1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
import re
import numpy as np
import pytest
import xarray as xr
from xarray.core.datatree_mapping import map_over_datasets
from xarray.core.treenode import TreeIsomorphismError
from xarray.testing import assert_equal, assert_identical
empty = xr.Dataset()
class TestMapOverSubTree:
def test_no_trees_passed(self):
with pytest.raises(TypeError, match="must pass at least one tree object"):
map_over_datasets(lambda x: x, "dt")
def test_not_isomorphic(self, create_test_datatree):
dt1 = create_test_datatree()
dt2 = create_test_datatree()
dt2["set1/set2/extra"] = xr.DataTree(name="extra")
with pytest.raises(
TreeIsomorphismError,
match=re.escape(
r"children at node 'set1/set2' do not match: [] vs ['extra']"
),
):
map_over_datasets(lambda x, y: None, dt1, dt2)
def test_no_trees_returned(self, create_test_datatree):
dt1 = create_test_datatree()
dt2 = create_test_datatree()
expected = xr.DataTree.from_dict(dict.fromkeys(dt1.to_dict()))
actual = map_over_datasets(lambda x, y: None, dt1, dt2)
assert_equal(expected, actual)
def test_single_tree_arg(self, create_test_datatree):
dt = create_test_datatree()
expected = create_test_datatree(modify=lambda x: 10.0 * x)
result_tree = map_over_datasets(lambda x: 10 * x, dt)
assert_equal(result_tree, expected)
def test_single_tree_arg_plus_arg(self, create_test_datatree):
dt = create_test_datatree()
expected = create_test_datatree(modify=lambda ds: (10.0 * ds))
result_tree = map_over_datasets(lambda x, y: x * y, dt, 10.0)
assert_equal(result_tree, expected)
result_tree = map_over_datasets(lambda x, y: x * y, 10.0, dt)
assert_equal(result_tree, expected)
def test_single_tree_arg_plus_kwarg(self, create_test_datatree):
dt = create_test_datatree()
expected = create_test_datatree(modify=lambda ds: (10.0 * ds))
def multiply_by_kwarg(ds, **kwargs):
ds = ds * kwargs.pop("multiplier")
return ds
result_tree = map_over_datasets(
multiply_by_kwarg, dt, kwargs=dict(multiplier=10.0)
)
assert_equal(result_tree, expected)
def test_multiple_tree_args(self, create_test_datatree):
dt1 = create_test_datatree()
dt2 = create_test_datatree()
expected = create_test_datatree(modify=lambda ds: 2.0 * ds)
result = map_over_datasets(lambda x, y: x + y, dt1, dt2)
assert_equal(result, expected)
def test_return_multiple_trees(self, create_test_datatree):
dt = create_test_datatree()
dt_min, dt_max = map_over_datasets(lambda x: (x.min(), x.max()), dt)
expected_min = create_test_datatree(modify=lambda ds: ds.min())
assert_equal(dt_min, expected_min)
expected_max = create_test_datatree(modify=lambda ds: ds.max())
assert_equal(dt_max, expected_max)
def test_return_wrong_type(self, simple_datatree):
dt1 = simple_datatree
with pytest.raises(
TypeError,
match=re.escape(
"the result of calling func on the node at position '.' is not a "
"Dataset or None or a tuple of such types"
),
):
map_over_datasets(lambda x: "string", dt1) # type: ignore[arg-type,return-value]
def test_return_tuple_of_wrong_types(self, simple_datatree):
dt1 = simple_datatree
with pytest.raises(
TypeError,
match=re.escape(
"the result of calling func on the node at position '.' is not a "
"Dataset or None or a tuple of such types"
),
):
map_over_datasets(lambda x: (x, "string"), dt1) # type: ignore[arg-type,return-value]
def test_return_inconsistent_number_of_results(self, simple_datatree):
dt1 = simple_datatree
with pytest.raises(
TypeError,
match=re.escape(
r"Calling func on the nodes at position set1 returns a tuple "
"of 0 datasets, whereas calling func on the nodes at position "
". instead returns a tuple of 2 datasets."
),
):
# Datasets in simple_datatree have different numbers of dims
map_over_datasets(lambda ds: tuple((None,) * len(ds.dims)), dt1)
def test_wrong_number_of_arguments_for_func(self, simple_datatree):
dt = simple_datatree
with pytest.raises(
TypeError, match="takes 1 positional argument but 2 were given"
):
map_over_datasets(lambda x: 10 * x, dt, dt)
def test_map_single_dataset_against_whole_tree(self, create_test_datatree):
dt = create_test_datatree()
def nodewise_merge(node_ds, fixed_ds):
return xr.merge([node_ds, fixed_ds])
other_ds = xr.Dataset({"z": ("z", [0])})
expected = create_test_datatree(modify=lambda ds: xr.merge([ds, other_ds]))
result_tree = map_over_datasets(nodewise_merge, dt, other_ds)
assert_equal(result_tree, expected)
@pytest.mark.xfail
def test_trees_with_different_node_names(self):
# TODO test this after I've got good tests for renaming nodes
raise NotImplementedError
def test_tree_method(self, create_test_datatree):
dt = create_test_datatree()
def multiply(ds, times):
return times * ds
expected = create_test_datatree(modify=lambda ds: 10.0 * ds)
result_tree = dt.map_over_datasets(multiply, 10.0)
assert_equal(result_tree, expected)
def test_tree_method_with_kwarg(self, create_test_datatree):
dt = create_test_datatree()
def multiply(ds, **kwargs):
return kwargs.pop("times") * ds
expected = create_test_datatree(modify=lambda ds: 10.0 * ds)
result_tree = dt.map_over_datasets(multiply, kwargs=dict(times=10.0))
assert_equal(result_tree, expected)
def test_discard_ancestry(self, create_test_datatree):
# Check for datatree GH issue https://github.com/xarray-contrib/datatree/issues/48
dt = create_test_datatree()
subtree = dt["set1"]
expected = create_test_datatree(modify=lambda ds: 10.0 * ds)["set1"]
result_tree = map_over_datasets(lambda x: 10.0 * x, subtree)
assert_equal(result_tree, expected)
def test_keep_attrs_on_empty_nodes(self, create_test_datatree):
# GH278
dt = create_test_datatree()
dt["set1/set2"].attrs["foo"] = "bar"
def empty_func(ds):
return ds
result = dt.map_over_datasets(empty_func)
assert result["set1/set2"].attrs == dt["set1/set2"].attrs
def test_error_contains_path_of_offending_node(self, create_test_datatree):
dt = create_test_datatree()
dt["set1"]["bad_var"] = 0
print(dt)
def fail_on_specific_node(ds):
if "bad_var" in ds:
raise ValueError("Failed because 'bar_var' present in dataset")
with pytest.raises(
ValueError,
match=re.escape(
r"Raised whilst mapping function over node with path 'set1'"
),
):
dt.map_over_datasets(fail_on_specific_node)
def test_inherited_coordinates_with_index(self):
root = xr.Dataset(coords={"x": [1, 2]})
child = xr.Dataset({"foo": ("x", [0, 1])}) # no coordinates
tree = xr.DataTree.from_dict({"/": root, "/child": child})
actual = tree.map_over_datasets(lambda ds: ds) # identity
assert isinstance(actual, xr.DataTree)
assert_identical(tree, actual)
actual_child = actual.children["child"].to_dataset(inherit=False)
assert_identical(actual_child, child)
class TestMutableOperations:
def test_construct_using_type(self):
# from datatree GH issue https://github.com/xarray-contrib/datatree/issues/188
# xarray's .weighted is unusual because it uses type() to create a Dataset/DataArray
a = xr.DataArray(
np.random.rand(3, 4, 10),
dims=["x", "y", "time"],
coords={"area": (["x", "y"], np.random.rand(3, 4))},
).to_dataset(name="data")
b = xr.DataArray(
np.random.rand(2, 6, 14),
dims=["x", "y", "time"],
coords={"area": (["x", "y"], np.random.rand(2, 6))},
).to_dataset(name="data")
dt = xr.DataTree.from_dict({"a": a, "b": b})
def weighted_mean(ds):
if "area" not in ds.coords:
return None
return ds.weighted(ds.area).mean(["x", "y"])
dt.map_over_datasets(weighted_mean)
def test_alter_inplace_forbidden(self):
simpsons = xr.DataTree.from_dict(
{
"/": xr.Dataset({"age": 83}),
"/Herbert": xr.Dataset({"age": 40}),
"/Homer": xr.Dataset({"age": 39}),
"/Homer/Bart": xr.Dataset({"age": 10}),
"/Homer/Lisa": xr.Dataset({"age": 8}),
"/Homer/Maggie": xr.Dataset({"age": 1}),
},
name="Abe",
)
def fast_forward(ds: xr.Dataset, years: float) -> xr.Dataset:
"""Add some years to the age, but by altering the given dataset"""
ds["age"] = ds["age"] + years
return ds
with pytest.raises(AttributeError):
simpsons.map_over_datasets(fast_forward, 10)
|