1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
from __future__ import annotations
import numpy as np
import pytest
from xarray.core import dtypes
from xarray.tests import requires_array_api_strict
try:
import array_api_strict
except ImportError:
class DummyArrayAPINamespace:
bool = None # type: ignore[unused-ignore,var-annotated]
int32 = None # type: ignore[unused-ignore,var-annotated]
float64 = None # type: ignore[unused-ignore,var-annotated]
array_api_strict = DummyArrayAPINamespace
@pytest.mark.parametrize(
"args, expected",
[
([bool], bool),
([bool, np.bytes_], np.object_),
([np.float32, np.float64], np.float64),
([np.float32, np.bytes_], np.object_),
([np.str_, np.int64], np.object_),
([np.str_, np.str_], np.str_),
([np.bytes_, np.str_], np.object_),
([np.dtype("<U2"), np.str_], np.dtype("U")),
([np.dtype("<U2"), str], np.dtype("U")),
([np.dtype("S3"), np.bytes_], np.dtype("S")),
([np.dtype("S10"), bytes], np.dtype("S")),
],
)
def test_result_type(args, expected) -> None:
actual = dtypes.result_type(*args)
assert actual == expected
@pytest.mark.parametrize(
["values", "expected"],
(
([np.arange(3, dtype="float32"), np.nan], np.float32),
([np.arange(3, dtype="int8"), 1], np.int8),
([np.array(["a", "b"], dtype=str), np.nan], object),
([np.array([b"a", b"b"], dtype=bytes), True], object),
([np.array([b"a", b"b"], dtype=bytes), "c"], object),
([np.array(["a", "b"], dtype=str), "c"], np.dtype(str)),
([np.array(["a", "b"], dtype=str), None], object),
([0, 1], np.dtype("int")),
),
)
def test_result_type_scalars(values, expected) -> None:
actual = dtypes.result_type(*values)
assert np.issubdtype(actual, expected)
def test_result_type_dask_array() -> None:
# verify it works without evaluating dask arrays
da = pytest.importorskip("dask.array")
dask = pytest.importorskip("dask")
def error():
raise RuntimeError
array = da.from_delayed(dask.delayed(error)(), (), np.float64)
with pytest.raises(RuntimeError):
array.compute()
actual = dtypes.result_type(array)
assert actual == np.float64
# note that this differs from the behavior for scalar numpy arrays, which
# would get promoted to float32
actual = dtypes.result_type(array, np.array([0.5, 1.0], dtype=np.float32))
assert actual == np.float64
@pytest.mark.parametrize("obj", [1.0, np.inf, "ab", 1.0 + 1.0j, True])
def test_inf(obj) -> None:
assert dtypes.INF > obj
assert dtypes.NINF < obj
@pytest.mark.parametrize(
"kind, expected",
[
("b", (np.float32, "nan")), # dtype('int8')
("B", (np.float32, "nan")), # dtype('uint8')
("c", (np.dtype("O"), "nan")), # dtype('S1')
("D", (np.complex128, "(nan+nanj)")), # dtype('complex128')
("d", (np.float64, "nan")), # dtype('float64')
("e", (np.float16, "nan")), # dtype('float16')
("F", (np.complex64, "(nan+nanj)")), # dtype('complex64')
("f", (np.float32, "nan")), # dtype('float32')
("h", (np.float32, "nan")), # dtype('int16')
("H", (np.float32, "nan")), # dtype('uint16')
("i", (np.float64, "nan")), # dtype('int32')
("I", (np.float64, "nan")), # dtype('uint32')
("l", (np.float64, "nan")), # dtype('int64')
("L", (np.float64, "nan")), # dtype('uint64')
("m", (np.timedelta64, "NaT")), # dtype('<m8')
("M", (np.datetime64, "NaT")), # dtype('<M8')
("O", (np.dtype("O"), "nan")), # dtype('O')
("p", (np.float64, "nan")), # dtype('int64')
("P", (np.float64, "nan")), # dtype('uint64')
("q", (np.float64, "nan")), # dtype('int64')
("Q", (np.float64, "nan")), # dtype('uint64')
("S", (np.dtype("O"), "nan")), # dtype('S')
("U", (np.dtype("O"), "nan")), # dtype('<U')
("V", (np.dtype("O"), "nan")), # dtype('V')
],
)
def test_maybe_promote(kind, expected) -> None:
# 'g': np.float128 is not tested : not available on all platforms
# 'G': np.complex256 is not tested : not available on all platforms
actual = dtypes.maybe_promote(np.dtype(kind))
assert actual[0] == expected[0]
assert str(actual[1]) == expected[1]
def test_nat_types_membership() -> None:
assert np.datetime64("NaT").dtype in dtypes.NAT_TYPES
assert np.timedelta64("NaT").dtype in dtypes.NAT_TYPES
assert np.float64 not in dtypes.NAT_TYPES
@pytest.mark.parametrize(
["dtype", "kinds", "xp", "expected"],
(
(np.dtype("int32"), "integral", np, True),
(np.dtype("float16"), "real floating", np, True),
(np.dtype("complex128"), "complex floating", np, True),
(np.dtype("U"), "numeric", np, False),
pytest.param(
array_api_strict.int32,
"integral",
array_api_strict,
True,
marks=requires_array_api_strict,
id="array_api-int",
),
pytest.param(
array_api_strict.float64,
"real floating",
array_api_strict,
True,
marks=requires_array_api_strict,
id="array_api-float",
),
pytest.param(
array_api_strict.bool,
"numeric",
array_api_strict,
False,
marks=requires_array_api_strict,
id="array_api-bool",
),
),
)
def test_isdtype(dtype, kinds, xp, expected) -> None:
actual = dtypes.isdtype(dtype, kinds, xp=xp)
assert actual == expected
@pytest.mark.parametrize(
["dtype", "kinds", "xp", "error", "pattern"],
(
(np.dtype("int32"), "foo", np, (TypeError, ValueError), "kind"),
(np.dtype("int32"), np.signedinteger, np, TypeError, "kind"),
(np.dtype("float16"), 1, np, TypeError, "kind"),
),
)
def test_isdtype_error(dtype, kinds, xp, error, pattern):
with pytest.raises(error, match=pattern):
dtypes.isdtype(dtype, kinds, xp=xp)
|