None:
    # test for GH7942
    one_day = np.timedelta64(1, "ns")
    nat = np.timedelta64("nat", "ns")
    timedelta_values = (np.arange(5) * one_day).astype("timedelta64[ns]")
    timedelta_values[2] = nat
    timedelta_values[4] = nat

    encoding = dict(dtype=dtype, _FillValue=fill_value, units="nanoseconds")
    var = Variable(["time"], timedelta_values, encoding=encoding)

    encoded_var = conventions.encode_cf_variable(var)
    decoded_var = conventions.decode_cf_variable(
        "foo",
        encoded_var,
        decode_times=CFDatetimeCoder(time_unit=time_unit),
        decode_timedelta=CFTimedeltaCoder(time_unit=time_unit),
    )

    assert_identical(var, decoded_var)


def test_roundtrip_timedelta64_nanosecond_precision_warning() -> None:
    # test warning if timedeltas can't be serialized faithfully
    one_day = np.timedelta64(1, "D")
    nat = np.timedelta64("nat", "ns")
    timedelta_values = (np.arange(5) * one_day).astype("timedelta64[ns]")
    timedelta_values[2] = nat
    timedelta_values[4] = np.timedelta64(12, "h").astype("timedelta64[ns]")

    units = "days"
    needed_units = "hours"
    wmsg = (
        f"Timedeltas can't be serialized faithfully with requested units {units!r}. "
        f"Serializing with units {needed_units!r} instead."
    )
    encoding = dict(dtype=np.int64, _FillValue=20, units=units)
    var = Variable(["time"], timedelta_values, encoding=encoding)
    with pytest.warns(UserWarning, match=wmsg):
        encoded_var = conventions.encode_cf_variable(var)
    assert encoded_var.dtype == np.int64
    assert encoded_var.attrs["units"] == needed_units
    assert encoded_var.attrs["_FillValue"] == 20
    decoded_var = conventions.decode_cf_variable(
        "foo", encoded_var, decode_timedelta=CFTimedeltaCoder(time_unit="ns")
    )
    assert_identical(var, decoded_var)
    assert decoded_var.encoding["dtype"] == np.int64


_TEST_ROUNDTRIP_FLOAT_TIMES_TESTS = {
    "GH-8271": (
        20.0,
        np.array(
            ["1970-01-01 00:00:00", "1970-01-01 06:00:00", "NaT"],
            dtype="datetime64[ns]",
        ),
        "days since 1960-01-01",
        np.array([3653, 3653.25, 20.0]),
    ),
    "GH-9488-datetime64[ns]": (
        1.0e20,
        np.array(["2010-01-01 12:00:00", "NaT"], dtype="datetime64[ns]"),
        "seconds since 2010-01-01",
        np.array([43200, 1.0e20]),
    ),
    "GH-9488-timedelta64[ns]": (
        1.0e20,
        np.array([1_000_000_000, "NaT"], dtype="timedelta64[ns]"),
        "seconds",
        np.array([1.0, 1.0e20]),
    ),
}


@pytest.mark.parametrize(
    ("fill_value", "times", "units", "encoded_values"),
    _TEST_ROUNDTRIP_FLOAT_TIMES_TESTS.values(),
    ids=_TEST_ROUNDTRIP_FLOAT_TIMES_TESTS.keys(),
)
def test_roundtrip_float_times(fill_value, times, units, encoded_values) -> None:
    # Regression test for GitHub issues #8271 and #9488
    var = Variable(
        ["time"],
        times,
        encoding=dict(dtype=np.float64, _FillValue=fill_value, units=units),
    )

    encoded_var = conventions.encode_cf_variable(var)
    np.testing.assert_array_equal(encoded_var, encoded_values)
    assert encoded_var.attrs["units"] == units
    assert encoded_var.attrs["_FillValue"] == fill_value

    decoded_var = conventions.decode_cf_variable(
        "foo", encoded_var, decode_timedelta=CFTimedeltaCoder(time_unit="ns")
    )
    assert_identical(var, decoded_var)
    assert decoded_var.encoding["units"] == units
    assert decoded_var.encoding["_FillValue"] == fill_value


_ENCODE_DATETIME64_VIA_DASK_TESTS = {
    "pandas-encoding-with-prescribed-units-and-dtype": (
        "D",
        "days since 1700-01-01",
        np.dtype("int32"),
    ),
    "mixed-cftime-pandas-encoding-with-prescribed-units-and-dtype": pytest.param(
        "250YS", "days since 1700-01-01", np.dtype("int32"), marks=requires_cftime
    ),
    "pandas-encoding-with-default-units-and-dtype": ("250YS", None, None),
}


@requires_dask
@pytest.mark.parametrize(
    ("freq", "units", "dtype"),
    _ENCODE_DATETIME64_VIA_DASK_TESTS.values(),
    ids=_ENCODE_DATETIME64_VIA_DASK_TESTS.keys(),
)
def test_encode_cf_datetime_datetime64_via_dask(
    freq, units, dtype, time_unit: PDDatetimeUnitOptions
) -> None:
    import dask.array

    times_pd = pd.date_range(start="1700", freq=freq, periods=3, unit=time_unit)
    times = dask.array.from_array(times_pd, chunks=1)
    encoded_times, encoding_units, encoding_calendar = encode_cf_datetime(
        times, units, None, dtype
    )

    assert is_duck_dask_array(encoded_times)
    assert encoded_times.chunks == times.chunks

    if units is not None and dtype is not None:
        assert encoding_units == units
        assert encoded_times.dtype == dtype
    else:
        expected_netcdf_time_unit = _numpy_to_netcdf_timeunit(time_unit)
        assert encoding_units == f"{expected_netcdf_time_unit} since 1970-01-01"
        assert encoded_times.dtype == np.dtype("int64")

    assert encoding_calendar == "proleptic_gregorian"

    decoded_times = decode_cf_datetime(
        encoded_times, encoding_units, encoding_calendar, time_unit=time_unit
    )
    np.testing.assert_equal(decoded_times, times)
    assert decoded_times.dtype == times.dtype


@requires_dask
@pytest.mark.parametrize(
    ("range_function", "start", "units", "dtype"),
    [
        (pd.date_range, "2000", None, np.dtype("int32")),
        (pd.date_range, "2000", "days since 2000-01-01", None),
        (pd.timedelta_range, "0D", None, np.dtype("int32")),
        (pd.timedelta_range, "0D", "days", None),
    ],
)
def test_encode_via_dask_cannot_infer_error(
    range_function, start, units, dtype
) -> None:
    values = range_function(start=start, freq="D", periods=3)
    encoding = dict(units=units, dtype=dtype)
    variable = Variable(["time"], values, encoding=encoding).chunk({"time": 1})
    with pytest.raises(ValueError, match="When encoding chunked arrays"):
        conventions.encode_cf_variable(variable)


@requires_cftime
@requires_dask
@pytest.mark.parametrize(
    ("units", "dtype"), [("days since 1700-01-01", np.dtype("int32")), (None, None)]
)
def test_encode_cf_datetime_cftime_datetime_via_dask(units, dtype) -> None:
    import dask.array

    calendar = "standard"
    times_idx = date_range(
        start="1700", freq="D", periods=3, calendar=calendar, use_cftime=True
    )
    times = dask.array.from_array(times_idx, chunks=1)
    encoded_times, encoding_units, encoding_calendar = encode_cf_datetime(
        times, units, None, dtype
    )

    assert is_duck_dask_array(encoded_times)
    assert encoded_times.chunks == times.chunks

    if units is not None and dtype is not None:
        assert encoding_units == units
        assert encoded_times.dtype == dtype
    else:
        assert encoding_units == "microseconds since 1970-01-01"
        assert encoded_times.dtype == np.int64

    assert encoding_calendar == calendar

    decoded_times = decode_cf_datetime(
        encoded_times, encoding_units, encoding_calendar, use_cftime=True
    )
    np.testing.assert_equal(decoded_times, times)


@pytest.mark.parametrize(
    "use_cftime", [False, pytest.param(True, marks=requires_cftime)]
)
@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_datetime_units_change(use_cftime, use_dask) -> None:
    times = date_range(start="2000", freq="12h", periods=3, use_cftime=use_cftime)
    encoding = dict(units="days since 2000-01-01", dtype=np.dtype("int64"))
    variable = Variable(["time"], times, encoding=encoding)

    if use_dask:
        variable = variable.chunk({"time": 1})
        with pytest.raises(ValueError, match="Times can't be serialized"):
            conventions.encode_cf_variable(variable).compute()
    else:
        with pytest.warns(UserWarning, match="Times can't be serialized"):
            encoded = conventions.encode_cf_variable(variable)
        if use_cftime:
            expected_units = "hours since 2000-01-01 00:00:00.000000"
        else:
            expected_units = "hours since 2000-01-01"
        assert encoded.attrs["units"] == expected_units
        decoded = conventions.decode_cf_variable(
            "name", encoded, decode_times=CFDatetimeCoder(use_cftime=use_cftime)
        )
        assert_equal(variable, decoded)


@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_datetime_precision_loss_regression_test(use_dask) -> None:
    # Regression test for
    # https://github.com/pydata/xarray/issues/9134#issuecomment-2191446463
    times = date_range("2000", periods=5, freq="ns")
    encoding = dict(units="seconds since 1970-01-01", dtype=np.dtype("int64"))
    variable = Variable(["time"], times, encoding=encoding)

    if use_dask:
        variable = variable.chunk({"time": 1})
        with pytest.raises(ValueError, match="Times can't be serialized"):
            conventions.encode_cf_variable(variable).compute()
    else:
        with pytest.warns(UserWarning, match="Times can't be serialized"):
            encoded = conventions.encode_cf_variable(variable)
        decoded = conventions.decode_cf_variable("name", encoded)
        assert_equal(variable, decoded)


@requires_dask
@pytest.mark.parametrize(
    ("units", "dtype"), [("days", np.dtype("int32")), (None, None)]
)
def test_encode_cf_timedelta_via_dask(
    units: str | None, dtype: np.dtype | None, time_unit: PDDatetimeUnitOptions
) -> None:
    import dask.array

    times_pd = pd.timedelta_range(start="0D", freq="D", periods=3, unit=time_unit)  # type: ignore[call-arg]
    times = dask.array.from_array(times_pd, chunks=1)
    encoded_times, encoding_units = encode_cf_timedelta(times, units, dtype)

    assert is_duck_dask_array(encoded_times)
    assert encoded_times.chunks == times.chunks

    if units is not None and dtype is not None:
        assert encoding_units == units
        assert encoded_times.dtype == dtype
    else:
        assert encoding_units == _numpy_to_netcdf_timeunit(time_unit)
        assert encoded_times.dtype == np.dtype("int64")

    decoded_times = decode_cf_timedelta(
        encoded_times, encoding_units, time_unit=time_unit
    )
    np.testing.assert_equal(decoded_times, times)
    assert decoded_times.dtype == times.dtype


@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_timedelta_units_change(use_dask) -> None:
    timedeltas = pd.timedelta_range(start="0h", freq="12h", periods=3)
    encoding = dict(units="days", dtype=np.dtype("int64"))
    variable = Variable(["time"], timedeltas, encoding=encoding)

    if use_dask:
        variable = variable.chunk({"time": 1})
        with pytest.raises(ValueError, match="Timedeltas can't be serialized"):
            conventions.encode_cf_variable(variable).compute()
    else:
        # In this case we automatically modify the encoding units to continue
        # encoding with integer values.
        with pytest.warns(UserWarning, match="Timedeltas can't be serialized"):
            encoded = conventions.encode_cf_variable(variable)
        assert encoded.attrs["units"] == "hours"
        decoded = conventions.decode_cf_variable(
            "name", encoded, decode_timedelta=CFTimedeltaCoder(time_unit="ns")
        )
        assert_equal(variable, decoded)


@pytest.mark.parametrize("use_dask", [False, pytest.param(True, marks=requires_dask)])
def test_encode_cf_timedelta_small_dtype_missing_value(use_dask) -> None:
    # Regression test for GitHub issue #9134
    timedeltas = np.array([1, 2, "NaT", 4], dtype="timedelta64[D]").astype(
        "timedelta64[ns]"
    )
    encoding = dict(units="days", dtype=np.dtype("int16"), _FillValue=np.int16(-1))
    variable = Variable(["time"], timedeltas, encoding=encoding)

    if use_dask:
        variable = variable.chunk({"time": 1})

    encoded = conventions.encode_cf_variable(variable)
    decoded = conventions.decode_cf_variable("name", encoded, decode_timedelta=True)
    assert_equal(variable, decoded)


_DECODE_TIMEDELTA_VIA_UNITS_TESTS = {
    "default": (True, None, np.dtype("timedelta64[ns]"), True),
    "decode_timedelta=True": (True, True, np.dtype("timedelta64[ns]"), False),
    "decode_timedelta=False": (True, False, np.dtype("int64"), False),
    "inherit-time_unit-from-decode_times": (
        CFDatetimeCoder(time_unit="s"),
        None,
        np.dtype("timedelta64[s]"),
        True,
    ),
    "set-time_unit-via-CFTimedeltaCoder-decode_times=True": (
        True,
        CFTimedeltaCoder(time_unit="s"),
        np.dtype("timedelta64[s]"),
        False,
    ),
    "set-time_unit-via-CFTimedeltaCoder-decode_times=False": (
        False,
        CFTimedeltaCoder(time_unit="s"),
        np.dtype("timedelta64[s]"),
        False,
    ),
    "override-time_unit-from-decode_times": (
        CFDatetimeCoder(time_unit="ns"),
        CFTimedeltaCoder(time_unit="s"),
        np.dtype("timedelta64[s]"),
        False,
    ),
}


@pytest.mark.parametrize(
    ("decode_times", "decode_timedelta", "expected_dtype", "warns"),
    list(_DECODE_TIMEDELTA_VIA_UNITS_TESTS.values()),
    ids=list(_DECODE_TIMEDELTA_VIA_UNITS_TESTS.keys()),
)
def test_decode_timedelta_via_units(
    decode_times, decode_timedelta, expected_dtype, warns
) -> None:
    timedeltas = pd.timedelta_range(0, freq="D", periods=3)
    attrs = {"units": "days"}
    var = Variable(["time"], timedeltas, encoding=attrs)
    encoded = Variable(["time"], np.array([0, 1, 2]), attrs=attrs)
    if warns:
        with pytest.warns(
            FutureWarning,
            match="xarray will not decode the variable 'foo' into a timedelta64 dtype",
        ):
            decoded = conventions.decode_cf_variable(
                "foo",
                encoded,
                decode_times=decode_times,
                decode_timedelta=decode_timedelta,
            )
    else:
        decoded = conventions.decode_cf_variable(
            "foo", encoded, decode_times=decode_times, decode_timedelta=decode_timedelta
        )
    if decode_timedelta is False:
        assert_equal(encoded, decoded)
    else:
        assert_equal(var, decoded)
    assert decoded.dtype == expected_dtype


_DECODE_TIMEDELTA_VIA_DTYPE_TESTS = {
    "default": (True, None, "ns", np.dtype("timedelta64[ns]")),
    "decode_timedelta=False": (True, False, "ns", np.dtype("int64")),
    "decode_timedelta=True": (True, True, "ns", np.dtype("timedelta64[ns]")),
    "use-original-units": (True, True, "s", np.dtype("timedelta64[s]")),
    "inherit-time_unit-from-decode_times": (
        CFDatetimeCoder(time_unit="s"),
        None,
        "ns",
        np.dtype("timedelta64[s]"),
    ),
    "set-time_unit-via-CFTimedeltaCoder-decode_times=True": (
        True,
        CFTimedeltaCoder(time_unit="s"),
        "ns",
        np.dtype("timedelta64[s]"),
    ),
    "set-time_unit-via-CFTimedeltaCoder-decode_times=False": (
        False,
        CFTimedeltaCoder(time_unit="s"),
        "ns",
        np.dtype("timedelta64[s]"),
    ),
    "override-time_unit-from-decode_times": (
        CFDatetimeCoder(time_unit="ns"),
        CFTimedeltaCoder(time_unit="s"),
        "ns",
        np.dtype("timedelta64[s]"),
    ),
    "decode-different-units": (
        True,
        CFTimedeltaCoder(time_unit="us"),
        "s",
        np.dtype("timedelta64[us]"),
    ),
}


@pytest.mark.parametrize(
    ("decode_times", "decode_timedelta", "original_unit", "expected_dtype"),
    list(_DECODE_TIMEDELTA_VIA_DTYPE_TESTS.values()),
    ids=list(_DECODE_TIMEDELTA_VIA_DTYPE_TESTS.keys()),
)
def test_decode_timedelta_via_dtype(
    decode_times, decode_timedelta, original_unit, expected_dtype
) -> None:
    timedeltas = pd.timedelta_range(0, freq="D", periods=3, unit=original_unit)  # type: ignore[call-arg]
    encoding = {"units": "days"}
    var = Variable(["time"], timedeltas, encoding=encoding)
    encoded = conventions.encode_cf_variable(var)
    assert encoded.attrs["dtype"] == f"timedelta64[{original_unit}]"
    assert encoded.attrs["units"] == encoding["units"]
    decoded = conventions.decode_cf_variable(
        "foo", encoded, decode_times=decode_times, decode_timedelta=decode_timedelta
    )
    if decode_timedelta is False:
        assert_equal(encoded, decoded)
    else:
        assert_equal(var, decoded)
    assert decoded.dtype == expected_dtype


def test_lazy_decode_timedelta_unexpected_dtype() -> None:
    attrs = {"units": "seconds"}
    encoded = Variable(["time"], [0, 0.5, 1], attrs=attrs)
    decoded = conventions.decode_cf_variable(
        "foo", encoded, decode_timedelta=CFTimedeltaCoder(time_unit="s")
    )

    expected_dtype_upon_lazy_decoding = np.dtype("timedelta64[s]")
    assert decoded.dtype == expected_dtype_upon_lazy_decoding

    expected_dtype_upon_loading = np.dtype("timedelta64[ms]")
    with pytest.warns(SerializationWarning, match="Can't decode floating"):
        assert decoded.load().dtype == expected_dtype_upon_loading


def test_lazy_decode_timedelta_error() -> None:
    attrs = {"units": "seconds"}
    encoded = Variable(["time"], [0, np.iinfo(np.int64).max, 1], attrs=attrs)
    decoded = conventions.decode_cf_variable(
        "foo", encoded, decode_timedelta=CFTimedeltaCoder(time_unit="ms")
    )
    with pytest.raises(OutOfBoundsTimedelta, match="overflow"):
        decoded.load()


@pytest.mark.parametrize(
    "calendar",
    [
        "standard",
        pytest.param(
            "360_day", marks=pytest.mark.skipif(not has_cftime, reason="no cftime")
        ),
    ],
)
def test_duck_array_decode_times(calendar) -> None:
    from xarray.core.indexing import LazilyIndexedArray

    days = LazilyIndexedArray(DuckArrayWrapper(np.array([1.0, 2.0, 3.0])))
    var = Variable(
        ["time"], days, {"units": "days since 2001-01-01", "calendar": calendar}
    )
    decoded = conventions.decode_cf_variable(
        "foo", var, decode_times=CFDatetimeCoder(use_cftime=None)
    )
    if calendar not in _STANDARD_CALENDAR_NAMES:
        assert decoded.dtype == np.dtype("O")
    else:
        assert decoded.dtype == np.dtype("=M8[ns]")


@pytest.mark.parametrize("decode_timedelta", [True, False])
@pytest.mark.parametrize("mask_and_scale", [True, False])
def test_decode_timedelta_mask_and_scale(
    decode_timedelta: bool, mask_and_scale: bool
) -> None:
    attrs = {
        "dtype": "timedelta64[ns]",
        "units": "nanoseconds",
        "_FillValue": np.int16(-1),
        "add_offset": 100000.0,
    }
    encoded = Variable(["time"], np.array([0, -1, 1], "int16"), attrs=attrs)
    decoded = conventions.decode_cf_variable(
        "foo", encoded, mask_and_scale=mask_and_scale, decode_timedelta=decode_timedelta
    )
    result = conventions.encode_cf_variable(decoded, name="foo")
    assert_identical(encoded, result)
    assert encoded.dtype == result.dtype


def test_decode_floating_point_timedelta_no_serialization_warning() -> None:
    attrs = {"units": "seconds"}
    encoded = Variable(["time"], [0, 0.1, 0.2], attrs=attrs)
    decoded = conventions.decode_cf_variable("foo", encoded, decode_timedelta=True)
    with assert_no_warnings():
        decoded.load()


def test_timedelta64_coding_via_dtype(time_unit: PDDatetimeUnitOptions) -> None:
    timedeltas = np.array([0, 1, "NaT"], dtype=f"timedelta64[{time_unit}]")
    variable = Variable(["time"], timedeltas)
    expected_units = _numpy_to_netcdf_timeunit(time_unit)

    encoded = conventions.encode_cf_variable(variable)
    assert encoded.attrs["dtype"] == f"timedelta64[{time_unit}]"
    assert encoded.attrs["units"] == expected_units

    decoded = conventions.decode_cf_variable("timedeltas", encoded)
    assert decoded.encoding["dtype"] == np.dtype("int64")
    assert decoded.encoding["units"] == expected_units

    assert_identical(decoded, variable)
    assert decoded.dtype == variable.dtype

    reencoded = conventions.encode_cf_variable(decoded)
    assert_identical(reencoded, encoded)
    assert reencoded.dtype == encoded.dtype


def test_timedelta_coding_via_dtype_non_pandas_coarse_resolution_warning() -> None:
    attrs = {"dtype": "timedelta64[D]", "units": "days"}
    encoded = Variable(["time"], [0, 1, 2], attrs=attrs)
    with pytest.warns(UserWarning, match="xarray only supports"):
        decoded = conventions.decode_cf_variable("timedeltas", encoded)
    expected_array = np.array([0, 1, 2], dtype="timedelta64[D]")
    expected_array = expected_array.astype("timedelta64[s]")
    expected = Variable(["time"], expected_array)
    assert_identical(decoded, expected)
    assert decoded.dtype == np.dtype("timedelta64[s]")


@pytest.mark.xfail(reason="xarray does not recognize picoseconds as time-like")
def test_timedelta_coding_via_dtype_non_pandas_fine_resolution_warning() -> None:
    attrs = {"dtype": "timedelta64[ps]", "units": "picoseconds"}
    encoded = Variable(["time"], [0, 1000, 2000], attrs=attrs)
    with pytest.warns(UserWarning, match="xarray only supports"):
        decoded = conventions.decode_cf_variable("timedeltas", encoded)
    expected_array = np.array([0, 1000, 2000], dtype="timedelta64[ps]")
    expected_array = expected_array.astype("timedelta64[ns]")
    expected = Variable(["time"], expected_array)
    assert_identical(decoded, expected)
    assert decoded.dtype == np.dtype("timedelta64[ns]")


def test_timedelta_decode_via_dtype_invalid_encoding() -> None:
    attrs = {"dtype": "timedelta64[s]", "units": "seconds"}
    encoding = {"units": "foo"}
    encoded = Variable(["time"], [0, 1, 2], attrs=attrs, encoding=encoding)
    with pytest.raises(ValueError, match="failed to prevent"):
        conventions.decode_cf_variable("timedeltas", encoded)


@pytest.mark.parametrize("attribute", ["dtype", "units"])
def test_timedelta_encode_via_dtype_invalid_attribute(attribute) -> None:
    timedeltas = pd.timedelta_range(0, freq="D", periods=3)
    attrs = {attribute: "foo"}
    variable = Variable(["time"], timedeltas, attrs=attrs)
    with pytest.raises(ValueError, match="failed to prevent"):
        conventions.encode_cf_variable(variable)


@pytest.mark.parametrize(
    ("decode_via_units", "decode_via_dtype", "attrs", "expect_timedelta64"),
    [
        (True, True, {"units": "seconds"}, True),
        (True, False, {"units": "seconds"}, True),
        (False, True, {"units": "seconds"}, False),
        (False, False, {"units": "seconds"}, False),
        (True, True, {"dtype": "timedelta64[s]", "units": "seconds"}, True),
        (True, False, {"dtype": "timedelta64[s]", "units": "seconds"}, True),
        (False, True, {"dtype": "timedelta64[s]", "units": "seconds"}, True),
        (False, False, {"dtype": "timedelta64[s]", "units": "seconds"}, False),
    ],
    ids=lambda x: f"{x!r}",
)
def test_timedelta_decoding_options(
    decode_via_units, decode_via_dtype, attrs, expect_timedelta64
) -> None:
    array = np.array([0, 1, 2], dtype=np.dtype("int64"))
    encoded = Variable(["time"], array, attrs=attrs)

    # Confirm we decode to the expected dtype.
    decode_timedelta = CFTimedeltaCoder(
        time_unit="s",
        decode_via_units=decode_via_units,
        decode_via_dtype=decode_via_dtype,
    )
    decoded = conventions.decode_cf_variable(
        "foo", encoded, decode_timedelta=decode_timedelta
    )
    if expect_timedelta64:
        assert decoded.dtype == np.dtype("timedelta64[s]")
    else:
        assert decoded.dtype == np.dtype("int64")

    # Confirm we exactly roundtrip.
    reencoded = conventions.encode_cf_variable(decoded)

    expected = encoded.copy()
    if "dtype" not in attrs and decode_via_units:
        expected.attrs["dtype"] = "timedelta64[s]"
    assert_identical(reencoded, expected)


def test_timedelta_encoding_explicit_non_timedelta64_dtype() -> None:
    encoding = {"dtype": np.dtype("int32")}
    timedeltas = pd.timedelta_range(0, freq="D", periods=3)
    variable = Variable(["time"], timedeltas, encoding=encoding)

    encoded = conventions.encode_cf_variable(variable)
    assert encoded.attrs["units"] == "days"
    assert encoded.attrs["dtype"] == "timedelta64[ns]"
    assert encoded.dtype == np.dtype("int32")

    decoded = conventions.decode_cf_variable("foo", encoded)
    assert_identical(decoded, variable)

    reencoded = conventions.encode_cf_variable(decoded)
    assert_identical(reencoded, encoded)
    assert encoded.attrs["units"] == "days"
    assert encoded.attrs["dtype"] == "timedelta64[ns]"
    assert encoded.dtype == np.dtype("int32")


@pytest.mark.parametrize("mask_attribute", ["_FillValue", "missing_value"])
def test_timedelta64_coding_via_dtype_with_mask(
    time_unit: PDDatetimeUnitOptions, mask_attribute: str
) -> None:
    timedeltas = np.array([0, 1, "NaT"], dtype=f"timedelta64[{time_unit}]")
    mask = 10
    variable = Variable(["time"], timedeltas, encoding={mask_attribute: mask})
    expected_dtype = f"timedelta64[{time_unit}]"
    expected_units = _numpy_to_netcdf_timeunit(time_unit)

    encoded = conventions.encode_cf_variable(variable)
    assert encoded.attrs["dtype"] == expected_dtype
    assert encoded.attrs["units"] == expected_units
    assert encoded.attrs[mask_attribute] == mask
    assert encoded[-1] == mask

    decoded = conventions.decode_cf_variable("timedeltas", encoded)
    assert decoded.encoding["dtype"] == np.dtype("int64")
    assert decoded.encoding["units"] == expected_units
    assert decoded.encoding[mask_attribute] == mask
    assert np.isnat(decoded[-1])

    assert_identical(decoded, variable)
    assert decoded.dtype == variable.dtype

    reencoded = conventions.encode_cf_variable(decoded)
    assert_identical(reencoded, encoded)
    assert reencoded.dtype == encoded.dtype


def test_roundtrip_0size_timedelta(time_unit: PDDatetimeUnitOptions) -> None:
    # regression test for GitHub issue #10310
    encoding = {"units": "days", "dtype": np.dtype("int64")}
    data = np.array([], dtype=f"=m8[{time_unit}]")
    decoded = Variable(["time"], data, encoding=encoding)
    encoded = conventions.encode_cf_variable(decoded, name="foo")
    assert encoded.dtype == encoding["dtype"]
    assert encoded.attrs["units"] == encoding["units"]
    decoded = conventions.decode_cf_variable("foo", encoded, decode_timedelta=True)
    assert decoded.dtype == np.dtype(f"=m8[{time_unit}]")
    with assert_no_warnings():
        decoded.load()
    assert decoded.dtype == np.dtype("=m8[s]")
    assert decoded.encoding == encoding