1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
|
import re
import sys
import typing
from collections.abc import Callable, Mapping
from copy import copy, deepcopy
from textwrap import dedent
import numpy as np
import pytest
import xarray as xr
from xarray import DataArray, Dataset
from xarray.core.coordinates import DataTreeCoordinates
from xarray.core.datatree import DataTree
from xarray.core.treenode import NotFoundInTreeError
from xarray.testing import assert_equal, assert_identical
from xarray.tests import (
assert_array_equal,
create_test_data,
requires_dask,
source_ndarray,
)
ON_WINDOWS = sys.platform == "win32"
class TestTreeCreation:
def test_empty(self) -> None:
dt = DataTree(name="root")
assert dt.name == "root"
assert dt.parent is None
assert dt.children == {}
assert_identical(dt.to_dataset(), xr.Dataset())
def test_name(self) -> None:
dt = DataTree()
assert dt.name is None
dt = DataTree(name="foo")
assert dt.name == "foo"
dt.name = "bar"
assert dt.name == "bar"
dt = DataTree(children={"foo": DataTree()})
assert dt["/foo"].name == "foo"
with pytest.raises(
ValueError, match="cannot set the name of a node which already has a parent"
):
dt["/foo"].name = "bar"
detached = dt["/foo"].copy()
assert detached.name == "foo"
detached.name = "bar"
assert detached.name == "bar"
def test_bad_names(self) -> None:
with pytest.raises(TypeError):
DataTree(name=5) # type: ignore[arg-type]
with pytest.raises(ValueError):
DataTree(name="folder/data")
def test_data_arg(self) -> None:
ds = xr.Dataset({"foo": 42})
tree: DataTree = DataTree(dataset=ds)
assert_identical(tree.to_dataset(), ds)
with pytest.raises(TypeError):
DataTree(dataset=xr.DataArray(42, name="foo")) # type: ignore[arg-type]
def test_child_data_not_copied(self) -> None:
# regression test for https://github.com/pydata/xarray/issues/9683
class NoDeepCopy:
def __deepcopy__(self, memo):
raise TypeError("class can't be deepcopied")
da = xr.DataArray(NoDeepCopy())
ds = xr.Dataset({"var": da})
dt1 = xr.DataTree(ds)
dt2 = xr.DataTree(ds, children={"child": dt1})
dt3 = xr.DataTree.from_dict({"/": ds, "child": ds})
assert_identical(dt2, dt3)
class TestFamilyTree:
def test_dont_modify_children_inplace(self) -> None:
# GH issue 9196
child = DataTree()
DataTree(children={"child": child})
assert child.parent is None
def test_create_two_children(self) -> None:
root_data = xr.Dataset({"a": ("y", [6, 7, 8]), "set0": ("x", [9, 10])})
set1_data = xr.Dataset({"a": 0, "b": 1})
root = DataTree.from_dict(
{"/": root_data, "/set1": set1_data, "/set1/set2": None}
)
assert root["/set1"].name == "set1"
assert root["/set1/set2"].name == "set2"
def test_create_full_tree(self, simple_datatree) -> None:
d = simple_datatree.to_dict()
d_keys = list(d.keys())
expected_keys = [
"/",
"/set1",
"/set2",
"/set3",
"/set1/set1",
"/set1/set2",
"/set2/set1",
]
assert d_keys == expected_keys
class TestNames:
def test_child_gets_named_on_attach(self) -> None:
sue = DataTree()
mary = DataTree(children={"Sue": sue})
assert mary.children["Sue"].name == "Sue"
def test_dataset_containing_slashes(self) -> None:
xda: xr.DataArray = xr.DataArray(
[[1, 2]],
coords={"label": ["a"], "R30m/y": [30, 60]},
)
xds: xr.Dataset = xr.Dataset({"group/subgroup/my_variable": xda})
with pytest.raises(
ValueError,
match=re.escape(
"Given variables have names containing the '/' character: "
"['R30m/y', 'group/subgroup/my_variable']. "
"Variables stored in DataTree objects cannot have names containing '/' characters, "
"as this would make path-like access to variables ambiguous."
),
):
DataTree(xds)
class TestPaths:
def test_path_property(self) -> None:
john = DataTree.from_dict(
{
"/Mary/Sue": DataTree(),
}
)
assert john["/Mary/Sue"].path == "/Mary/Sue"
assert john.path == "/"
def test_path_roundtrip(self) -> None:
john = DataTree.from_dict(
{
"/Mary/Sue": DataTree(),
}
)
assert john["/Mary/Sue"].name == "Sue"
def test_same_tree(self) -> None:
john = DataTree.from_dict(
{
"/Mary": DataTree(),
"/Kate": DataTree(),
}
)
assert john["/Mary"].same_tree(john["/Kate"])
def test_relative_paths(self) -> None:
john = DataTree.from_dict(
{
"/Mary/Sue": DataTree(),
"/Annie": DataTree(),
}
)
sue_result = john["Mary/Sue"]
if isinstance(sue_result, DataTree):
sue: DataTree = sue_result
annie_result = john["Annie"]
if isinstance(annie_result, DataTree):
annie: DataTree = annie_result
assert sue.relative_to(john) == "Mary/Sue"
assert john.relative_to(sue) == "../.."
assert annie.relative_to(sue) == "../../Annie"
assert sue.relative_to(annie) == "../Mary/Sue"
assert sue.relative_to(sue) == "."
evil_kate = DataTree()
with pytest.raises(
NotFoundInTreeError, match="nodes do not lie within the same tree"
):
sue.relative_to(evil_kate)
class TestStoreDatasets:
def test_create_with_data(self) -> None:
dat = xr.Dataset({"a": 0})
john = DataTree(name="john", dataset=dat)
assert_identical(john.to_dataset(), dat)
with pytest.raises(TypeError):
DataTree(name="mary", dataset="junk") # type: ignore[arg-type]
def test_set_data(self) -> None:
john = DataTree(name="john")
dat = xr.Dataset({"a": 0})
john.dataset = dat # type: ignore[assignment]
assert_identical(john.to_dataset(), dat)
with pytest.raises(TypeError):
john.dataset = "junk" # type: ignore[assignment]
def test_has_data(self) -> None:
john = DataTree(name="john", dataset=xr.Dataset({"a": 0}))
assert john.has_data
john_no_data = DataTree(name="john", dataset=None)
assert not john_no_data.has_data
def test_is_hollow(self) -> None:
john = DataTree(dataset=xr.Dataset({"a": 0}))
assert john.is_hollow
eve = DataTree(children={"john": john})
assert eve.is_hollow
eve.dataset = xr.Dataset({"a": 1}) # type: ignore[assignment]
assert not eve.is_hollow
class TestToDataset:
def test_to_dataset_inherited(self) -> None:
base = xr.Dataset(coords={"a": [1], "b": 2})
sub = xr.Dataset(coords={"c": [3]})
tree = DataTree.from_dict({"/": base, "/sub": sub})
subtree = typing.cast(DataTree, tree["sub"])
assert_identical(tree.to_dataset(inherit=False), base)
assert_identical(subtree.to_dataset(inherit=False), sub)
sub_and_base = xr.Dataset(coords={"a": [1], "c": [3]}) # no "b"
assert_identical(tree.to_dataset(inherit=True), base)
assert_identical(subtree.to_dataset(inherit=True), sub_and_base)
class TestVariablesChildrenNameCollisions:
def test_parent_already_has_variable_with_childs_name(self) -> None:
with pytest.raises(KeyError, match="already contains a variable named a"):
DataTree.from_dict({"/": xr.Dataset({"a": [0], "b": 1}), "/a": None})
def test_parent_already_has_variable_with_childs_name_update(self) -> None:
dt = DataTree(dataset=xr.Dataset({"a": [0], "b": 1}))
with pytest.raises(ValueError, match="already contains a variable named a"):
dt.update({"a": DataTree()})
def test_assign_when_already_child_with_variables_name(self) -> None:
dt = DataTree.from_dict(
{
"/a": DataTree(),
}
)
with pytest.raises(ValueError, match="node already contains a variable"):
dt.dataset = xr.Dataset({"a": 0}) # type: ignore[assignment]
dt.dataset = xr.Dataset() # type: ignore[assignment]
new_ds = dt.to_dataset().assign(a=xr.DataArray(0))
with pytest.raises(ValueError, match="node already contains a variable"):
dt.dataset = new_ds # type: ignore[assignment]
class TestGet: ...
class TestGetItem:
def test_getitem_node(self) -> None:
folder1 = DataTree.from_dict(
{
"/results/highres": DataTree(),
}
)
assert folder1["results"].name == "results"
assert folder1["results/highres"].name == "highres"
def test_getitem_self(self) -> None:
dt = DataTree()
assert dt["."] is dt
def test_getitem_single_data_variable(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
results = DataTree(name="results", dataset=data)
assert_identical(results["temp"], data["temp"])
def test_getitem_single_data_variable_from_node(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
folder1 = DataTree.from_dict(
{
"/results/highres": data,
}
)
assert_identical(folder1["results/highres/temp"], data["temp"])
def test_getitem_nonexistent_node(self) -> None:
folder1 = DataTree.from_dict({"/results": DataTree()}, name="folder1")
with pytest.raises(KeyError):
folder1["results/highres"]
def test_getitem_nonexistent_variable(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
results = DataTree(name="results", dataset=data)
with pytest.raises(KeyError):
results["pressure"]
@pytest.mark.xfail(reason="Should be deprecated in favour of .subset")
def test_getitem_multiple_data_variables(self) -> None:
data = xr.Dataset({"temp": [0, 50], "p": [5, 8, 7]})
results = DataTree(name="results", dataset=data)
assert_identical(results[["temp", "p"]], data[["temp", "p"]]) # type: ignore[index]
@pytest.mark.xfail(
reason="Indexing needs to return whole tree (GH https://github.com/xarray-contrib/datatree/issues/77)"
)
def test_getitem_dict_like_selection_access_to_dataset(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
results = DataTree(name="results", dataset=data)
assert_identical(results[{"temp": 1}], data[{"temp": 1}]) # type: ignore[index]
class TestUpdate:
def test_update(self) -> None:
dt = DataTree()
dt.update({"foo": xr.DataArray(0), "a": DataTree()})
expected = DataTree.from_dict({"/": xr.Dataset({"foo": 0}), "a": None})
assert_equal(dt, expected)
assert dt.groups == ("/", "/a")
def test_update_new_named_dataarray(self) -> None:
da = xr.DataArray(name="temp", data=[0, 50])
folder1 = DataTree(name="folder1")
folder1.update({"results": da})
expected = da.rename("results")
assert_equal(folder1["results"], expected)
def test_update_doesnt_alter_child_name(self) -> None:
dt = DataTree()
dt.update({"foo": xr.DataArray(0), "a": DataTree(name="b")})
assert "a" in dt.children
child = dt["a"]
assert child.name == "a"
def test_update_overwrite(self) -> None:
actual = DataTree.from_dict({"a": DataTree(xr.Dataset({"x": 1}))})
actual.update({"a": DataTree(xr.Dataset({"x": 2}))})
expected = DataTree.from_dict({"a": DataTree(xr.Dataset({"x": 2}))})
assert_equal(actual, expected)
def test_update_coordinates(self) -> None:
expected = DataTree.from_dict({"/": xr.Dataset(coords={"a": 1})})
actual = DataTree.from_dict({"/": xr.Dataset()})
actual.update(xr.Dataset(coords={"a": 1}))
assert_equal(actual, expected)
def test_update_inherited_coords(self) -> None:
expected = DataTree.from_dict(
{
"/": xr.Dataset(coords={"a": 1}),
"/b": xr.Dataset(coords={"c": 1}),
}
)
actual = DataTree.from_dict(
{
"/": xr.Dataset(coords={"a": 1}),
"/b": xr.Dataset(),
}
)
actual["/b"].update(xr.Dataset(coords={"c": 1}))
assert_identical(actual, expected)
# DataTree.identical() currently does not require that non-inherited
# coordinates are defined identically, so we need to check this
# explicitly
actual_node = actual.children["b"].to_dataset(inherit=False)
expected_node = expected.children["b"].to_dataset(inherit=False)
assert_identical(actual_node, expected_node)
class TestCopy:
def test_copy(self, create_test_datatree) -> None:
dt = create_test_datatree()
for node in dt.root.subtree:
node.attrs["Test"] = [1, 2, 3]
for copied in [dt.copy(deep=False), copy(dt)]:
assert_identical(dt, copied)
for node, copied_node in zip(
dt.root.subtree, copied.root.subtree, strict=True
):
assert node.encoding == copied_node.encoding
# Note: IndexVariable objects with string dtype are always
# copied because of xarray.core.util.safe_cast_to_index.
# Limiting the test to data variables.
for k in node.data_vars:
v0 = node.variables[k]
v1 = copied_node.variables[k]
assert source_ndarray(v0.data) is source_ndarray(v1.data)
copied_node["foo"] = xr.DataArray(data=np.arange(5), dims="z")
assert "foo" not in node
copied_node.attrs["foo"] = "bar"
assert "foo" not in node.attrs
assert node.attrs["Test"] is copied_node.attrs["Test"]
def test_copy_subtree(self) -> None:
dt = DataTree.from_dict({"/level1/level2/level3": xr.Dataset()})
actual = dt["/level1/level2"].copy()
expected = DataTree.from_dict({"/level3": xr.Dataset()}, name="level2")
assert_identical(actual, expected)
def test_copy_coord_inheritance(self) -> None:
tree = DataTree.from_dict(
{"/": xr.Dataset(coords={"x": [0, 1]}), "/c": DataTree()}
)
actual = tree.copy()
node_ds = actual.children["c"].to_dataset(inherit=False)
assert_identical(node_ds, xr.Dataset())
actual = tree.children["c"].copy()
expected = DataTree(Dataset(coords={"x": [0, 1]}), name="c")
assert_identical(expected, actual)
actual = tree.children["c"].copy(inherit=False)
expected = DataTree(name="c")
assert_identical(expected, actual)
def test_deepcopy(self, create_test_datatree) -> None:
dt = create_test_datatree()
for node in dt.root.subtree:
node.attrs["Test"] = [1, 2, 3]
for copied in [dt.copy(deep=True), deepcopy(dt)]:
assert_identical(dt, copied)
for node, copied_node in zip(
dt.root.subtree, copied.root.subtree, strict=True
):
assert node.encoding == copied_node.encoding
# Note: IndexVariable objects with string dtype are always
# copied because of xarray.core.util.safe_cast_to_index.
# Limiting the test to data variables.
for k in node.data_vars:
v0 = node.variables[k]
v1 = copied_node.variables[k]
assert source_ndarray(v0.data) is not source_ndarray(v1.data)
copied_node["foo"] = xr.DataArray(data=np.arange(5), dims="z")
assert "foo" not in node
copied_node.attrs["foo"] = "bar"
assert "foo" not in node.attrs
assert node.attrs["Test"] is not copied_node.attrs["Test"]
@pytest.mark.xfail(reason="data argument not yet implemented")
def test_copy_with_data(self, create_test_datatree) -> None:
orig = create_test_datatree()
# TODO use .data_vars once that property is available
data_vars = {
k: v for k, v in orig.variables.items() if k not in orig._coord_names
}
new_data = {k: np.random.randn(*v.shape) for k, v in data_vars.items()}
actual = orig.copy(data=new_data)
expected = orig.copy()
for k, v in new_data.items():
expected[k].data = v
assert_identical(expected, actual)
# TODO test parents and children?
class TestSetItem:
def test_setitem_new_child_node(self) -> None:
john = DataTree(name="john")
mary = DataTree(name="mary")
john["mary"] = mary
grafted_mary = john["mary"]
assert grafted_mary.parent is john
assert grafted_mary.name == "mary"
def test_setitem_unnamed_child_node_becomes_named(self) -> None:
john2 = DataTree(name="john2")
john2["sonny"] = DataTree()
assert john2["sonny"].name == "sonny"
def test_setitem_new_grandchild_node(self) -> None:
john = DataTree.from_dict({"/Mary/Rose": DataTree()})
new_rose = DataTree(dataset=xr.Dataset({"x": 0}))
john["Mary/Rose"] = new_rose
grafted_rose = john["Mary/Rose"]
assert grafted_rose.parent is john["/Mary"]
assert grafted_rose.name == "Rose"
def test_grafted_subtree_retains_name(self) -> None:
subtree = DataTree(name="original_subtree_name")
root = DataTree(name="root")
root["new_subtree_name"] = subtree
assert subtree.name == "original_subtree_name"
def test_setitem_new_empty_node(self) -> None:
john = DataTree(name="john")
john["mary"] = DataTree()
mary = john["mary"]
assert isinstance(mary, DataTree)
assert_identical(mary.to_dataset(), xr.Dataset())
def test_setitem_overwrite_data_in_node_with_none(self) -> None:
john = DataTree.from_dict({"/mary": xr.Dataset()}, name="john")
john["mary"] = DataTree()
assert_identical(john["mary"].to_dataset(), xr.Dataset())
john.dataset = xr.Dataset() # type: ignore[assignment]
with pytest.raises(ValueError, match="has no name"):
john["."] = DataTree()
@pytest.mark.xfail(reason="assigning Datasets doesn't yet create new nodes")
def test_setitem_dataset_on_this_node(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
results = DataTree(name="results")
results["."] = data
assert_identical(results.to_dataset(), data)
def test_setitem_dataset_as_new_node(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
folder1 = DataTree(name="folder1")
folder1["results"] = data
assert_identical(folder1["results"].to_dataset(), data)
def test_setitem_dataset_as_new_node_requiring_intermediate_nodes(self) -> None:
data = xr.Dataset({"temp": [0, 50]})
folder1 = DataTree(name="folder1")
folder1["results/highres"] = data
assert_identical(folder1["results/highres"].to_dataset(), data)
def test_setitem_named_dataarray(self) -> None:
da = xr.DataArray(name="temp", data=[0, 50])
folder1 = DataTree(name="folder1")
folder1["results"] = da
expected = da.rename("results")
assert_equal(folder1["results"], expected)
def test_setitem_unnamed_dataarray(self) -> None:
data = xr.DataArray([0, 50])
folder1 = DataTree(name="folder1")
folder1["results"] = data
assert_equal(folder1["results"], data)
def test_setitem_variable(self) -> None:
var = xr.Variable(data=[0, 50], dims="x")
folder1 = DataTree(name="folder1")
folder1["results"] = var
assert_equal(folder1["results"], xr.DataArray(var))
def test_setitem_coerce_to_dataarray(self) -> None:
folder1 = DataTree(name="folder1")
folder1["results"] = 0
assert_equal(folder1["results"], xr.DataArray(0))
def test_setitem_add_new_variable_to_empty_node(self) -> None:
results = DataTree(name="results")
results["pressure"] = xr.DataArray(data=[2, 3])
assert "pressure" in results.dataset
results["temp"] = xr.Variable(data=[10, 11], dims=["x"])
assert "temp" in results.dataset
# What if there is a path to traverse first?
results_with_path = DataTree(name="results")
results_with_path["highres/pressure"] = xr.DataArray(data=[2, 3])
assert "pressure" in results_with_path["highres"].dataset
results_with_path["highres/temp"] = xr.Variable(data=[10, 11], dims=["x"])
assert "temp" in results_with_path["highres"].dataset
def test_setitem_dataarray_replace_existing_node(self) -> None:
t = xr.Dataset({"temp": [0, 50]})
results = DataTree(name="results", dataset=t)
p = xr.DataArray(data=[2, 3])
results["pressure"] = p
expected = t.assign(pressure=p)
assert_identical(results.to_dataset(), expected)
class TestCoords:
def test_properties(self) -> None:
# use int64 for repr consistency on windows
ds = Dataset(
data_vars={
"foo": (["x", "y"], np.random.randn(2, 3)),
},
coords={
"x": ("x", np.array([-1, -2], "int64")),
"y": ("y", np.array([0, 1, 2], "int64")),
"a": ("x", np.array([4, 5], "int64")),
"b": np.int64(-10),
},
)
dt = DataTree(dataset=ds)
dt["child"] = DataTree()
coords = dt.coords
assert isinstance(coords, DataTreeCoordinates)
# len
assert len(coords) == 4
# iter
assert list(coords) == ["x", "y", "a", "b"]
assert_identical(coords["x"].variable, dt["x"].variable)
assert_identical(coords["y"].variable, dt["y"].variable)
assert "x" in coords
assert "a" in coords
assert 0 not in coords
assert "foo" not in coords
assert "child" not in coords
with pytest.raises(KeyError):
coords["foo"]
# TODO this currently raises a ValueError instead of a KeyError
# with pytest.raises(KeyError):
# coords[0]
# repr
expected = dedent(
"""\
Coordinates:
* x (x) int64 16B -1 -2
* y (y) int64 24B 0 1 2
a (x) int64 16B 4 5
b int64 8B -10"""
)
actual = repr(coords)
assert expected == actual
# dims
assert coords.sizes == {"x": 2, "y": 3}
# dtypes
assert coords.dtypes == {
"x": np.dtype("int64"),
"y": np.dtype("int64"),
"a": np.dtype("int64"),
"b": np.dtype("int64"),
}
def test_modify(self) -> None:
ds = Dataset(
data_vars={
"foo": (["x", "y"], np.random.randn(2, 3)),
},
coords={
"x": ("x", np.array([-1, -2], "int64")),
"y": ("y", np.array([0, 1, 2], "int64")),
"a": ("x", np.array([4, 5], "int64")),
"b": np.int64(-10),
},
)
dt = DataTree(dataset=ds)
dt["child"] = DataTree()
actual = dt.copy(deep=True)
actual.coords["x"] = ("x", ["a", "b"])
assert_array_equal(actual["x"], ["a", "b"])
actual = dt.copy(deep=True)
actual.coords["z"] = ("z", ["a", "b"])
assert_array_equal(actual["z"], ["a", "b"])
actual = dt.copy(deep=True)
with pytest.raises(ValueError, match=r"conflicting dimension sizes"):
actual.coords["x"] = ("x", [-1])
assert_identical(actual, dt) # should not be modified
# TODO: re-enable after implementing reset_coords()
# actual = dt.copy()
# del actual.coords["b"]
# expected = dt.reset_coords("b", drop=True)
# assert_identical(expected, actual)
with pytest.raises(KeyError):
del dt.coords["not_found"]
with pytest.raises(KeyError):
del dt.coords["foo"]
# TODO: re-enable after implementing assign_coords()
# actual = dt.copy(deep=True)
# actual.coords.update({"c": 11})
# expected = dt.assign_coords({"c": 11})
# assert_identical(expected, actual)
# # regression test for GH3746
# del actual.coords["x"]
# assert "x" not in actual.xindexes
# test that constructors can also handle the `DataTreeCoordinates` object
ds2 = Dataset(coords=dt.coords)
assert_identical(ds2.coords, dt.coords)
da = DataArray(coords=dt.coords)
assert_identical(da.coords, dt.coords)
# DataTree constructor doesn't accept coords= but should still be able to handle DatasetCoordinates
dt2 = DataTree(dataset=dt.coords)
assert_identical(dt2.coords, dt.coords)
def test_inherited(self) -> None:
ds = Dataset(
data_vars={
"foo": (["x", "y"], np.random.randn(2, 3)),
},
coords={
"x": ("x", np.array([-1, -2], "int64")),
"y": ("y", np.array([0, 1, 2], "int64")),
"a": ("x", np.array([4, 5], "int64")),
"b": np.int64(-10),
},
)
dt = DataTree(dataset=ds)
dt["child"] = DataTree()
child = dt["child"]
assert set(dt.coords) == {"x", "y", "a", "b"}
assert set(child.coords) == {"x", "y"}
actual = child.copy(deep=True)
actual.coords["x"] = ("x", ["a", "b"])
assert_array_equal(actual["x"], ["a", "b"])
actual = child.copy(deep=True)
actual.coords.update({"c": 11})
expected = child.copy(deep=True)
expected.coords["c"] = 11
# check we have only altered the child node
assert_identical(expected.root, actual.root)
with pytest.raises(KeyError):
# cannot delete inherited coordinate from child node
del child["x"]
# TODO requires a fix for #9472
# actual = child.copy(deep=True)
# actual.coords.update({"c": 11})
# expected = child.assign_coords({"c": 11})
# assert_identical(expected, actual)
def test_delitem() -> None:
ds = Dataset({"a": 0}, coords={"x": ("x", [1, 2]), "z": "a"})
dt = DataTree(ds, children={"c": DataTree()})
with pytest.raises(KeyError):
del dt["foo"]
# test delete children
del dt["c"]
assert dt.children == {}
assert set(dt.variables) == {"x", "z", "a"}
with pytest.raises(KeyError):
del dt["c"]
# test delete variables
del dt["a"]
assert set(dt.coords) == {"x", "z"}
with pytest.raises(KeyError):
del dt["a"]
# test delete coordinates
del dt["z"]
assert set(dt.coords) == {"x"}
with pytest.raises(KeyError):
del dt["z"]
# test delete indexed coordinates
del dt["x"]
assert dt.variables == {}
assert dt.coords == {}
assert dt.indexes == {}
with pytest.raises(KeyError):
del dt["x"]
class TestTreeFromDict:
def test_data_in_root(self) -> None:
dat = xr.Dataset()
dt = DataTree.from_dict({"/": dat})
assert dt.name is None
assert dt.parent is None
assert dt.children == {}
assert_identical(dt.to_dataset(), dat)
def test_one_layer(self) -> None:
dat1, dat2 = xr.Dataset({"a": 1}), xr.Dataset({"b": 2})
dt = DataTree.from_dict({"run1": dat1, "run2": dat2})
assert_identical(dt.to_dataset(), xr.Dataset())
assert dt.name is None
assert_identical(dt["run1"].to_dataset(), dat1)
assert dt["run1"].children == {}
assert_identical(dt["run2"].to_dataset(), dat2)
assert dt["run2"].children == {}
def test_two_layers(self) -> None:
dat1, dat2 = xr.Dataset({"a": 1}), xr.Dataset({"a": [1, 2]})
dt = DataTree.from_dict({"highres/run": dat1, "lowres/run": dat2})
assert "highres" in dt.children
assert "lowres" in dt.children
highres_run = dt["highres/run"]
assert_identical(highres_run.to_dataset(), dat1)
def test_nones(self) -> None:
dt = DataTree.from_dict({"d": None, "d/e": None})
assert [node.name for node in dt.subtree] == [None, "d", "e"]
assert [node.path for node in dt.subtree] == ["/", "/d", "/d/e"]
assert_identical(dt["d/e"].to_dataset(), xr.Dataset())
def test_full(self, simple_datatree) -> None:
dt = simple_datatree
paths = [node.path for node in dt.subtree]
assert paths == [
"/",
"/set1",
"/set2",
"/set3",
"/set1/set1",
"/set1/set2",
"/set2/set1",
]
def test_datatree_values(self) -> None:
dat1 = DataTree(dataset=xr.Dataset({"a": 1}))
expected = DataTree()
expected["a"] = dat1
actual = DataTree.from_dict({"a": dat1})
assert_identical(actual, expected)
def test_roundtrip_to_dict(self, simple_datatree) -> None:
tree = simple_datatree
roundtrip = DataTree.from_dict(tree.to_dict())
assert_identical(tree, roundtrip)
def test_to_dict(self):
tree = DataTree.from_dict({"/a/b/c": None})
roundtrip = DataTree.from_dict(tree.to_dict())
assert_identical(tree, roundtrip)
roundtrip = DataTree.from_dict(tree.to_dict(relative=True))
assert_identical(tree, roundtrip)
roundtrip = DataTree.from_dict(tree.children["a"].to_dict(relative=False))
assert_identical(tree, roundtrip)
expected = DataTree.from_dict({"b/c": None})
actual = DataTree.from_dict(tree.children["a"].to_dict(relative=True))
assert_identical(expected, actual)
def test_roundtrip_unnamed_root(self, simple_datatree) -> None:
# See GH81
dt = simple_datatree
dt.name = "root"
roundtrip = DataTree.from_dict(dt.to_dict())
assert roundtrip.equals(dt)
def test_insertion_order(self) -> None:
# regression test for GH issue #9276
reversed = DataTree.from_dict(
{
"/Homer/Lisa": xr.Dataset({"age": 8}),
"/Homer/Bart": xr.Dataset({"age": 10}),
"/Homer": xr.Dataset({"age": 39}),
"/": xr.Dataset({"age": 83}),
}
)
expected = DataTree.from_dict(
{
"/": xr.Dataset({"age": 83}),
"/Homer": xr.Dataset({"age": 39}),
"/Homer/Lisa": xr.Dataset({"age": 8}),
"/Homer/Bart": xr.Dataset({"age": 10}),
}
)
assert reversed.equals(expected)
# Check that Bart and Lisa's order is still preserved within the group,
# despite 'Bart' coming before 'Lisa' when sorted alphabetically
assert list(reversed["Homer"].children.keys()) == ["Lisa", "Bart"]
def test_array_values(self) -> None:
data = {"foo": xr.DataArray(1, name="bar")}
with pytest.raises(TypeError):
DataTree.from_dict(data) # type: ignore[arg-type]
def test_relative_paths(self) -> None:
tree = DataTree.from_dict({".": None, "foo": None, "./bar": None, "x/y": None})
paths = [node.path for node in tree.subtree]
assert paths == [
"/",
"/foo",
"/bar",
"/x",
"/x/y",
]
def test_root_keys(self):
ds = Dataset({"x": 1})
expected = DataTree(dataset=ds)
actual = DataTree.from_dict({"": ds})
assert_identical(actual, expected)
actual = DataTree.from_dict({".": ds})
assert_identical(actual, expected)
actual = DataTree.from_dict({"/": ds})
assert_identical(actual, expected)
actual = DataTree.from_dict({"./": ds})
assert_identical(actual, expected)
with pytest.raises(
ValueError, match="multiple entries found corresponding to the root node"
):
DataTree.from_dict({"": ds, "/": ds})
def test_name(self):
tree = DataTree.from_dict({"/": None}, name="foo")
assert tree.name == "foo"
tree = DataTree.from_dict({"/": DataTree()}, name="foo")
assert tree.name == "foo"
tree = DataTree.from_dict({"/": DataTree(name="bar")}, name="foo")
assert tree.name == "foo"
class TestDatasetView:
def test_view_contents(self) -> None:
ds = create_test_data()
dt = DataTree(dataset=ds)
assert ds.identical(
dt.dataset
) # this only works because Dataset.identical doesn't check types
assert isinstance(dt.dataset, xr.Dataset)
def test_immutability(self) -> None:
# See issue https://github.com/xarray-contrib/datatree/issues/38
dt = DataTree.from_dict(
{
"/": None,
"/a": None,
},
name="root",
)
with pytest.raises(
AttributeError, match="Mutation of the DatasetView is not allowed"
):
dt.dataset["a"] = xr.DataArray(0)
with pytest.raises(
AttributeError, match="Mutation of the DatasetView is not allowed"
):
dt.dataset.update({"a": 0})
# TODO are there any other ways you can normally modify state (in-place)?
# (not attribute-like assignment because that doesn't work on Dataset anyway)
def test_methods(self) -> None:
ds = create_test_data()
dt = DataTree(dataset=ds)
assert ds.mean().identical(dt.dataset.mean())
assert isinstance(dt.dataset.mean(), xr.Dataset)
def test_arithmetic(self, create_test_datatree) -> None:
dt = create_test_datatree()
expected = create_test_datatree(modify=lambda ds: 10.0 * ds)[
"set1"
].to_dataset()
result = 10.0 * dt["set1"].dataset
assert result.identical(expected)
def test_init_via_type(self) -> None:
# from datatree GH issue https://github.com/xarray-contrib/datatree/issues/188
# xarray's .weighted is unusual because it uses type() to create a Dataset/DataArray
a = xr.DataArray(
np.random.rand(3, 4, 10),
dims=["x", "y", "time"],
coords={"area": (["x", "y"], np.random.rand(3, 4))},
).to_dataset(name="data")
dt = DataTree(dataset=a)
def weighted_mean(ds):
return ds.weighted(ds.area).mean(["x", "y"])
weighted_mean(dt.dataset)
def test_map_keep_attrs(self) -> None:
# test DatasetView.map(..., keep_attrs=...)
data = xr.DataArray([1, 2, 3], dims="x", attrs={"da": "attrs"})
ds = xr.Dataset({"data": data}, attrs={"ds": "attrs"})
dt = DataTree(ds)
def func_keep(ds):
# x.mean() removes the attrs of the data_vars
return ds.map(lambda x: x.mean(), keep_attrs=True)
result = xr.map_over_datasets(func_keep, dt)
expected = dt.mean(keep_attrs=True)
xr.testing.assert_identical(result, expected)
# per default DatasetView.map does not keep attrs
def func(ds):
# x.mean() removes the attrs of the data_vars
return ds.map(lambda x: x.mean())
result = xr.map_over_datasets(func, dt)
expected = dt.mean()
xr.testing.assert_identical(result, expected.mean())
class TestAccess:
def test_attribute_access(self, create_test_datatree) -> None:
dt = create_test_datatree()
# vars / coords
for key in ["a", "set0"]:
assert_equal(dt[key], getattr(dt, key))
assert key in dir(dt)
# dims
assert_equal(dt["a"]["y"], dt.a.y)
assert "y" in dir(dt["a"])
# children
for key in ["set1", "set2", "set3"]:
assert_equal(dt[key], getattr(dt, key))
assert key in dir(dt)
# attrs
dt.attrs["meta"] = "NASA"
assert dt.attrs["meta"] == "NASA"
assert "meta" in dir(dt)
def test_ipython_key_completions_complex(self, create_test_datatree) -> None:
dt = create_test_datatree()
key_completions = dt._ipython_key_completions_()
node_keys = [node.path[1:] for node in dt.descendants]
assert all(node_key in key_completions for node_key in node_keys)
var_keys = list(dt.variables.keys())
assert all(var_key in key_completions for var_key in var_keys)
def test_ipython_key_completitions_subnode(self) -> None:
tree = xr.DataTree.from_dict({"/": None, "/a": None, "/a/b/": None})
expected = ["b"]
actual = tree["a"]._ipython_key_completions_()
assert expected == actual
def test_operation_with_attrs_but_no_data(self) -> None:
# tests bug from xarray-datatree GH262
xs = xr.Dataset({"testvar": xr.DataArray(np.ones((2, 3)))})
dt = DataTree.from_dict({"node1": xs, "node2": xs})
dt.attrs["test_key"] = 1 # sel works fine without this line
dt.sel(dim_0=0)
class TestRepr:
def test_repr_four_nodes(self) -> None:
dt = DataTree.from_dict(
{
"/": xr.Dataset(
{"e": (("x",), [1.0, 2.0])},
coords={"x": [2.0, 3.0]},
),
"/b": xr.Dataset({"f": (("y",), [3.0])}),
"/b/c": xr.Dataset(),
"/b/d": xr.Dataset({"g": 4.0}),
}
)
result = repr(dt)
expected = dedent(
"""
<xarray.DataTree>
Group: /
│ Dimensions: (x: 2)
│ Coordinates:
│ * x (x) float64 16B 2.0 3.0
│ Data variables:
│ e (x) float64 16B 1.0 2.0
└── Group: /b
│ Dimensions: (y: 1)
│ Dimensions without coordinates: y
│ Data variables:
│ f (y) float64 8B 3.0
├── Group: /b/c
└── Group: /b/d
Dimensions: ()
Data variables:
g float64 8B 4.0
"""
).strip()
assert result == expected
result = repr(dt.b)
expected = dedent(
"""
<xarray.DataTree 'b'>
Group: /b
│ Dimensions: (x: 2, y: 1)
│ Inherited coordinates:
│ * x (x) float64 16B 2.0 3.0
│ Dimensions without coordinates: y
│ Data variables:
│ f (y) float64 8B 3.0
├── Group: /b/c
└── Group: /b/d
Dimensions: ()
Data variables:
g float64 8B 4.0
"""
).strip()
assert result == expected
result = repr(dt.b.d)
expected = dedent(
"""
<xarray.DataTree 'd'>
Group: /b/d
Dimensions: (x: 2, y: 1)
Inherited coordinates:
* x (x) float64 16B 2.0 3.0
Dimensions without coordinates: y
Data variables:
g float64 8B 4.0
"""
).strip()
assert result == expected
def test_repr_two_children(self) -> None:
tree = DataTree.from_dict(
{
"/": Dataset(coords={"x": [1.0]}),
"/first_child": None,
"/second_child": Dataset({"foo": ("x", [0.0])}, coords={"z": 1.0}),
}
)
result = repr(tree)
expected = dedent(
"""
<xarray.DataTree>
Group: /
│ Dimensions: (x: 1)
│ Coordinates:
│ * x (x) float64 8B 1.0
├── Group: /first_child
└── Group: /second_child
Dimensions: (x: 1)
Coordinates:
z float64 8B 1.0
Data variables:
foo (x) float64 8B 0.0
"""
).strip()
assert result == expected
result = repr(tree["first_child"])
expected = dedent(
"""
<xarray.DataTree 'first_child'>
Group: /first_child
Dimensions: (x: 1)
Inherited coordinates:
* x (x) float64 8B 1.0
"""
).strip()
assert result == expected
result = repr(tree["second_child"])
expected = dedent(
"""
<xarray.DataTree 'second_child'>
Group: /second_child
Dimensions: (x: 1)
Coordinates:
z float64 8B 1.0
Inherited coordinates:
* x (x) float64 8B 1.0
Data variables:
foo (x) float64 8B 0.0
"""
).strip()
assert result == expected
def test_repr_truncates_nodes(self) -> None:
# construct a datatree with 50 nodes
number_of_files = 10
number_of_groups = 5
tree_dict = {}
for f in range(number_of_files):
for g in range(number_of_groups):
tree_dict[f"file_{f}/group_{g}"] = Dataset({"g": f * g})
tree = DataTree.from_dict(tree_dict)
with xr.set_options(display_max_children=3):
result = repr(tree)
expected = dedent(
"""
<xarray.DataTree>
Group: /
├── Group: /file_0
│ ├── Group: /file_0/group_0
│ │ Dimensions: ()
│ │ Data variables:
│ │ g int64 8B 0
│ ├── Group: /file_0/group_1
│ │ Dimensions: ()
│ │ Data variables:
│ │ g int64 8B 0
│ ...
│ └── Group: /file_0/group_4
│ Dimensions: ()
│ Data variables:
│ g int64 8B 0
├── Group: /file_1
│ ├── Group: /file_1/group_0
│ │ Dimensions: ()
│ │ Data variables:
│ │ g int64 8B 0
│ ├── Group: /file_1/group_1
│ │ Dimensions: ()
│ │ Data variables:
│ │ g int64 8B 1
│ ...
│ └── Group: /file_1/group_4
│ Dimensions: ()
│ Data variables:
│ g int64 8B 4
...
└── Group: /file_9
├── Group: /file_9/group_0
│ Dimensions: ()
│ Data variables:
│ g int64 8B 0
├── Group: /file_9/group_1
│ Dimensions: ()
│ Data variables:
│ g int64 8B 9
...
└── Group: /file_9/group_4
Dimensions: ()
Data variables:
g int64 8B 36
"""
).strip()
assert expected == result
with xr.set_options(display_max_children=10):
result = repr(tree)
for key in tree_dict:
assert key in result
def test_repr_inherited_dims(self) -> None:
tree = DataTree.from_dict(
{
"/": Dataset({"foo": ("x", [1.0])}),
"/child": Dataset({"bar": ("y", [2.0])}),
}
)
result = repr(tree)
expected = dedent(
"""
<xarray.DataTree>
Group: /
│ Dimensions: (x: 1)
│ Dimensions without coordinates: x
│ Data variables:
│ foo (x) float64 8B 1.0
└── Group: /child
Dimensions: (y: 1)
Dimensions without coordinates: y
Data variables:
bar (y) float64 8B 2.0
"""
).strip()
assert result == expected
result = repr(tree["child"])
expected = dedent(
"""
<xarray.DataTree 'child'>
Group: /child
Dimensions: (x: 1, y: 1)
Dimensions without coordinates: x, y
Data variables:
bar (y) float64 8B 2.0
"""
).strip()
assert result == expected
@pytest.mark.skipif(
ON_WINDOWS, reason="windows (pre NumPy2) uses int32 instead of int64"
)
def test_doc_example(self) -> None:
# regression test for https://github.com/pydata/xarray/issues/9499
time = xr.DataArray(
data=np.array(["2022-01", "2023-01"], dtype="<U7"), dims="time"
)
stations = xr.DataArray(
data=np.array(list("abcdef"), dtype="<U1"), dims="station"
)
lon = [-100, -80, -60]
lat = [10, 20, 30]
# Set up fake data
wind_speed = xr.DataArray(np.ones((2, 6)) * 2, dims=("time", "station"))
pressure = xr.DataArray(np.ones((2, 6)) * 3, dims=("time", "station"))
air_temperature = xr.DataArray(np.ones((2, 6)) * 4, dims=("time", "station"))
dewpoint = xr.DataArray(np.ones((2, 6)) * 5, dims=("time", "station"))
infrared = xr.DataArray(np.ones((2, 3, 3)) * 6, dims=("time", "lon", "lat"))
true_color = xr.DataArray(np.ones((2, 3, 3)) * 7, dims=("time", "lon", "lat"))
tree = xr.DataTree.from_dict(
{
"/": xr.Dataset(
coords={"time": time},
),
"/weather": xr.Dataset(
coords={"station": stations},
data_vars={
"wind_speed": wind_speed,
"pressure": pressure,
},
),
"/weather/temperature": xr.Dataset(
data_vars={
"air_temperature": air_temperature,
"dewpoint": dewpoint,
},
),
"/satellite": xr.Dataset(
coords={"lat": lat, "lon": lon},
data_vars={
"infrared": infrared,
"true_color": true_color,
},
),
},
)
result = repr(tree)
expected = dedent(
"""
<xarray.DataTree>
Group: /
│ Dimensions: (time: 2)
│ Coordinates:
│ * time (time) <U7 56B '2022-01' '2023-01'
├── Group: /weather
│ │ Dimensions: (station: 6, time: 2)
│ │ Coordinates:
│ │ * station (station) <U1 24B 'a' 'b' 'c' 'd' 'e' 'f'
│ │ Data variables:
│ │ wind_speed (time, station) float64 96B 2.0 2.0 2.0 2.0 ... 2.0 2.0 2.0 2.0
│ │ pressure (time, station) float64 96B 3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0 3.0
│ └── Group: /weather/temperature
│ Dimensions: (time: 2, station: 6)
│ Data variables:
│ air_temperature (time, station) float64 96B 4.0 4.0 4.0 4.0 ... 4.0 4.0 4.0
│ dewpoint (time, station) float64 96B 5.0 5.0 5.0 5.0 ... 5.0 5.0 5.0
└── Group: /satellite
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) int64 24B 10 20 30
* lon (lon) int64 24B -100 -80 -60
Data variables:
infrared (time, lon, lat) float64 144B 6.0 6.0 6.0 6.0 ... 6.0 6.0 6.0
true_color (time, lon, lat) float64 144B 7.0 7.0 7.0 7.0 ... 7.0 7.0 7.0
"""
).strip()
assert result == expected
result = repr(tree["weather"])
expected = dedent(
"""
<xarray.DataTree 'weather'>
Group: /weather
│ Dimensions: (time: 2, station: 6)
│ Coordinates:
│ * station (station) <U1 24B 'a' 'b' 'c' 'd' 'e' 'f'
│ Inherited coordinates:
│ * time (time) <U7 56B '2022-01' '2023-01'
│ Data variables:
│ wind_speed (time, station) float64 96B 2.0 2.0 2.0 2.0 ... 2.0 2.0 2.0 2.0
│ pressure (time, station) float64 96B 3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0 3.0
└── Group: /weather/temperature
Dimensions: (time: 2, station: 6)
Data variables:
air_temperature (time, station) float64 96B 4.0 4.0 4.0 4.0 ... 4.0 4.0 4.0
dewpoint (time, station) float64 96B 5.0 5.0 5.0 5.0 ... 5.0 5.0 5.0
"""
).strip()
assert result == expected
def _exact_match(message: str) -> str:
return re.escape(dedent(message).strip())
class TestInheritance:
def test_inherited_dims(self) -> None:
dt = DataTree.from_dict(
{
"/": xr.Dataset({"d": (("x",), [1, 2])}),
"/b": xr.Dataset({"e": (("y",), [3])}),
"/c": xr.Dataset({"f": (("y",), [3, 4, 5])}),
}
)
assert dt.sizes == {"x": 2}
# nodes should include inherited dimensions
assert dt.b.sizes == {"x": 2, "y": 1}
assert dt.c.sizes == {"x": 2, "y": 3}
# dataset objects created from nodes should not
assert dt.b.dataset.sizes == {"y": 1}
assert dt.b.to_dataset(inherit=True).sizes == {"y": 1}
assert dt.b.to_dataset(inherit=False).sizes == {"y": 1}
def test_inherited_coords_index(self) -> None:
dt = DataTree.from_dict(
{
"/": xr.Dataset({"d": (("x",), [1, 2])}, coords={"x": [2, 3]}),
"/b": xr.Dataset({"e": (("y",), [3])}),
}
)
assert "x" in dt["/b"].indexes
assert "x" in dt["/b"].coords
xr.testing.assert_identical(dt["/x"], dt["/b/x"])
def test_inherit_only_index_coords(self) -> None:
dt = DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1], "y": 2}),
"/b": xr.Dataset(coords={"z": 3}),
}
)
assert dt.coords.keys() == {"x", "y"}
xr.testing.assert_equal(
dt["/x"], xr.DataArray([1], dims=["x"], coords={"x": [1], "y": 2})
)
xr.testing.assert_equal(dt["/y"], xr.DataArray(2, coords={"y": 2}))
assert dt["/b"].coords.keys() == {"x", "z"}
xr.testing.assert_equal(
dt["/b/x"], xr.DataArray([1], dims=["x"], coords={"x": [1], "z": 3})
)
xr.testing.assert_equal(dt["/b/z"], xr.DataArray(3, coords={"z": 3}))
def test_inherited_coords_with_index_are_deduplicated(self) -> None:
dt = DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1, 2]}),
"/b": xr.Dataset(coords={"x": [1, 2]}),
}
)
child_dataset = dt.children["b"].to_dataset(inherit=False)
expected = xr.Dataset()
assert_identical(child_dataset, expected)
dt["/c"] = xr.Dataset({"foo": ("x", [4, 5])}, coords={"x": [1, 2]})
child_dataset = dt.children["c"].to_dataset(inherit=False)
expected = xr.Dataset({"foo": ("x", [4, 5])})
assert_identical(child_dataset, expected)
def test_deduplicated_after_setitem(self) -> None:
# regression test for GH #9601
dt = DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1, 2]}),
"/b": None,
}
)
dt["b/x"] = dt["x"]
child_dataset = dt.children["b"].to_dataset(inherit=False)
expected = xr.Dataset()
assert_identical(child_dataset, expected)
def test_inconsistent_dims(self) -> None:
expected_msg = _exact_match(
"""
group '/b' is not aligned with its parents:
Group:
Dimensions: (x: 1)
Dimensions without coordinates: x
Data variables:
c (x) float64 8B 3.0
From parents:
Dimensions: (x: 2)
Dimensions without coordinates: x
"""
)
with pytest.raises(ValueError, match=expected_msg):
DataTree.from_dict(
{
"/": xr.Dataset({"a": (("x",), [1.0, 2.0])}),
"/b": xr.Dataset({"c": (("x",), [3.0])}),
}
)
dt = DataTree()
dt["/a"] = xr.DataArray([1.0, 2.0], dims=["x"])
with pytest.raises(ValueError, match=expected_msg):
dt["/b/c"] = xr.DataArray([3.0], dims=["x"])
b = DataTree(dataset=xr.Dataset({"c": (("x",), [3.0])}))
with pytest.raises(ValueError, match=expected_msg):
DataTree(
dataset=xr.Dataset({"a": (("x",), [1.0, 2.0])}),
children={"b": b},
)
def test_inconsistent_child_indexes(self) -> None:
expected_msg = _exact_match(
"""
group '/b' is not aligned with its parents:
Group:
Dimensions: (x: 1)
Coordinates:
* x (x) float64 8B 2.0
Data variables:
*empty*
From parents:
Dimensions: (x: 1)
Coordinates:
* x (x) float64 8B 1.0
"""
)
with pytest.raises(ValueError, match=expected_msg):
DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1.0]}),
"/b": xr.Dataset(coords={"x": [2.0]}),
}
)
dt = DataTree()
dt.dataset = xr.Dataset(coords={"x": [1.0]}) # type: ignore[assignment]
dt["/b"] = DataTree()
with pytest.raises(ValueError, match=expected_msg):
dt["/b"].dataset = xr.Dataset(coords={"x": [2.0]})
b = DataTree(xr.Dataset(coords={"x": [2.0]}))
with pytest.raises(ValueError, match=expected_msg):
DataTree(dataset=xr.Dataset(coords={"x": [1.0]}), children={"b": b})
def test_inconsistent_grandchild_indexes(self) -> None:
expected_msg = _exact_match(
"""
group '/b/c' is not aligned with its parents:
Group:
Dimensions: (x: 1)
Coordinates:
* x (x) float64 8B 2.0
Data variables:
*empty*
From parents:
Dimensions: (x: 1)
Coordinates:
* x (x) float64 8B 1.0
"""
)
with pytest.raises(ValueError, match=expected_msg):
DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1.0]}),
"/b/c": xr.Dataset(coords={"x": [2.0]}),
}
)
dt = DataTree()
dt.dataset = xr.Dataset(coords={"x": [1.0]}) # type: ignore[assignment]
dt["/b/c"] = DataTree()
with pytest.raises(ValueError, match=expected_msg):
dt["/b/c"].dataset = xr.Dataset(coords={"x": [2.0]})
c = DataTree(xr.Dataset(coords={"x": [2.0]}))
b = DataTree(children={"c": c})
with pytest.raises(ValueError, match=expected_msg):
DataTree(dataset=xr.Dataset(coords={"x": [1.0]}), children={"b": b})
def test_inconsistent_grandchild_dims(self) -> None:
expected_msg = _exact_match(
"""
group '/b/c' is not aligned with its parents:
Group:
Dimensions: (x: 1)
Dimensions without coordinates: x
Data variables:
d (x) float64 8B 3.0
From parents:
Dimensions: (x: 2)
Dimensions without coordinates: x
"""
)
with pytest.raises(ValueError, match=expected_msg):
DataTree.from_dict(
{
"/": xr.Dataset({"a": (("x",), [1.0, 2.0])}),
"/b/c": xr.Dataset({"d": (("x",), [3.0])}),
}
)
dt = DataTree()
dt["/a"] = xr.DataArray([1.0, 2.0], dims=["x"])
with pytest.raises(ValueError, match=expected_msg):
dt["/b/c/d"] = xr.DataArray([3.0], dims=["x"])
class TestRestructuring:
def test_drop_nodes(self) -> None:
sue = DataTree.from_dict({"Mary": None, "Kate": None, "Ashley": None})
# test drop just one node
dropped_one = sue.drop_nodes(names="Mary")
assert "Mary" not in dropped_one.children
# test drop multiple nodes
dropped = sue.drop_nodes(names=["Mary", "Kate"])
assert not {"Mary", "Kate"}.intersection(set(dropped.children))
assert "Ashley" in dropped.children
# test raise
with pytest.raises(KeyError, match="nodes {'Mary'} not present"):
dropped.drop_nodes(names=["Mary", "Ashley"])
# test ignore
childless = dropped.drop_nodes(names=["Mary", "Ashley"], errors="ignore")
assert childless.children == {}
def test_assign(self) -> None:
dt = DataTree()
expected = DataTree.from_dict({"/": xr.Dataset({"foo": 0}), "/a": None})
# kwargs form
result = dt.assign(foo=xr.DataArray(0), a=DataTree())
assert_equal(result, expected)
# dict form
result = dt.assign({"foo": xr.DataArray(0), "a": DataTree()})
assert_equal(result, expected)
def test_filter_like(self) -> None:
flower_tree = DataTree.from_dict(
{"root": None, "trunk": None, "leaves": None, "flowers": None}
)
fruit_tree = DataTree.from_dict(
{"root": None, "trunk": None, "leaves": None, "fruit": None}
)
barren_tree = DataTree.from_dict({"root": None, "trunk": None})
# test filter_like tree
filtered_tree = flower_tree.filter_like(barren_tree)
assert filtered_tree.equals(barren_tree)
assert "flowers" not in filtered_tree.children
# test symmetrical pruning results in isomorphic trees
assert flower_tree.filter_like(fruit_tree).isomorphic(
fruit_tree.filter_like(flower_tree)
)
# test "deep" pruning
dt = DataTree.from_dict(
{"/a/A": None, "/a/B": None, "/b/A": None, "/b/B": None}
)
other = DataTree.from_dict({"/a/A": None, "/b/A": None})
filtered = dt.filter_like(other)
assert filtered.equals(other)
class TestPipe:
def test_noop(self, create_test_datatree: Callable[[], DataTree]) -> None:
dt = create_test_datatree()
actual = dt.pipe(lambda tree: tree)
assert actual.identical(dt)
def test_args(self, create_test_datatree: Callable[[], DataTree]) -> None:
dt = create_test_datatree()
def f(tree: DataTree, x: int, y: int) -> DataTree:
return tree.assign(
arr_with_attrs=xr.Variable("dim0", [], attrs=dict(x=x, y=y))
)
actual = dt.pipe(f, 1, 2)
assert actual["arr_with_attrs"].attrs == dict(x=1, y=2)
def test_kwargs(self, create_test_datatree: Callable[[], DataTree]) -> None:
dt = create_test_datatree()
def f(tree: DataTree, *, x: int, y: int, z: int) -> DataTree:
return tree.assign(
arr_with_attrs=xr.Variable("dim0", [], attrs=dict(x=x, y=y, z=z))
)
attrs = {"x": 1, "y": 2, "z": 3}
actual = dt.pipe(f, **attrs)
assert actual["arr_with_attrs"].attrs == attrs
def test_args_kwargs(self, create_test_datatree: Callable[[], DataTree]) -> None:
dt = create_test_datatree()
def f(tree: DataTree, x: int, *, y: int, z: int) -> DataTree:
return tree.assign(
arr_with_attrs=xr.Variable("dim0", [], attrs=dict(x=x, y=y, z=z))
)
attrs = {"x": 1, "y": 2, "z": 3}
actual = dt.pipe(f, attrs["x"], y=attrs["y"], z=attrs["z"])
assert actual["arr_with_attrs"].attrs == attrs
def test_named_self(self, create_test_datatree: Callable[[], DataTree]) -> None:
dt = create_test_datatree()
def f(x: int, tree: DataTree, y: int):
tree.attrs.update({"x": x, "y": y})
return tree
attrs = {"x": 1, "y": 2}
actual = dt.pipe((f, "tree"), **attrs)
assert actual is dt and actual.attrs == attrs
class TestIsomorphicEqualsAndIdentical:
def test_isomorphic(self):
tree = DataTree.from_dict({"/a": None, "/a/b": None, "/c": None})
diff_data = DataTree.from_dict(
{"/a": None, "/a/b": None, "/c": xr.Dataset({"foo": 1})}
)
assert tree.isomorphic(diff_data)
diff_order = DataTree.from_dict({"/c": None, "/a": None, "/a/b": None})
assert tree.isomorphic(diff_order)
diff_nodes = DataTree.from_dict({"/a": None, "/a/b": None, "/d": None})
assert not tree.isomorphic(diff_nodes)
more_nodes = DataTree.from_dict(
{"/a": None, "/a/b": None, "/c": None, "/d": None}
)
assert not tree.isomorphic(more_nodes)
def test_minimal_variations(self):
tree = DataTree.from_dict(
{
"/": Dataset({"x": 1}),
"/child": Dataset({"x": 2}),
}
)
assert tree.equals(tree)
assert tree.identical(tree)
child = tree.children["child"]
assert child.equals(child)
assert child.identical(child)
new_child = DataTree(dataset=Dataset({"x": 2}), name="child")
assert child.equals(new_child)
assert child.identical(new_child)
anonymous_child = DataTree(dataset=Dataset({"x": 2}))
# TODO: re-enable this after fixing .equals() not to require matching
# names on the root node (i.e., after switching to use zip_subtrees)
# assert child.equals(anonymous_child)
assert not child.identical(anonymous_child)
different_variables = DataTree.from_dict(
{
"/": Dataset(),
"/other": Dataset({"x": 2}),
}
)
assert not tree.equals(different_variables)
assert not tree.identical(different_variables)
different_root_data = DataTree.from_dict(
{
"/": Dataset({"x": 4}),
"/child": Dataset({"x": 2}),
}
)
assert not tree.equals(different_root_data)
assert not tree.identical(different_root_data)
different_child_data = DataTree.from_dict(
{
"/": Dataset({"x": 1}),
"/child": Dataset({"x": 3}),
}
)
assert not tree.equals(different_child_data)
assert not tree.identical(different_child_data)
different_child_node_attrs = DataTree.from_dict(
{
"/": Dataset({"x": 1}),
"/child": Dataset({"x": 2}, attrs={"foo": "bar"}),
}
)
assert tree.equals(different_child_node_attrs)
assert not tree.identical(different_child_node_attrs)
different_child_variable_attrs = DataTree.from_dict(
{
"/": Dataset({"x": 1}),
"/child": Dataset({"x": ((), 2, {"foo": "bar"})}),
}
)
assert tree.equals(different_child_variable_attrs)
assert not tree.identical(different_child_variable_attrs)
different_name = DataTree.from_dict(
{
"/": Dataset({"x": 1}),
"/child": Dataset({"x": 2}),
},
name="different",
)
# TODO: re-enable this after fixing .equals() not to require matching
# names on the root node (i.e., after switching to use zip_subtrees)
# assert tree.equals(different_name)
assert not tree.identical(different_name)
def test_differently_inherited_coordinates(self):
root = DataTree.from_dict(
{
"/": Dataset(coords={"x": [1, 2]}),
"/child": Dataset(),
}
)
child = root.children["child"]
assert child.equals(child)
assert child.identical(child)
new_child = DataTree(dataset=Dataset(coords={"x": [1, 2]}), name="child")
assert child.equals(new_child)
assert not child.identical(new_child)
deeper_root = DataTree(children={"root": root})
grandchild = deeper_root["/root/child"]
assert child.equals(grandchild)
assert child.identical(grandchild)
class TestSubset:
def test_match(self) -> None:
# TODO is this example going to cause problems with case sensitivity?
dt = DataTree.from_dict(
{
"/a/A": None,
"/a/B": None,
"/b/A": None,
"/b/B": None,
}
)
result = dt.match("*/B")
expected = DataTree.from_dict(
{
"/a/B": None,
"/b/B": None,
}
)
assert_identical(result, expected)
result = dt.children["a"].match("B")
expected = DataTree.from_dict({"/B": None}, name="a")
assert_identical(result, expected)
def test_filter(self) -> None:
simpsons = DataTree.from_dict(
{
"/": xr.Dataset({"age": 83}),
"/Herbert": xr.Dataset({"age": 40}),
"/Homer": xr.Dataset({"age": 39}),
"/Homer/Bart": xr.Dataset({"age": 10}),
"/Homer/Lisa": xr.Dataset({"age": 8}),
"/Homer/Maggie": xr.Dataset({"age": 1}),
},
name="Abe",
)
expected = DataTree.from_dict(
{
"/": xr.Dataset({"age": 83}),
"/Herbert": xr.Dataset({"age": 40}),
"/Homer": xr.Dataset({"age": 39}),
},
name="Abe",
)
elders = simpsons.filter(lambda node: node["age"].item() > 18)
assert_identical(elders, expected)
expected = DataTree.from_dict({"/Bart": xr.Dataset({"age": 10})}, name="Homer")
actual = simpsons.children["Homer"].filter(
lambda node: node["age"].item() == 10
)
assert_identical(actual, expected)
def test_prune_basic(self) -> None:
tree = DataTree.from_dict(
{"/a": xr.Dataset({"foo": ("x", [1, 2])}), "/b": xr.Dataset()}
)
pruned = tree.prune()
assert "a" in pruned.children
assert "b" not in pruned.children
assert_identical(
pruned.children["a"].to_dataset(), tree.children["a"].to_dataset()
)
def test_prune_with_zero_size_vars(self) -> None:
tree = DataTree.from_dict(
{
"/a": xr.Dataset({"foo": ("x", [1, 2])}),
"/b": xr.Dataset({"empty": ("dim", [])}),
"/c": xr.Dataset(),
}
)
pruned_default = tree.prune()
expected_default = DataTree.from_dict(
{
"/a": xr.Dataset({"foo": ("x", [1, 2])}),
"/b": xr.Dataset({"empty": ("dim", [])}),
}
)
assert_identical(pruned_default, expected_default)
pruned_strict = tree.prune(drop_size_zero_vars=True)
expected_strict = DataTree.from_dict(
{
"/a": xr.Dataset({"foo": ("x", [1, 2])}),
}
)
assert_identical(pruned_strict, expected_strict)
def test_prune_with_intermediate_nodes(self) -> None:
tree = DataTree.from_dict(
{
"/": xr.Dataset(),
"/group1": xr.Dataset(),
"/group1/subA": xr.Dataset({"temp": ("x", [1, 2])}),
"/group1/subB": xr.Dataset(),
"/group2": xr.Dataset({"empty": ("dim", [])}),
}
)
pruned = tree.prune()
expected_tree = DataTree.from_dict(
{
"/group1/subA": xr.Dataset({"temp": ("x", [1, 2])}),
"/group2": xr.Dataset({"empty": ("dim", [])}),
}
)
assert_identical(pruned, expected_tree)
def test_prune_after_filtering(self) -> None:
from pandas import date_range
ds1 = xr.Dataset(
{"foo": ("time", [1, 2, 3, 4, 5])},
coords={"time": date_range("2023-01-01", periods=5, freq="D")},
)
ds2 = xr.Dataset(
{"var": ("time", [1, 2, 3, 4, 5])},
coords={"time": date_range("2023-01-04", periods=5, freq="D")},
)
tree = DataTree.from_dict({"a": ds1, "b": ds2})
filtered = tree.sel(time=slice("2023-01-01", "2023-01-03"))
pruned = filtered.prune(drop_size_zero_vars=True)
expected_tree = DataTree.from_dict(
{"a": ds1.sel(time=slice("2023-01-01", "2023-01-03"))}
)
assert_identical(pruned, expected_tree)
class TestIndexing:
def test_isel_siblings(self) -> None:
tree = DataTree.from_dict(
{
"/first": xr.Dataset({"a": ("x", [1, 2])}),
"/second": xr.Dataset({"b": ("x", [1, 2, 3])}),
}
)
expected = DataTree.from_dict(
{
"/first": xr.Dataset({"a": 2}),
"/second": xr.Dataset({"b": 3}),
}
)
actual = tree.isel(x=-1)
assert_identical(actual, expected)
expected = DataTree.from_dict(
{
"/first": xr.Dataset({"a": ("x", [1])}),
"/second": xr.Dataset({"b": ("x", [1])}),
}
)
actual = tree.isel(x=slice(1))
assert_identical(actual, expected)
actual = tree.isel(x=[0])
assert_identical(actual, expected)
actual = tree.isel(x=slice(None))
assert_identical(actual, tree)
def test_isel_inherited(self) -> None:
tree = DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1, 2]}),
"/child": xr.Dataset({"foo": ("x", [3, 4])}),
}
)
expected = DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": 2}),
"/child": xr.Dataset({"foo": 4}),
}
)
actual = tree.isel(x=-1)
assert_identical(actual, expected)
expected = DataTree.from_dict(
{
"/child": xr.Dataset({"foo": 4}),
}
)
actual = tree.isel(x=-1, drop=True)
assert_identical(actual, expected)
expected = DataTree.from_dict(
{
"/": xr.Dataset(coords={"x": [1]}),
"/child": xr.Dataset({"foo": ("x", [3])}),
}
)
actual = tree.isel(x=[0])
assert_identical(actual, expected)
actual = tree.isel(x=slice(None))
# TODO: re-enable after the fix to copy() from #9628 is submitted
# actual = tree.children["child"].isel(x=slice(None))
# expected = tree.children["child"].copy()
# assert_identical(actual, expected)
actual = tree.children["child"].isel(x=0)
expected = DataTree(
dataset=xr.Dataset({"foo": 3}, coords={"x": 1}),
name="child",
)
assert_identical(actual, expected)
def test_sel(self) -> None:
tree = DataTree.from_dict(
{
"/first": xr.Dataset({"a": ("x", [1, 2, 3])}, coords={"x": [1, 2, 3]}),
"/second": xr.Dataset({"b": ("x", [4, 5])}, coords={"x": [2, 3]}),
}
)
expected = DataTree.from_dict(
{
"/first": xr.Dataset({"a": 2}, coords={"x": 2}),
"/second": xr.Dataset({"b": 4}, coords={"x": 2}),
}
)
actual = tree.sel(x=2)
assert_identical(actual, expected)
actual = tree.children["first"].sel(x=2)
expected = DataTree(
dataset=xr.Dataset({"a": 2}, coords={"x": 2}),
name="first",
)
assert_identical(actual, expected)
def test_sel_isel_error_has_node_info(self) -> None:
tree = DataTree.from_dict(
{
"/first": xr.Dataset({"a": ("x", [1, 2, 3])}, coords={"x": [1, 2, 3]}),
"/second": xr.Dataset({"b": ("x", [4, 5])}, coords={"x": [2, 3]}),
}
)
with pytest.raises(
KeyError,
match="Raised whilst mapping function over node with path 'second'",
):
tree.sel(x=1)
with pytest.raises(
IndexError,
match="Raised whilst mapping function over node with path 'first'",
):
tree.isel(x=4)
class TestAggregations:
def test_reduce_method(self) -> None:
ds = xr.Dataset({"a": ("x", [False, True, False])})
dt = DataTree.from_dict({"/": ds, "/results": ds})
expected = DataTree.from_dict({"/": ds.any(), "/results": ds.any()})
result = dt.any()
assert_equal(result, expected)
def test_nan_reduce_method(self) -> None:
ds = xr.Dataset({"a": ("x", [1, 2, 3])})
dt = DataTree.from_dict({"/": ds, "/results": ds})
expected = DataTree.from_dict({"/": ds.mean(), "/results": ds.mean()})
result = dt.mean()
assert_equal(result, expected)
def test_cum_method(self) -> None:
ds = xr.Dataset({"a": ("x", [1, 2, 3])})
dt = DataTree.from_dict({"/": ds, "/results": ds})
expected = DataTree.from_dict(
{
"/": ds.cumsum(),
"/results": ds.cumsum(),
}
)
result = dt.cumsum()
assert_equal(result, expected)
def test_dim_argument(self) -> None:
dt = DataTree.from_dict(
{
"/a": xr.Dataset({"A": ("x", [1, 2])}),
"/b": xr.Dataset({"B": ("y", [1, 2])}),
}
)
expected = DataTree.from_dict(
{
"/a": xr.Dataset({"A": 1.5}),
"/b": xr.Dataset({"B": 1.5}),
}
)
actual = dt.mean()
assert_equal(expected, actual)
actual = dt.mean(dim=...)
assert_equal(expected, actual)
expected = DataTree.from_dict(
{
"/a": xr.Dataset({"A": 1.5}),
"/b": xr.Dataset({"B": ("y", [1.0, 2.0])}),
}
)
actual = dt.mean("x")
assert_equal(expected, actual)
with pytest.raises(
ValueError,
match=re.escape("Dimension(s) 'invalid' do not exist."),
):
dt.mean("invalid")
def test_subtree(self) -> None:
tree = DataTree.from_dict(
{
"/child": Dataset({"a": ("x", [1, 2])}),
}
)
expected = DataTree(dataset=Dataset({"a": 1.5}), name="child")
actual = tree.children["child"].mean()
assert_identical(expected, actual)
class TestOps:
def test_unary_op(self) -> None:
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict({"/": ds1, "/subnode": ds2})
expected = DataTree.from_dict({"/": (-ds1), "/subnode": (-ds2)})
result = -dt
assert_equal(result, expected)
def test_unary_op_inherited_coords(self) -> None:
tree = DataTree(xr.Dataset(coords={"x": [1, 2, 3]}))
tree["/foo"] = DataTree(xr.Dataset({"bar": ("x", [4, 5, 6])}))
actual = -tree
actual_dataset = actual.children["foo"].to_dataset(inherit=False)
assert "x" not in actual_dataset.coords
expected = tree.copy()
# unary ops are not applied to coordinate variables, only data variables
expected["/foo/bar"].data = np.array([-4, -5, -6])
assert_identical(actual, expected)
def test_binary_op_on_int(self) -> None:
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict({"/": ds1, "/subnode": ds2})
expected = DataTree.from_dict({"/": ds1 * 5, "/subnode": ds2 * 5})
result = dt * 5
assert_equal(result, expected)
def test_binary_op_on_dataarray(self) -> None:
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict(
{
"/": ds1,
"/subnode": ds2,
}
)
other_da = xr.DataArray(name="z", data=[0.1, 0.2], dims="z")
expected = DataTree.from_dict(
{
"/": ds1 * other_da,
"/subnode": ds2 * other_da,
}
)
result = dt * other_da
assert_equal(result, expected)
def test_binary_op_on_dataset(self) -> None:
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict(
{
"/": ds1,
"/subnode": ds2,
}
)
other_ds = xr.Dataset({"z": ("z", [0.1, 0.2])})
expected = DataTree.from_dict(
{
"/": ds1 * other_ds,
"/subnode": ds2 * other_ds,
}
)
result = dt * other_ds
assert_equal(result, expected)
def test_binary_op_on_datatree(self) -> None:
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict({"/": ds1, "/subnode": ds2})
expected = DataTree.from_dict({"/": ds1 * ds1, "/subnode": ds2 * ds2})
result = dt * dt
assert_equal(result, expected)
def test_binary_op_order_invariant(self) -> None:
tree_ab = DataTree.from_dict({"/a": Dataset({"a": 1}), "/b": Dataset({"b": 2})})
tree_ba = DataTree.from_dict({"/b": Dataset({"b": 2}), "/a": Dataset({"a": 1})})
expected = DataTree.from_dict(
{"/a": Dataset({"a": 2}), "/b": Dataset({"b": 4})}
)
actual = tree_ab + tree_ba
assert_identical(expected, actual)
def test_arithmetic_inherited_coords(self) -> None:
tree = DataTree(xr.Dataset(coords={"x": [1, 2, 3]}))
tree["/foo"] = DataTree(xr.Dataset({"bar": ("x", [4, 5, 6])}))
actual = 2 * tree
actual_dataset = actual.children["foo"].to_dataset(inherit=False)
assert "x" not in actual_dataset.coords
expected = tree.copy()
expected["/foo/bar"].data = np.array([8, 10, 12])
assert_identical(actual, expected)
def test_binary_op_commutativity_with_dataset(self) -> None:
# regression test for #9365
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict(
{
"/": ds1,
"/subnode": ds2,
}
)
other_ds = xr.Dataset({"z": ("z", [0.1, 0.2])})
expected = DataTree.from_dict(
{
"/": ds1 * other_ds,
"/subnode": ds2 * other_ds,
}
)
result = other_ds * dt
assert_equal(result, expected)
def test_inplace_binary_op(self) -> None:
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict({"/": ds1, "/subnode": ds2})
expected = DataTree.from_dict({"/": ds1 + 1, "/subnode": ds2 + 1})
dt += 1
assert_equal(dt, expected)
def test_dont_broadcast_single_node_tree(self) -> None:
# regression test for https://github.com/pydata/xarray/issues/9365#issuecomment-2291622577
ds1 = xr.Dataset({"a": [5], "b": [3]})
ds2 = xr.Dataset({"x": [0.1, 0.2], "y": [10, 20]})
dt = DataTree.from_dict({"/": ds1, "/subnode": ds2})
node = dt["/subnode"]
with pytest.raises(
xr.TreeIsomorphismError,
match=re.escape(r"children at root node do not match: ['subnode'] vs []"),
):
dt * node
class TestUFuncs:
@pytest.mark.xfail(reason="__array_ufunc__ not implemented yet")
def test_tree(self, create_test_datatree):
dt = create_test_datatree()
expected = create_test_datatree(modify=np.sin)
result_tree = np.sin(dt)
assert_equal(result_tree, expected)
class Closer:
def __init__(self):
self.closed = False
def close(self):
if self.closed:
raise RuntimeError("already closed")
self.closed = True
@pytest.fixture
def tree_and_closers():
tree = DataTree.from_dict({"/child/grandchild": None})
closers = {
"/": Closer(),
"/child": Closer(),
"/child/grandchild": Closer(),
}
for path, closer in closers.items():
tree[path].set_close(closer.close)
return tree, closers
class TestClose:
def test_close(self, tree_and_closers):
tree, closers = tree_and_closers
assert not any(closer.closed for closer in closers.values())
tree.close()
assert all(closer.closed for closer in closers.values())
tree.close() # should not error
def test_context_manager(self, tree_and_closers):
tree, closers = tree_and_closers
assert not any(closer.closed for closer in closers.values())
with tree:
pass
assert all(closer.closed for closer in closers.values())
def test_close_child(self, tree_and_closers):
tree, closers = tree_and_closers
assert not any(closer.closed for closer in closers.values())
tree["child"].close() # should only close descendants
assert not closers["/"].closed
assert closers["/child"].closed
assert closers["/child/grandchild"].closed
def test_close_datasetview(self, tree_and_closers):
tree, _ = tree_and_closers
with pytest.raises(
AttributeError,
match=re.escape(
r"cannot close a DatasetView(). Close the associated DataTree node instead"
),
):
tree.dataset.close()
with pytest.raises(
AttributeError, match=re.escape(r"cannot modify a DatasetView()")
):
tree.dataset.set_close(None)
def test_close_dataset(self, tree_and_closers):
tree, closers = tree_and_closers
ds = tree.to_dataset() # should discard closers
ds.close()
assert not closers["/"].closed
# with tree:
# pass
@requires_dask
class TestDask:
def test_chunksizes(self):
ds1 = xr.Dataset({"a": ("x", np.arange(10))})
ds2 = xr.Dataset({"b": ("y", np.arange(5))})
ds3 = xr.Dataset({"c": ("z", np.arange(4))})
ds4 = xr.Dataset({"d": ("x", np.arange(-5, 5))})
groups = {
"/": ds1.chunk({"x": 5}),
"/group1": ds2.chunk({"y": 3}),
"/group2": ds3.chunk({"z": 2}),
"/group1/subgroup1": ds4.chunk({"x": 5}),
}
tree = xr.DataTree.from_dict(groups)
expected_chunksizes = {path: node.chunksizes for path, node in groups.items()}
assert tree.chunksizes == expected_chunksizes
def test_load(self):
ds1 = xr.Dataset({"a": ("x", np.arange(10))})
ds2 = xr.Dataset({"b": ("y", np.arange(5))})
ds3 = xr.Dataset({"c": ("z", np.arange(4))})
ds4 = xr.Dataset({"d": ("x", np.arange(-5, 5))})
groups = {"/": ds1, "/group1": ds2, "/group2": ds3, "/group1/subgroup1": ds4}
expected = xr.DataTree.from_dict(groups)
tree = xr.DataTree.from_dict(
{
"/": ds1.chunk({"x": 5}),
"/group1": ds2.chunk({"y": 3}),
"/group2": ds3.chunk({"z": 2}),
"/group1/subgroup1": ds4.chunk({"x": 5}),
}
)
expected_chunksizes: Mapping[str, Mapping]
expected_chunksizes = {node.path: {} for node in tree.subtree}
actual = tree.load()
assert_identical(actual, expected)
assert tree.chunksizes == expected_chunksizes
assert actual.chunksizes == expected_chunksizes
tree = xr.DataTree.from_dict(groups)
actual = tree.load()
assert_identical(actual, expected)
assert actual.chunksizes == expected_chunksizes
def test_compute(self):
ds1 = xr.Dataset({"a": ("x", np.arange(10))})
ds2 = xr.Dataset({"b": ("y", np.arange(5))})
ds3 = xr.Dataset({"c": ("z", np.arange(4))})
ds4 = xr.Dataset({"d": ("x", np.arange(-5, 5))})
expected = xr.DataTree.from_dict(
{"/": ds1, "/group1": ds2, "/group2": ds3, "/group1/subgroup1": ds4}
)
tree = xr.DataTree.from_dict(
{
"/": ds1.chunk({"x": 5}),
"/group1": ds2.chunk({"y": 3}),
"/group2": ds3.chunk({"z": 2}),
"/group1/subgroup1": ds4.chunk({"x": 5}),
}
)
original_chunksizes = tree.chunksizes
expected_chunksizes: Mapping[str, Mapping]
expected_chunksizes = {node.path: {} for node in tree.subtree}
actual = tree.compute()
assert_identical(actual, expected)
assert actual.chunksizes == expected_chunksizes, "mismatching chunksizes"
assert tree.chunksizes == original_chunksizes, "original tree was modified"
def test_persist(self):
ds1 = xr.Dataset({"a": ("x", np.arange(10))})
ds2 = xr.Dataset({"b": ("y", np.arange(5))})
ds3 = xr.Dataset({"c": ("z", np.arange(4))})
ds4 = xr.Dataset({"d": ("x", np.arange(-5, 5))})
def fn(x):
return 2 * x
expected = xr.DataTree.from_dict(
{
"/": fn(ds1).chunk({"x": 5}),
"/group1": fn(ds2).chunk({"y": 3}),
"/group2": fn(ds3).chunk({"z": 2}),
"/group1/subgroup1": fn(ds4).chunk({"x": 5}),
}
)
# Add trivial second layer to the task graph, persist should reduce to one
tree = xr.DataTree.from_dict(
{
"/": fn(ds1.chunk({"x": 5})),
"/group1": fn(ds2.chunk({"y": 3})),
"/group2": fn(ds3.chunk({"z": 2})),
"/group1/subgroup1": fn(ds4.chunk({"x": 5})),
}
)
original_chunksizes = tree.chunksizes
original_hlg_depths = {
node.path: len(node.dataset.__dask_graph__().layers)
for node in tree.subtree
}
actual = tree.persist()
actual_hlg_depths = {
node.path: len(node.dataset.__dask_graph__().layers)
for node in actual.subtree
}
assert_identical(actual, expected)
assert actual.chunksizes == original_chunksizes, "chunksizes were modified"
assert tree.chunksizes == original_chunksizes, (
"original chunksizes were modified"
)
assert all(d == 1 for d in actual_hlg_depths.values()), (
"unexpected dask graph depth"
)
assert all(d == 2 for d in original_hlg_depths.values()), (
"original dask graph was modified"
)
def test_chunk(self):
ds1 = xr.Dataset({"a": ("x", np.arange(10))})
ds2 = xr.Dataset({"b": ("y", np.arange(5))})
ds3 = xr.Dataset({"c": ("z", np.arange(4))})
ds4 = xr.Dataset({"d": ("x", np.arange(-5, 5))})
expected = xr.DataTree.from_dict(
{
"/": ds1.chunk({"x": 5}),
"/group1": ds2.chunk({"y": 3}),
"/group2": ds3.chunk({"z": 2}),
"/group1/subgroup1": ds4.chunk({"x": 5}),
}
)
tree = xr.DataTree.from_dict(
{"/": ds1, "/group1": ds2, "/group2": ds3, "/group1/subgroup1": ds4}
)
actual = tree.chunk({"x": 5, "y": 3, "z": 2})
assert_identical(actual, expected)
assert actual.chunksizes == expected.chunksizes
with pytest.raises(TypeError, match="invalid type"):
tree.chunk(None)
with pytest.raises(TypeError, match="invalid type"):
tree.chunk((1, 2))
with pytest.raises(ValueError, match="not found in data dimensions"):
tree.chunk({"u": 2})
|