File: test_combine.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (1370 lines) | stat: -rw-r--r-- 52,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
from __future__ import annotations

from itertools import product

import numpy as np
import pytest

from xarray import (
    DataArray,
    Dataset,
    MergeError,
    combine_by_coords,
    combine_nested,
    concat,
    merge,
    set_options,
)
from xarray.core import dtypes
from xarray.structure.combine import (
    _check_shape_tile_ids,
    _combine_all_along_first_dim,
    _combine_nd,
    _infer_concat_order_from_coords,
    _infer_concat_order_from_positions,
    _new_tile_id,
)
from xarray.tests import assert_equal, assert_identical, requires_cftime
from xarray.tests.test_dataset import create_test_data


def assert_combined_tile_ids_equal(dict1, dict2):
    assert len(dict1) == len(dict2)
    for k in dict1.keys():
        assert k in dict2.keys()
        assert_equal(dict1[k], dict2[k])


class TestTileIDsFromNestedList:
    def test_1d(self):
        ds = create_test_data
        input = [ds(0), ds(1)]

        expected = {(0,): ds(0), (1,): ds(1)}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_2d(self):
        ds = create_test_data
        input = [[ds(0), ds(1)], [ds(2), ds(3)], [ds(4), ds(5)]]

        expected = {
            (0, 0): ds(0),
            (0, 1): ds(1),
            (1, 0): ds(2),
            (1, 1): ds(3),
            (2, 0): ds(4),
            (2, 1): ds(5),
        }
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_3d(self):
        ds = create_test_data
        input = [
            [[ds(0), ds(1)], [ds(2), ds(3)], [ds(4), ds(5)]],
            [[ds(6), ds(7)], [ds(8), ds(9)], [ds(10), ds(11)]],
        ]

        expected = {
            (0, 0, 0): ds(0),
            (0, 0, 1): ds(1),
            (0, 1, 0): ds(2),
            (0, 1, 1): ds(3),
            (0, 2, 0): ds(4),
            (0, 2, 1): ds(5),
            (1, 0, 0): ds(6),
            (1, 0, 1): ds(7),
            (1, 1, 0): ds(8),
            (1, 1, 1): ds(9),
            (1, 2, 0): ds(10),
            (1, 2, 1): ds(11),
        }
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_single_dataset(self):
        ds = create_test_data(0)
        input = [ds]

        expected = {(0,): ds}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_redundant_nesting(self):
        ds = create_test_data
        input = [[ds(0)], [ds(1)]]

        expected = {(0, 0): ds(0), (1, 0): ds(1)}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_ignore_empty_list(self):
        ds = create_test_data(0)
        input = [ds, []]
        expected = {(0,): ds}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_uneven_depth_input(self):
        # Auto_combine won't work on ragged input
        # but this is just to increase test coverage
        ds = create_test_data
        input = [ds(0), [ds(1), ds(2)]]

        expected = {(0,): ds(0), (1, 0): ds(1), (1, 1): ds(2)}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_uneven_length_input(self):
        # Auto_combine won't work on ragged input
        # but this is just to increase test coverage
        ds = create_test_data
        input = [[ds(0)], [ds(1), ds(2)]]

        expected = {(0, 0): ds(0), (1, 0): ds(1), (1, 1): ds(2)}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)

    def test_infer_from_datasets(self):
        ds = create_test_data
        input = [ds(0), ds(1)]

        expected = {(0,): ds(0), (1,): ds(1)}
        actual = _infer_concat_order_from_positions(input)
        assert_combined_tile_ids_equal(expected, actual)


class TestTileIDsFromCoords:
    def test_1d(self):
        ds0 = Dataset({"x": [0, 1]})
        ds1 = Dataset({"x": [2, 3]})

        expected = {(0,): ds0, (1,): ds1}
        actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["x"]

    def test_2d(self):
        ds0 = Dataset({"x": [0, 1], "y": [10, 20, 30]})
        ds1 = Dataset({"x": [2, 3], "y": [10, 20, 30]})
        ds2 = Dataset({"x": [0, 1], "y": [40, 50, 60]})
        ds3 = Dataset({"x": [2, 3], "y": [40, 50, 60]})
        ds4 = Dataset({"x": [0, 1], "y": [70, 80, 90]})
        ds5 = Dataset({"x": [2, 3], "y": [70, 80, 90]})

        expected = {
            (0, 0): ds0,
            (1, 0): ds1,
            (0, 1): ds2,
            (1, 1): ds3,
            (0, 2): ds4,
            (1, 2): ds5,
        }
        actual, concat_dims = _infer_concat_order_from_coords(
            [ds1, ds0, ds3, ds5, ds2, ds4]
        )
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["x", "y"]

    def test_no_dimension_coords(self):
        ds0 = Dataset({"foo": ("x", [0, 1])})
        ds1 = Dataset({"foo": ("x", [2, 3])})
        with pytest.raises(ValueError, match=r"Could not find any dimension"):
            _infer_concat_order_from_coords([ds1, ds0])

    def test_coord_not_monotonic(self):
        ds0 = Dataset({"x": [0, 1]})
        ds1 = Dataset({"x": [3, 2]})
        with pytest.raises(
            ValueError,
            match=r"Coordinate variable x is neither monotonically increasing nor",
        ):
            _infer_concat_order_from_coords([ds1, ds0])

    def test_coord_monotonically_decreasing(self):
        ds0 = Dataset({"x": [3, 2]})
        ds1 = Dataset({"x": [1, 0]})

        expected = {(0,): ds0, (1,): ds1}
        actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["x"]

    def test_no_concatenation_needed(self):
        ds = Dataset({"foo": ("x", [0, 1])})
        expected = {(): ds}
        actual, concat_dims = _infer_concat_order_from_coords([ds])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == []

    def test_2d_plus_bystander_dim(self):
        ds0 = Dataset({"x": [0, 1], "y": [10, 20, 30], "t": [0.1, 0.2]})
        ds1 = Dataset({"x": [2, 3], "y": [10, 20, 30], "t": [0.1, 0.2]})
        ds2 = Dataset({"x": [0, 1], "y": [40, 50, 60], "t": [0.1, 0.2]})
        ds3 = Dataset({"x": [2, 3], "y": [40, 50, 60], "t": [0.1, 0.2]})

        expected = {(0, 0): ds0, (1, 0): ds1, (0, 1): ds2, (1, 1): ds3}
        actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0, ds3, ds2])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["x", "y"]

    def test_string_coords(self):
        ds0 = Dataset({"person": ["Alice", "Bob"]})
        ds1 = Dataset({"person": ["Caroline", "Daniel"]})

        expected = {(0,): ds0, (1,): ds1}
        actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["person"]

    # Decided against natural sorting of string coords GH #2616
    def test_lexicographic_sort_string_coords(self):
        ds0 = Dataset({"simulation": ["run8", "run9"]})
        ds1 = Dataset({"simulation": ["run10", "run11"]})

        expected = {(0,): ds1, (1,): ds0}
        actual, concat_dims = _infer_concat_order_from_coords([ds1, ds0])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["simulation"]

    def test_datetime_coords(self):
        ds0 = Dataset(
            {"time": np.array(["2000-03-06", "2000-03-07"], dtype="datetime64[ns]")}
        )
        ds1 = Dataset(
            {"time": np.array(["1999-01-01", "1999-02-04"], dtype="datetime64[ns]")}
        )

        expected = {(0,): ds1, (1,): ds0}
        actual, concat_dims = _infer_concat_order_from_coords([ds0, ds1])
        assert_combined_tile_ids_equal(expected, actual)
        assert concat_dims == ["time"]


@pytest.fixture(scope="module")
def create_combined_ids():
    return _create_combined_ids


def _create_combined_ids(shape):
    tile_ids = _create_tile_ids(shape)
    nums = range(len(tile_ids))
    return {
        tile_id: create_test_data(num)
        for tile_id, num in zip(tile_ids, nums, strict=True)
    }


def _create_tile_ids(shape):
    tile_ids = product(*(range(i) for i in shape))
    return list(tile_ids)


class TestNewTileIDs:
    @pytest.mark.parametrize(
        "old_id, new_id",
        [((3, 0, 1), (0, 1)), ((0, 0), (0,)), ((1,), ()), ((0,), ()), ((1, 0), (0,))],
    )
    def test_new_tile_id(self, old_id, new_id):
        ds = create_test_data
        assert _new_tile_id((old_id, ds)) == new_id

    def test_get_new_tile_ids(self, create_combined_ids):
        shape = (1, 2, 3)
        combined_ids = create_combined_ids(shape)

        expected_tile_ids = sorted(combined_ids.keys())
        actual_tile_ids = _create_tile_ids(shape)
        assert expected_tile_ids == actual_tile_ids


class TestCombineND:
    @pytest.mark.parametrize(
        "concat_dim, kwargs", [("dim1", {}), ("new_dim", {"data_vars": "all"})]
    )
    def test_concat_once(self, create_combined_ids, concat_dim, kwargs):
        shape = (2,)
        combined_ids = create_combined_ids(shape)
        ds = create_test_data
        result = _combine_all_along_first_dim(
            combined_ids,
            dim=concat_dim,
            data_vars="all",
            coords="different",
            compat="no_conflicts",
            fill_value=dtypes.NA,
            join="outer",
            combine_attrs="drop",
        )

        expected_ds = concat([ds(0), ds(1)], dim=concat_dim, **kwargs)
        assert_combined_tile_ids_equal(result, {(): expected_ds})

    def test_concat_only_first_dim(self, create_combined_ids):
        shape = (2, 3)
        combined_ids = create_combined_ids(shape)
        result = _combine_all_along_first_dim(
            combined_ids,
            dim="dim1",
            data_vars="all",
            coords="different",
            compat="no_conflicts",
            fill_value=dtypes.NA,
            join="outer",
            combine_attrs="drop",
        )

        ds = create_test_data
        partway1 = concat([ds(0), ds(3)], dim="dim1")
        partway2 = concat([ds(1), ds(4)], dim="dim1")
        partway3 = concat([ds(2), ds(5)], dim="dim1")
        expected_datasets = [partway1, partway2, partway3]
        expected = {(i,): ds for i, ds in enumerate(expected_datasets)}

        assert_combined_tile_ids_equal(result, expected)

    @pytest.mark.parametrize(
        "concat_dim, kwargs", [("dim1", {}), ("new_dim", {"data_vars": "all"})]
    )
    def test_concat_twice(self, create_combined_ids, concat_dim, kwargs):
        shape = (2, 3)
        combined_ids = create_combined_ids(shape)
        result = _combine_nd(
            combined_ids,
            concat_dims=["dim1", concat_dim],
            data_vars="all",
            coords="different",
            compat="no_conflicts",
            fill_value=dtypes.NA,
            join="outer",
            combine_attrs="drop",
        )

        ds = create_test_data
        partway1 = concat([ds(0), ds(3)], dim="dim1")
        partway2 = concat([ds(1), ds(4)], dim="dim1")
        partway3 = concat([ds(2), ds(5)], dim="dim1")
        expected = concat([partway1, partway2, partway3], **kwargs, dim=concat_dim)

        assert_equal(result, expected)


class TestCheckShapeTileIDs:
    def test_check_depths(self):
        ds = create_test_data(0)
        combined_tile_ids = {(0,): ds, (0, 1): ds}
        with pytest.raises(
            ValueError, match=r"sub-lists do not have consistent depths"
        ):
            _check_shape_tile_ids(combined_tile_ids)

    def test_check_lengths(self):
        ds = create_test_data(0)
        combined_tile_ids = {(0, 0): ds, (0, 1): ds, (0, 2): ds, (1, 0): ds, (1, 1): ds}
        with pytest.raises(
            ValueError, match=r"sub-lists do not have consistent lengths"
        ):
            _check_shape_tile_ids(combined_tile_ids)


class TestNestedCombine:
    def test_nested_concat(self):
        objs = [Dataset({"x": [0]}), Dataset({"x": [1]})]
        expected = Dataset({"x": [0, 1]})
        actual = combine_nested(objs, concat_dim="x")
        assert_identical(expected, actual)
        actual = combine_nested(objs, concat_dim=["x"])
        assert_identical(expected, actual)

        actual = combine_nested([actual], concat_dim=None)
        assert_identical(expected, actual)

        actual = combine_nested([actual], concat_dim="x")
        assert_identical(expected, actual)

        objs = [Dataset({"x": [0, 1]}), Dataset({"x": [2]})]
        actual = combine_nested(objs, concat_dim="x")
        expected = Dataset({"x": [0, 1, 2]})
        assert_identical(expected, actual)

        # ensure combine_nested handles non-sorted variables
        objs = [
            Dataset({"x": ("a", [0]), "y": ("a", [0])}),
            Dataset({"y": ("a", [1]), "x": ("a", [1])}),
        ]
        actual = combine_nested(objs, concat_dim="a")
        expected = Dataset({"x": ("a", [0, 1]), "y": ("a", [0, 1])})
        assert_identical(expected, actual)

        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1]})]
        actual = combine_nested(objs, concat_dim="x")
        expected = Dataset({"x": [0, 1], "y": [0]})
        assert_identical(expected, actual)

    @pytest.mark.parametrize(
        "join, expected",
        [
            ("outer", Dataset({"x": [0, 1], "y": [0, 1]})),
            ("inner", Dataset({"x": [0, 1], "y": []})),
            ("left", Dataset({"x": [0, 1], "y": [0]})),
            ("right", Dataset({"x": [0, 1], "y": [1]})),
        ],
    )
    def test_combine_nested_join(self, join, expected):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
        actual = combine_nested(objs, concat_dim="x", join=join)
        assert_identical(expected, actual)

    def test_combine_nested_join_exact(self):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
        with pytest.raises(ValueError, match=r"cannot align.*join.*exact"):
            combine_nested(objs, concat_dim="x", join="exact")

    def test_empty_input(self):
        assert_identical(Dataset(), combine_nested([], concat_dim="x"))

    # Fails because of concat's weird treatment of dimension coords, see #2975
    @pytest.mark.xfail
    def test_nested_concat_too_many_dims_at_once(self):
        objs = [Dataset({"x": [0], "y": [1]}), Dataset({"y": [0], "x": [1]})]
        with pytest.raises(ValueError, match="not equal across datasets"):
            combine_nested(objs, concat_dim="x", coords="minimal")

    def test_nested_concat_along_new_dim(self):
        objs = [
            Dataset({"a": ("x", [10]), "x": [0]}),
            Dataset({"a": ("x", [20]), "x": [0]}),
        ]
        expected = Dataset({"a": (("t", "x"), [[10], [20]]), "x": [0]})
        actual = combine_nested(objs, data_vars="all", concat_dim="t")
        assert_identical(expected, actual)

        # Same but with a DataArray as new dim, see GH #1988 and #2647
        dim = DataArray([100, 150], name="baz", dims="baz")
        expected = Dataset(
            {"a": (("baz", "x"), [[10], [20]]), "x": [0], "baz": [100, 150]}
        )
        actual = combine_nested(objs, data_vars="all", concat_dim=dim)
        assert_identical(expected, actual)

    def test_nested_merge_with_self(self):
        data = Dataset({"x": 0})
        actual = combine_nested([data, data, data], concat_dim=None)
        assert_identical(data, actual)

    def test_nested_merge_with_overlapping_values(self):
        ds1 = Dataset({"a": ("x", [1, 2]), "x": [0, 1]})
        ds2 = Dataset({"a": ("x", [2, 3]), "x": [1, 2]})
        expected = Dataset({"a": ("x", [1, 2, 3]), "x": [0, 1, 2]})
        with pytest.warns(
            FutureWarning,
            match="will change from compat='no_conflicts' to compat='override'",
        ):
            actual = combine_nested([ds1, ds2], join="outer", concat_dim=None)
        assert_identical(expected, actual)
        actual = combine_nested(
            [ds1, ds2], join="outer", compat="no_conflicts", concat_dim=None
        )
        assert_identical(expected, actual)
        actual = combine_nested(
            [ds1, ds2], join="outer", compat="no_conflicts", concat_dim=[None]
        )
        assert_identical(expected, actual)

    def test_nested_merge_with_nan_no_conflicts(self):
        tmp1 = Dataset({"x": 0})
        tmp2 = Dataset({"x": np.nan})
        actual = combine_nested([tmp1, tmp2], compat="no_conflicts", concat_dim=None)
        assert_identical(tmp1, actual)
        with pytest.warns(
            FutureWarning,
            match="will change from compat='no_conflicts' to compat='override'",
        ):
            combine_nested([tmp1, tmp2], concat_dim=None)
        actual = combine_nested([tmp1, tmp2], compat="no_conflicts", concat_dim=[None])
        assert_identical(tmp1, actual)

    def test_nested_merge_with_concat_dim_explicitly_provided(self):
        # Test the issue reported in GH #1988
        objs = [Dataset({"x": 0, "y": 1})]
        dim = DataArray([100], name="baz", dims="baz")
        actual = combine_nested(objs, concat_dim=[dim], data_vars="all")
        expected = Dataset({"x": ("baz", [0]), "y": ("baz", [1])}, {"baz": [100]})
        assert_identical(expected, actual)

    def test_nested_merge_with_non_scalars(self):
        # Just making sure that auto_combine is doing what is
        # expected for non-scalar values, too.
        objs = [Dataset({"x": ("z", [0, 1]), "y": ("z", [1, 2])})]
        dim = DataArray([100], name="baz", dims="baz")
        actual = combine_nested(objs, concat_dim=[dim], data_vars="all")
        expected = Dataset(
            {"x": (("baz", "z"), [[0, 1]]), "y": (("baz", "z"), [[1, 2]])},
            {"baz": [100]},
        )
        assert_identical(expected, actual)

    def test_concat_multiple_dims(self):
        objs = [
            [Dataset({"a": (("x", "y"), [[0]])}), Dataset({"a": (("x", "y"), [[1]])})],
            [Dataset({"a": (("x", "y"), [[2]])}), Dataset({"a": (("x", "y"), [[3]])})],
        ]
        actual = combine_nested(objs, concat_dim=["x", "y"])
        expected = Dataset({"a": (("x", "y"), [[0, 1], [2, 3]])})
        assert_identical(expected, actual)

    def test_concat_name_symmetry(self):
        """Inspired by the discussion on GH issue #2777"""

        da1 = DataArray(name="a", data=[[0]], dims=["x", "y"])
        da2 = DataArray(name="b", data=[[1]], dims=["x", "y"])
        da3 = DataArray(name="a", data=[[2]], dims=["x", "y"])
        da4 = DataArray(name="b", data=[[3]], dims=["x", "y"])

        x_first = combine_nested([[da1, da2], [da3, da4]], concat_dim=["x", "y"])
        y_first = combine_nested([[da1, da3], [da2, da4]], concat_dim=["y", "x"])

        assert_identical(x_first, y_first)

    def test_concat_one_dim_merge_another(self):
        data = create_test_data(add_attrs=False)

        data1 = data.copy(deep=True)
        data2 = data.copy(deep=True)

        objs = [
            [data1.var1.isel(dim2=slice(4)), data2.var1.isel(dim2=slice(4, 9))],
            [data1.var2.isel(dim2=slice(4)), data2.var2.isel(dim2=slice(4, 9))],
        ]

        expected = data[["var1", "var2"]]
        actual = combine_nested(objs, concat_dim=[None, "dim2"])
        assert_identical(expected, actual)

    def test_auto_combine_2d(self):
        ds = create_test_data

        partway1 = concat([ds(0), ds(3)], dim="dim1")
        partway2 = concat([ds(1), ds(4)], dim="dim1")
        partway3 = concat([ds(2), ds(5)], dim="dim1")
        expected = concat([partway1, partway2, partway3], data_vars="all", dim="dim2")

        datasets = [[ds(0), ds(1), ds(2)], [ds(3), ds(4), ds(5)]]
        result = combine_nested(
            datasets,
            data_vars="all",
            concat_dim=["dim1", "dim2"],
        )
        assert_equal(result, expected)

    def test_auto_combine_2d_combine_attrs_kwarg(self):
        ds = lambda x: create_test_data(x, add_attrs=False)

        partway1 = concat([ds(0), ds(3)], dim="dim1")
        partway2 = concat([ds(1), ds(4)], dim="dim1")
        partway3 = concat([ds(2), ds(5)], dim="dim1")
        expected = concat([partway1, partway2, partway3], data_vars="all", dim="dim2")

        expected_dict = {}
        expected_dict["drop"] = expected.copy(deep=True)
        expected_dict["drop"].attrs = {}
        expected_dict["no_conflicts"] = expected.copy(deep=True)
        expected_dict["no_conflicts"].attrs = {
            "a": 1,
            "b": 2,
            "c": 3,
            "d": 4,
            "e": 5,
            "f": 6,
        }
        expected_dict["override"] = expected.copy(deep=True)
        expected_dict["override"].attrs = {"a": 1}
        f = lambda attrs, context: attrs[0]
        expected_dict[f] = expected.copy(deep=True)
        expected_dict[f].attrs = f([{"a": 1}], None)

        datasets = [[ds(0), ds(1), ds(2)], [ds(3), ds(4), ds(5)]]

        datasets[0][0].attrs = {"a": 1}
        datasets[0][1].attrs = {"a": 1, "b": 2}
        datasets[0][2].attrs = {"a": 1, "c": 3}
        datasets[1][0].attrs = {"a": 1, "d": 4}
        datasets[1][1].attrs = {"a": 1, "e": 5}
        datasets[1][2].attrs = {"a": 1, "f": 6}

        with pytest.raises(ValueError, match=r"combine_attrs='identical'"):
            result = combine_nested(
                datasets,
                concat_dim=["dim1", "dim2"],
                data_vars="all",
                combine_attrs="identical",
            )

        for combine_attrs, expected in expected_dict.items():
            result = combine_nested(
                datasets,
                concat_dim=["dim1", "dim2"],
                data_vars="all",
                combine_attrs=combine_attrs,
            )
            assert_identical(result, expected)

    def test_combine_nested_missing_data_new_dim(self):
        # Your data includes "time" and "station" dimensions, and each year's
        # data has a different set of stations.
        datasets = [
            Dataset({"a": ("x", [2, 3]), "x": [1, 2]}),
            Dataset({"a": ("x", [1, 2]), "x": [0, 1]}),
        ]
        expected = Dataset(
            {"a": (("t", "x"), [[np.nan, 2, 3], [1, 2, np.nan]])}, {"x": [0, 1, 2]}
        )
        actual = combine_nested(datasets, data_vars="all", join="outer", concat_dim="t")
        assert_identical(expected, actual)

    def test_invalid_hypercube_input(self):
        ds = create_test_data

        datasets = [[ds(0), ds(1), ds(2)], [ds(3), ds(4)]]
        with pytest.raises(
            ValueError, match=r"sub-lists do not have consistent lengths"
        ):
            combine_nested(datasets, concat_dim=["dim1", "dim2"])

        datasets = [[ds(0), ds(1)], [[ds(3), ds(4)]]]
        with pytest.raises(
            ValueError, match=r"sub-lists do not have consistent depths"
        ):
            combine_nested(datasets, concat_dim=["dim1", "dim2"])

        datasets = [[ds(0), ds(1)], [ds(3), ds(4)]]
        with pytest.raises(ValueError, match=r"concat_dims has length"):
            combine_nested(datasets, concat_dim=["dim1"])

    def test_merge_one_dim_concat_another(self):
        objs = [
            [Dataset({"foo": ("x", [0, 1])}), Dataset({"bar": ("x", [10, 20])})],
            [Dataset({"foo": ("x", [2, 3])}), Dataset({"bar": ("x", [30, 40])})],
        ]
        expected = Dataset({"foo": ("x", [0, 1, 2, 3]), "bar": ("x", [10, 20, 30, 40])})

        actual = combine_nested(objs, concat_dim=["x", None], compat="equals")
        assert_identical(expected, actual)

        # Proving it works symmetrically
        objs = [
            [Dataset({"foo": ("x", [0, 1])}), Dataset({"foo": ("x", [2, 3])})],
            [Dataset({"bar": ("x", [10, 20])}), Dataset({"bar": ("x", [30, 40])})],
        ]
        actual = combine_nested(objs, concat_dim=[None, "x"], compat="equals")
        assert_identical(expected, actual)

    def test_combine_concat_over_redundant_nesting(self):
        objs = [[Dataset({"x": [0]}), Dataset({"x": [1]})]]
        actual = combine_nested(objs, concat_dim=[None, "x"])
        expected = Dataset({"x": [0, 1]})
        assert_identical(expected, actual)

        objs = [[Dataset({"x": [0]})], [Dataset({"x": [1]})]]
        actual = combine_nested(objs, concat_dim=["x", None])
        expected = Dataset({"x": [0, 1]})
        assert_identical(expected, actual)

        objs = [[Dataset({"x": [0]})]]
        actual = combine_nested(objs, concat_dim=[None, None])
        expected = Dataset({"x": [0]})
        assert_identical(expected, actual)

    @pytest.mark.parametrize("fill_value", [dtypes.NA, 2, 2.0, {"a": 2, "b": 1}])
    def test_combine_nested_fill_value(self, fill_value):
        datasets = [
            Dataset({"a": ("x", [2, 3]), "b": ("x", [-2, 1]), "x": [1, 2]}),
            Dataset({"a": ("x", [1, 2]), "b": ("x", [3, -1]), "x": [0, 1]}),
        ]
        if fill_value == dtypes.NA:
            # if we supply the default, we expect the missing value for a
            # float array
            fill_value_a = fill_value_b = np.nan
        elif isinstance(fill_value, dict):
            fill_value_a = fill_value["a"]
            fill_value_b = fill_value["b"]
        else:
            fill_value_a = fill_value_b = fill_value
        expected = Dataset(
            {
                "a": (("t", "x"), [[fill_value_a, 2, 3], [1, 2, fill_value_a]]),
                "b": (("t", "x"), [[fill_value_b, -2, 1], [3, -1, fill_value_b]]),
            },
            {"x": [0, 1, 2]},
        )
        actual = combine_nested(
            datasets,
            concat_dim="t",
            data_vars="all",
            join="outer",
            fill_value=fill_value,
        )
        assert_identical(expected, actual)

    def test_combine_nested_unnamed_data_arrays(self):
        unnamed_array = DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")

        actual = combine_nested([unnamed_array], concat_dim="x")
        expected = unnamed_array
        assert_identical(expected, actual)

        unnamed_array1 = DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
        unnamed_array2 = DataArray(data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")

        actual = combine_nested([unnamed_array1, unnamed_array2], concat_dim="x")
        expected = DataArray(
            data=[1.0, 2.0, 3.0, 4.0], coords={"x": [0, 1, 2, 3]}, dims="x"
        )
        assert_identical(expected, actual)

        da1 = DataArray(data=[[0.0]], coords={"x": [0], "y": [0]}, dims=["x", "y"])
        da2 = DataArray(data=[[1.0]], coords={"x": [0], "y": [1]}, dims=["x", "y"])
        da3 = DataArray(data=[[2.0]], coords={"x": [1], "y": [0]}, dims=["x", "y"])
        da4 = DataArray(data=[[3.0]], coords={"x": [1], "y": [1]}, dims=["x", "y"])
        objs = [[da1, da2], [da3, da4]]

        expected = DataArray(
            data=[[0.0, 1.0], [2.0, 3.0]],
            coords={"x": [0, 1], "y": [0, 1]},
            dims=["x", "y"],
        )
        actual = combine_nested(objs, concat_dim=["x", "y"])
        assert_identical(expected, actual)

    # TODO aijams - Determine if this test is appropriate.
    def test_nested_combine_mixed_datasets_arrays(self):
        objs = [
            DataArray([0, 1], dims=("x"), coords=({"x": [0, 1]})),
            Dataset({"x": [2, 3]}),
        ]
        with pytest.raises(
            ValueError, match=r"Can't combine datasets with unnamed arrays."
        ):
            combine_nested(objs, "x")


class TestCombineDatasetsbyCoords:
    def test_combine_by_coords(self):
        objs = [Dataset({"x": [0]}), Dataset({"x": [1]})]
        actual = combine_by_coords(objs)
        expected = Dataset({"x": [0, 1]})
        assert_identical(expected, actual)

        actual = combine_by_coords([actual])
        assert_identical(expected, actual)

        objs = [Dataset({"x": [0, 1]}), Dataset({"x": [2]})]
        actual = combine_by_coords(objs)
        expected = Dataset({"x": [0, 1, 2]})
        assert_identical(expected, actual)

    def test_combine_by_coords_handles_non_sorted_variables(self):
        # ensure auto_combine handles non-sorted variables
        objs = [
            Dataset({"x": ("a", [0]), "y": ("a", [0]), "a": [0]}),
            Dataset({"x": ("a", [1]), "y": ("a", [1]), "a": [1]}),
        ]
        actual = combine_by_coords(objs, join="outer")
        expected = Dataset({"x": ("a", [0, 1]), "y": ("a", [0, 1]), "a": [0, 1]})
        assert_identical(expected, actual)

    def test_combine_by_coords_multiple_variables(self):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"y": [1], "x": [1]})]
        actual = combine_by_coords(objs, join="outer")
        expected = Dataset({"x": [0, 1], "y": [0, 1]})
        assert_equal(actual, expected)

    def test_combine_by_coords_for_scalar_variables(self):
        objs = [Dataset({"x": 0}), Dataset({"x": 1})]
        with pytest.raises(
            ValueError, match=r"Could not find any dimension coordinates"
        ):
            combine_by_coords(objs)

    def test_combine_by_coords_requires_coord_or_index(self):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [0]})]
        with pytest.raises(
            ValueError,
            match=r"Every dimension requires a corresponding 1D coordinate and index",
        ):
            combine_by_coords(objs)

    def test_empty_input(self):
        assert_identical(Dataset(), combine_by_coords([]))

    @pytest.mark.parametrize(
        "join, expected",
        [
            ("outer", Dataset({"x": [0, 1], "y": [0, 1]})),
            ("inner", Dataset({"x": [0, 1], "y": []})),
            ("left", Dataset({"x": [0, 1], "y": [0]})),
            ("right", Dataset({"x": [0, 1], "y": [1]})),
        ],
    )
    def test_combine_coords_join(self, join, expected):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
        actual = combine_nested(objs, concat_dim="x", join=join)
        assert_identical(expected, actual)

    def test_combine_coords_join_exact(self):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"x": [1], "y": [1]})]
        with pytest.raises(ValueError, match=r"cannot align.*join.*exact.*"):
            combine_nested(objs, concat_dim="x", join="exact")

    @pytest.mark.parametrize(
        "combine_attrs, expected",
        [
            ("drop", Dataset({"x": [0, 1], "y": [0, 1]}, attrs={})),
            (
                "no_conflicts",
                Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1, "b": 2}),
            ),
            ("override", Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1})),
            (
                lambda attrs, context: attrs[1],
                Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1, "b": 2}),
            ),
        ],
    )
    def test_combine_coords_combine_attrs(self, combine_attrs, expected):
        objs = [
            Dataset({"x": [0], "y": [0]}, attrs={"a": 1}),
            Dataset({"x": [1], "y": [1]}, attrs={"a": 1, "b": 2}),
        ]
        actual = combine_nested(
            objs, concat_dim="x", join="outer", combine_attrs=combine_attrs
        )
        assert_identical(expected, actual)

        if combine_attrs == "no_conflicts":
            objs[1].attrs["a"] = 2
            with pytest.raises(ValueError, match=r"combine_attrs='no_conflicts'"):
                actual = combine_nested(
                    objs, concat_dim="x", join="outer", combine_attrs=combine_attrs
                )

    def test_combine_coords_combine_attrs_identical(self):
        objs = [
            Dataset({"x": [0], "y": [0]}, attrs={"a": 1}),
            Dataset({"x": [1], "y": [1]}, attrs={"a": 1}),
        ]
        expected = Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1})
        actual = combine_nested(
            objs, concat_dim="x", join="outer", combine_attrs="identical"
        )
        assert_identical(expected, actual)

        objs[1].attrs["b"] = 2

        with pytest.raises(ValueError, match=r"combine_attrs='identical'"):
            actual = combine_nested(
                objs, concat_dim="x", join="outer", combine_attrs="identical"
            )

    def test_combine_nested_combine_attrs_drop_conflicts(self):
        objs = [
            Dataset({"x": [0], "y": [0]}, attrs={"a": 1, "b": 2, "c": 3}),
            Dataset({"x": [1], "y": [1]}, attrs={"a": 1, "b": 0, "d": 3}),
        ]
        expected = Dataset({"x": [0, 1], "y": [0, 1]}, attrs={"a": 1, "c": 3, "d": 3})
        actual = combine_nested(
            objs, concat_dim="x", join="outer", combine_attrs="drop_conflicts"
        )
        assert_identical(expected, actual)

    @pytest.mark.parametrize(
        "combine_attrs, attrs1, attrs2, expected_attrs, expect_exception",
        [
            (
                "no_conflicts",
                {"a": 1, "b": 2},
                {"a": 1, "c": 3},
                {"a": 1, "b": 2, "c": 3},
                False,
            ),
            ("no_conflicts", {"a": 1, "b": 2}, {}, {"a": 1, "b": 2}, False),
            ("no_conflicts", {}, {"a": 1, "c": 3}, {"a": 1, "c": 3}, False),
            (
                "no_conflicts",
                {"a": 1, "b": 2},
                {"a": 4, "c": 3},
                {"a": 1, "b": 2, "c": 3},
                True,
            ),
            ("drop", {"a": 1, "b": 2}, {"a": 1, "c": 3}, {}, False),
            ("identical", {"a": 1, "b": 2}, {"a": 1, "b": 2}, {"a": 1, "b": 2}, False),
            ("identical", {"a": 1, "b": 2}, {"a": 1, "c": 3}, {"a": 1, "b": 2}, True),
            (
                "override",
                {"a": 1, "b": 2},
                {"a": 4, "b": 5, "c": 3},
                {"a": 1, "b": 2},
                False,
            ),
            (
                "drop_conflicts",
                {"a": 1, "b": 2, "c": 3},
                {"b": 1, "c": 3, "d": 4},
                {"a": 1, "c": 3, "d": 4},
                False,
            ),
        ],
    )
    def test_combine_nested_combine_attrs_variables(
        self, combine_attrs, attrs1, attrs2, expected_attrs, expect_exception
    ):
        """check that combine_attrs is used on data variables and coords"""
        data1 = Dataset(
            {
                "a": ("x", [1, 2], attrs1),
                "b": ("x", [3, -1], attrs1),
                "x": ("x", [0, 1], attrs1),
            }
        )
        data2 = Dataset(
            {
                "a": ("x", [2, 3], attrs2),
                "b": ("x", [-2, 1], attrs2),
                "x": ("x", [2, 3], attrs2),
            }
        )

        if expect_exception:
            with pytest.raises(MergeError, match="combine_attrs"):
                combine_by_coords([data1, data2], combine_attrs=combine_attrs)
        else:
            actual = combine_by_coords([data1, data2], combine_attrs=combine_attrs)
            expected = Dataset(
                {
                    "a": ("x", [1, 2, 2, 3], expected_attrs),
                    "b": ("x", [3, -1, -2, 1], expected_attrs),
                },
                {"x": ("x", [0, 1, 2, 3], expected_attrs)},
            )

            assert_identical(actual, expected)

    @pytest.mark.parametrize(
        "combine_attrs, attrs1, attrs2, expected_attrs, expect_exception",
        [
            (
                "no_conflicts",
                {"a": 1, "b": 2},
                {"a": 1, "c": 3},
                {"a": 1, "b": 2, "c": 3},
                False,
            ),
            ("no_conflicts", {"a": 1, "b": 2}, {}, {"a": 1, "b": 2}, False),
            ("no_conflicts", {}, {"a": 1, "c": 3}, {"a": 1, "c": 3}, False),
            (
                "no_conflicts",
                {"a": 1, "b": 2},
                {"a": 4, "c": 3},
                {"a": 1, "b": 2, "c": 3},
                True,
            ),
            ("drop", {"a": 1, "b": 2}, {"a": 1, "c": 3}, {}, False),
            ("identical", {"a": 1, "b": 2}, {"a": 1, "b": 2}, {"a": 1, "b": 2}, False),
            ("identical", {"a": 1, "b": 2}, {"a": 1, "c": 3}, {"a": 1, "b": 2}, True),
            (
                "override",
                {"a": 1, "b": 2},
                {"a": 4, "b": 5, "c": 3},
                {"a": 1, "b": 2},
                False,
            ),
            (
                "drop_conflicts",
                {"a": 1, "b": 2, "c": 3},
                {"b": 1, "c": 3, "d": 4},
                {"a": 1, "c": 3, "d": 4},
                False,
            ),
        ],
    )
    def test_combine_by_coords_combine_attrs_variables(
        self, combine_attrs, attrs1, attrs2, expected_attrs, expect_exception
    ):
        """check that combine_attrs is used on data variables and coords"""
        data1 = Dataset(
            {"x": ("a", [0], attrs1), "y": ("a", [0], attrs1), "a": ("a", [0], attrs1)}
        )
        data2 = Dataset(
            {"x": ("a", [1], attrs2), "y": ("a", [1], attrs2), "a": ("a", [1], attrs2)}
        )

        if expect_exception:
            with pytest.raises(MergeError, match="combine_attrs"):
                combine_by_coords([data1, data2], combine_attrs=combine_attrs)
        else:
            actual = combine_by_coords([data1, data2], combine_attrs=combine_attrs)
            expected = Dataset(
                {
                    "x": ("a", [0, 1], expected_attrs),
                    "y": ("a", [0, 1], expected_attrs),
                    "a": ("a", [0, 1], expected_attrs),
                }
            )

            assert_identical(actual, expected)

    def test_infer_order_from_coords(self):
        data = create_test_data()
        objs = [data.isel(dim2=slice(4, 9)), data.isel(dim2=slice(4))]
        actual = combine_by_coords(objs, data_vars="all")
        expected = data
        assert expected.broadcast_equals(actual)

        with set_options(use_new_combine_kwarg_defaults=True):
            actual = combine_by_coords(objs)
        assert_identical(actual, expected)

    def test_combine_leaving_bystander_dimensions(self):
        # Check non-monotonic bystander dimension coord doesn't raise
        # ValueError on combine (https://github.com/pydata/xarray/issues/3150)
        ycoord = ["a", "c", "b"]

        data = np.random.rand(7, 3)

        ds1 = Dataset(
            data_vars=dict(data=(["x", "y"], data[:3, :])),
            coords=dict(x=[1, 2, 3], y=ycoord),
        )

        ds2 = Dataset(
            data_vars=dict(data=(["x", "y"], data[3:, :])),
            coords=dict(x=[4, 5, 6, 7], y=ycoord),
        )

        expected = Dataset(
            data_vars=dict(data=(["x", "y"], data)),
            coords=dict(x=[1, 2, 3, 4, 5, 6, 7], y=ycoord),
        )

        actual = combine_by_coords((ds1, ds2))
        assert_identical(expected, actual)

    def test_combine_by_coords_previously_failed(self):
        # In the above scenario, one file is missing, containing the data for
        # one year's data for one variable.
        datasets = [
            Dataset({"a": ("x", [0]), "x": [0]}),
            Dataset({"b": ("x", [0]), "x": [0]}),
            Dataset({"a": ("x", [1]), "x": [1]}),
        ]
        expected = Dataset({"a": ("x", [0, 1]), "b": ("x", [0, np.nan])}, {"x": [0, 1]})
        actual = combine_by_coords(datasets, join="outer")
        assert_identical(expected, actual)

    def test_combine_by_coords_still_fails(self):
        # concat can't handle new variables (yet):
        # https://github.com/pydata/xarray/issues/508
        datasets = [Dataset({"x": 0}, {"y": 0}), Dataset({"x": 1}, {"y": 1, "z": 1})]
        with pytest.raises(ValueError):
            combine_by_coords(datasets, "y")

    def test_combine_by_coords_no_concat(self):
        objs = [Dataset({"x": 0}), Dataset({"y": 1})]
        actual = combine_by_coords(objs)
        expected = Dataset({"x": 0, "y": 1})
        assert_identical(expected, actual)

        objs = [Dataset({"x": 0, "y": 1}), Dataset({"y": np.nan, "z": 2})]
        actual = combine_by_coords(objs, compat="no_conflicts")
        expected = Dataset({"x": 0, "y": 1, "z": 2})
        assert_identical(expected, actual)

    def test_check_for_impossible_ordering(self):
        ds0 = Dataset({"x": [0, 1, 5]})
        ds1 = Dataset({"x": [2, 3]})
        with pytest.raises(
            ValueError,
            match=r"does not have monotonic global indexes along dimension x",
        ):
            combine_by_coords([ds1, ds0])

    def test_combine_by_coords_incomplete_hypercube(self):
        # test that this succeeds with default fill_value
        x1 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [0], "x": [0]})
        x2 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [1], "x": [0]})
        x3 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [0], "x": [1]})
        actual = combine_by_coords([x1, x2, x3], join="outer")
        expected = Dataset(
            {"a": (("y", "x"), [[1, 1], [1, np.nan]])},
            coords={"y": [0, 1], "x": [0, 1]},
        )
        assert_identical(expected, actual)

        # test that this fails if fill_value is None
        with pytest.raises(
            ValueError, match="supplied objects do not form a hypercube"
        ):
            combine_by_coords([x1, x2, x3], join="outer", fill_value=None)

    def test_combine_by_coords_override_order(self) -> None:
        # regression test for https://github.com/pydata/xarray/issues/8828
        x1 = Dataset({"a": (("y", "x"), [[1]])}, coords={"y": [0], "x": [0]})
        x2 = Dataset(
            {"a": (("y", "x"), [[2]]), "b": (("y", "x"), [[1]])},
            coords={"y": [0], "x": [0]},
        )
        actual = combine_by_coords([x1, x2], compat="override")
        assert_equal(actual["a"], actual["b"])
        assert_equal(actual["a"], x1["a"])

        actual = combine_by_coords([x2, x1], compat="override")
        assert_equal(actual["a"], x2["a"])


class TestCombineMixedObjectsbyCoords:
    def test_combine_by_coords_mixed_unnamed_dataarrays(self):
        named_da = DataArray(name="a", data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
        unnamed_da = DataArray(data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")

        with pytest.raises(
            ValueError, match="Can't automatically combine unnamed DataArrays with"
        ):
            combine_by_coords([named_da, unnamed_da])

        da = DataArray([0, 1], dims="x", coords=({"x": [0, 1]}))
        ds = Dataset({"x": [2, 3]})
        with pytest.raises(
            ValueError,
            match="Can't automatically combine unnamed DataArrays with",
        ):
            combine_by_coords([da, ds])

    def test_combine_coords_mixed_datasets_named_dataarrays(self):
        da = DataArray(name="a", data=[4, 5], dims="x", coords=({"x": [0, 1]}))
        ds = Dataset({"b": ("x", [2, 3])})
        actual = combine_by_coords([da, ds])
        expected = Dataset(
            {"a": ("x", [4, 5]), "b": ("x", [2, 3])}, coords={"x": ("x", [0, 1])}
        )
        assert_identical(expected, actual)

    def test_combine_by_coords_all_unnamed_dataarrays(self):
        unnamed_array = DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")

        actual = combine_by_coords([unnamed_array])
        expected = unnamed_array
        assert_identical(expected, actual)

        unnamed_array1 = DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
        unnamed_array2 = DataArray(data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")

        actual = combine_by_coords([unnamed_array1, unnamed_array2])
        expected = DataArray(
            data=[1.0, 2.0, 3.0, 4.0], coords={"x": [0, 1, 2, 3]}, dims="x"
        )
        assert_identical(expected, actual)

    def test_combine_by_coords_all_named_dataarrays(self):
        named_da = DataArray(name="a", data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")

        actual = combine_by_coords([named_da])
        expected = named_da.to_dataset()
        assert_identical(expected, actual)

        named_da1 = DataArray(name="a", data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
        named_da2 = DataArray(name="b", data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")

        actual = combine_by_coords([named_da1, named_da2], join="outer")
        expected = Dataset(
            {
                "a": DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x"),
                "b": DataArray(data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x"),
            }
        )
        assert_identical(expected, actual)

    def test_combine_by_coords_all_dataarrays_with_the_same_name(self):
        named_da1 = DataArray(name="a", data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
        named_da2 = DataArray(name="a", data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")

        actual = combine_by_coords([named_da1, named_da2], join="outer")
        expected = merge([named_da1, named_da2], compat="no_conflicts", join="outer")
        assert_identical(expected, actual)


class TestNewDefaults:
    def test_concat_along_existing_dim(self):
        concat_dim = "dim1"
        ds = create_test_data
        with set_options(use_new_combine_kwarg_defaults=False):
            old = concat([ds(0), ds(1)], dim=concat_dim)
        with set_options(use_new_combine_kwarg_defaults=True):
            new = concat([ds(0), ds(1)], dim=concat_dim)
        assert_identical(old, new)

    def test_concat_along_new_dim(self):
        concat_dim = "new_dim"
        ds = create_test_data
        with set_options(use_new_combine_kwarg_defaults=False):
            old = concat([ds(0), ds(1)], dim=concat_dim)
        with set_options(use_new_combine_kwarg_defaults=True):
            new = concat([ds(0), ds(1)], dim=concat_dim)

        assert concat_dim in old.dims
        assert concat_dim in new.dims

    def test_nested_merge_with_overlapping_values(self):
        ds1 = Dataset({"a": ("x", [1, 2]), "x": [0, 1]})
        ds2 = Dataset({"a": ("x", [2, 3]), "x": [1, 2]})
        expected = Dataset({"a": ("x", [1, 2, 3]), "x": [0, 1, 2]})
        with set_options(use_new_combine_kwarg_defaults=False):
            with pytest.warns(
                FutureWarning, match="will change from join='outer' to join='exact'"
            ):
                with pytest.warns(
                    FutureWarning,
                    match="will change from compat='no_conflicts' to compat='override'",
                ):
                    old = combine_nested([ds1, ds2], concat_dim=None)
        with set_options(use_new_combine_kwarg_defaults=True):
            with pytest.raises(ValueError, match="might be related to new default"):
                combine_nested([ds1, ds2], concat_dim=None)

        assert_identical(old, expected)

    def test_nested_merge_with_nan_order_matters(self):
        ds1 = Dataset({"x": 0})
        ds2 = Dataset({"x": np.nan})
        with set_options(use_new_combine_kwarg_defaults=False):
            with pytest.warns(
                FutureWarning,
                match="will change from compat='no_conflicts' to compat='override'",
            ):
                old = combine_nested([ds1, ds2], concat_dim=None)
        with set_options(use_new_combine_kwarg_defaults=True):
            new = combine_nested([ds1, ds2], concat_dim=None)

        assert_identical(ds1, old)
        assert_identical(old, new)

        with set_options(use_new_combine_kwarg_defaults=False):
            with pytest.warns(
                FutureWarning,
                match="will change from compat='no_conflicts' to compat='override'",
            ):
                old = combine_nested([ds2, ds1], concat_dim=None)
        with set_options(use_new_combine_kwarg_defaults=True):
            new = combine_nested([ds2, ds1], concat_dim=None)

        assert_identical(ds1, old)
        with pytest.raises(AssertionError):
            assert_identical(old, new)

    def test_nested_merge_with_concat_dim_explicitly_provided(self):
        # Test the issue reported in GH #1988
        objs = [Dataset({"x": 0, "y": 1})]
        dim = DataArray([100], name="baz", dims="baz")
        expected = Dataset({"x": ("baz", [0]), "y": ("baz", [1])}, {"baz": [100]})

        with set_options(use_new_combine_kwarg_defaults=False):
            old = combine_nested(objs, concat_dim=dim)
        with set_options(use_new_combine_kwarg_defaults=True):
            new = combine_nested(objs, concat_dim=dim)

        assert_identical(expected, old)
        assert_identical(old, new)

    def test_combine_nested_missing_data_new_dim(self):
        # Your data includes "time" and "station" dimensions, and each year's
        # data has a different set of stations.
        datasets = [
            Dataset({"a": ("x", [2, 3]), "x": [1, 2]}),
            Dataset({"a": ("x", [1, 2]), "x": [0, 1]}),
        ]
        expected = Dataset(
            {"a": (("t", "x"), [[np.nan, 2, 3], [1, 2, np.nan]])}, {"x": [0, 1, 2]}
        )
        with set_options(use_new_combine_kwarg_defaults=False):
            with pytest.warns(
                FutureWarning, match="will change from join='outer' to join='exact'"
            ):
                old = combine_nested(datasets, concat_dim="t")
        with set_options(use_new_combine_kwarg_defaults=True):
            with pytest.raises(ValueError, match="might be related to new default"):
                combine_nested(datasets, concat_dim="t")
            new = combine_nested(datasets, concat_dim="t", join="outer")

        assert_identical(expected, old)
        assert_identical(expected, new)

    def test_combine_by_coords_multiple_variables(self):
        objs = [Dataset({"x": [0], "y": [0]}), Dataset({"y": [1], "x": [1]})]
        expected = Dataset({"x": [0, 1], "y": [0, 1]})

        with set_options(use_new_combine_kwarg_defaults=False):
            with pytest.warns(
                FutureWarning, match="will change from join='outer' to join='exact'"
            ):
                old = combine_by_coords(objs)
        with set_options(use_new_combine_kwarg_defaults=True):
            with pytest.raises(ValueError, match="might be related to new default"):
                combine_by_coords(objs)

        assert_identical(old, expected)


@requires_cftime
def test_combine_by_coords_distant_cftime_dates():
    # Regression test for https://github.com/pydata/xarray/issues/3535
    import cftime

    time_1 = [cftime.DatetimeGregorian(4500, 12, 31)]
    time_2 = [cftime.DatetimeGregorian(4600, 12, 31)]
    time_3 = [cftime.DatetimeGregorian(5100, 12, 31)]

    da_1 = DataArray([0], dims=["time"], coords=[time_1], name="a").to_dataset()
    da_2 = DataArray([1], dims=["time"], coords=[time_2], name="a").to_dataset()
    da_3 = DataArray([2], dims=["time"], coords=[time_3], name="a").to_dataset()

    result = combine_by_coords([da_1, da_2, da_3])

    expected_time = np.concatenate([time_1, time_2, time_3])
    expected = DataArray(
        [0, 1, 2], dims=["time"], coords=[expected_time], name="a"
    ).to_dataset()
    assert_identical(result, expected)


@requires_cftime
def test_combine_by_coords_raises_for_differing_calendars():
    # previously failed with uninformative StopIteration instead of TypeError
    # https://github.com/pydata/xarray/issues/4495

    import cftime

    time_1 = [cftime.DatetimeGregorian(2000, 1, 1)]
    time_2 = [cftime.DatetimeProlepticGregorian(2001, 1, 1)]

    da_1 = DataArray([0], dims=["time"], coords=[time_1], name="a").to_dataset()
    da_2 = DataArray([1], dims=["time"], coords=[time_2], name="a").to_dataset()

    error_msg = (
        "Cannot combine along dimension 'time' with mixed types."
        " Found:.*"
        " If importing data directly from a file then setting"
        " `use_cftime=True` may fix this issue."
    )
    with pytest.raises(TypeError, match=error_msg):
        combine_by_coords([da_1, da_2])


def test_combine_by_coords_raises_for_differing_types():
    # str and byte cannot be compared
    da_1 = DataArray([0], dims=["time"], coords=[["a"]], name="a").to_dataset()
    da_2 = DataArray([1], dims=["time"], coords=[[b"b"]], name="a").to_dataset()

    with pytest.raises(
        TypeError, match=r"Cannot combine along dimension 'time' with mixed types."
    ):
        combine_by_coords([da_1, da_2])