File: test_duck_array_wrapping.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (518 lines) | stat: -rw-r--r-- 17,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import numpy as np
import pandas as pd
import pytest

import xarray as xr

# Don't run cupy in CI because it requires a GPU
NAMESPACE_ARRAYS = {
    "cupy": {
        "attrs": {
            "array": "ndarray",
            "constructor": "asarray",
        },
        "xfails": {"quantile": "no nanquantile"},
    },
    "dask.array": {
        "attrs": {
            "array": "Array",
            "constructor": "from_array",
        },
        "xfails": {
            "argsort": "no argsort",
            "conjugate": "conj but no conjugate",
            "searchsorted": "dask.array.searchsorted but no Array.searchsorted",
        },
    },
    "jax.numpy": {
        "attrs": {
            "array": "ndarray",
            "constructor": "asarray",
        },
        "xfails": {
            "rolling_construct": "no sliding_window_view",
            "rolling_reduce": "no sliding_window_view",
            "cumulative_construct": "no sliding_window_view",
            "cumulative_reduce": "no sliding_window_view",
        },
    },
    "pint": {
        "attrs": {
            "array": "Quantity",
            "constructor": "Quantity",
        },
        "xfails": {
            "all": "returns a bool",
            "any": "returns a bool",
            "argmax": "returns an int",
            "argmin": "returns an int",
            "argsort": "returns an int",
            "count": "returns an int",
            "dot": "no tensordot",
            "full_like": "should work, see: https://github.com/hgrecco/pint/pull/1669",
            "idxmax": "returns the coordinate",
            "idxmin": "returns the coordinate",
            "isin": "returns a bool",
            "isnull": "returns a bool",
            "notnull": "returns a bool",
            "rolling_reduce": "no dispatch for numbagg/bottleneck",
            "cumulative_reduce": "no dispatch for numbagg/bottleneck",
            "searchsorted": "returns an int",
            "weighted": "no tensordot",
        },
    },
    "sparse": {
        "attrs": {
            "array": "COO",
            "constructor": "COO",
        },
        "xfails": {
            "cov": "dense output",
            "corr": "no nanstd",
            "cross": "no cross",
            "count": "dense output",
            "dot": "fails on some platforms/versions",
            "isin": "no isin",
            "rolling_construct": "no sliding_window_view",
            "rolling_reduce": "no sliding_window_view",
            "cumulative_construct": "no sliding_window_view",
            "cumulative_reduce": "no sliding_window_view",
            "coarsen_construct": "pad constant_values must be fill_value",
            "coarsen_reduce": "pad constant_values must be fill_value",
            "weighted": "fill_value error",
            "coarsen": "pad constant_values must be fill_value",
            "quantile": "no non skipping version",
            "differentiate": "no gradient",
            "argmax": "no nan skipping version",
            "argmin": "no nan skipping version",
            "idxmax": "no nan skipping version",
            "idxmin": "no nan skipping version",
            "median": "no nan skipping version",
            "std": "no nan skipping version",
            "var": "no nan skipping version",
            "cumsum": "no cumsum",
            "cumprod": "no cumprod",
            "argsort": "no argsort",
            "conjugate": "no conjugate",
            "searchsorted": "no searchsorted",
            "shift": "pad constant_values must be fill_value",
            "pad": "pad constant_values must be fill_value",
        },
    },
}

try:
    import jax

    # enable double-precision
    jax.config.update("jax_enable_x64", True)
except ImportError:
    pass


class _BaseTest:
    def setup_for_test(self, request, namespace):
        self.namespace = namespace
        self.xp = pytest.importorskip(namespace)
        self.Array = getattr(self.xp, NAMESPACE_ARRAYS[namespace]["attrs"]["array"])
        self.constructor = getattr(
            self.xp, NAMESPACE_ARRAYS[namespace]["attrs"]["constructor"]
        )
        xarray_method = request.node.name.split("test_")[1].split("[")[0]
        if xarray_method in NAMESPACE_ARRAYS[namespace]["xfails"]:
            reason = NAMESPACE_ARRAYS[namespace]["xfails"][xarray_method]
            pytest.xfail(f"xfail for {self.namespace}: {reason}")

    def get_test_dataarray(self):
        data = np.asarray([[1, 2, 3, np.nan, 5]])
        x = np.arange(5)
        data = self.constructor(data)
        return xr.DataArray(
            data,
            dims=["y", "x"],
            coords={"y": [1], "x": x},
            name="foo",
        )


@pytest.mark.parametrize("namespace", NAMESPACE_ARRAYS)
class TestTopLevelMethods(_BaseTest):
    @pytest.fixture(autouse=True)
    def setUp(self, request, namespace):
        self.setup_for_test(request, namespace)
        self.x1 = self.get_test_dataarray()
        self.x2 = self.get_test_dataarray().assign_coords(x=np.arange(2, 7))

    def test_apply_ufunc(self):
        func = lambda x: x + 1
        result = xr.apply_ufunc(func, self.x1, dask="parallelized")
        assert isinstance(result.data, self.Array)

    def test_align(self):
        result = xr.align(self.x1, self.x2)
        assert isinstance(result[0].data, self.Array)
        assert isinstance(result[1].data, self.Array)

    def test_broadcast(self):
        result = xr.broadcast(self.x1, self.x2)
        assert isinstance(result[0].data, self.Array)
        assert isinstance(result[1].data, self.Array)

    def test_concat(self):
        result = xr.concat([self.x1, self.x2], dim="x")
        assert isinstance(result.data, self.Array)

    def test_merge(self):
        result = xr.merge([self.x1, self.x2], compat="override", join="outer")
        assert isinstance(result.foo.data, self.Array)

    def test_where(self):
        x1, x2 = xr.align(self.x1, self.x2, join="inner")
        result = xr.where(x1 > 2, x1, x2)
        assert isinstance(result.data, self.Array)

    def test_full_like(self):
        result = xr.full_like(self.x1, 0)
        assert isinstance(result.data, self.Array)

    def test_cov(self):
        result = xr.cov(self.x1, self.x2)
        assert isinstance(result.data, self.Array)

    def test_corr(self):
        result = xr.corr(self.x1, self.x2)
        assert isinstance(result.data, self.Array)

    def test_cross(self):
        x1, x2 = xr.align(self.x1.squeeze(), self.x2.squeeze(), join="inner")
        result = xr.cross(x1, x2, dim="x")
        assert isinstance(result.data, self.Array)

    def test_dot(self):
        result = xr.dot(self.x1, self.x2)
        assert isinstance(result.data, self.Array)

    def test_map_blocks(self):
        result = xr.map_blocks(lambda x: x + 1, self.x1)
        assert isinstance(result.data, self.Array)


@pytest.mark.parametrize("namespace", NAMESPACE_ARRAYS)
class TestDataArrayMethods(_BaseTest):
    @pytest.fixture(autouse=True)
    def setUp(self, request, namespace):
        self.setup_for_test(request, namespace)
        self.x = self.get_test_dataarray()

    def test_loc(self):
        result = self.x.loc[{"x": slice(1, 3)}]
        assert isinstance(result.data, self.Array)

    def test_isel(self):
        result = self.x.isel(x=slice(1, 3))
        assert isinstance(result.data, self.Array)

    def test_sel(self):
        result = self.x.sel(x=slice(1, 3))
        assert isinstance(result.data, self.Array)

    def test_squeeze(self):
        result = self.x.squeeze("y")
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="interp uses numpy and scipy")
    def test_interp(self):
        # TODO: some cases could be made to work
        result = self.x.interp(x=2.5)
        assert isinstance(result.data, self.Array)

    def test_isnull(self):
        result = self.x.isnull()
        assert isinstance(result.data, self.Array)

    def test_notnull(self):
        result = self.x.notnull()
        assert isinstance(result.data, self.Array)

    def test_count(self):
        result = self.x.count()
        assert isinstance(result.data, self.Array)

    def test_dropna(self):
        result = self.x.dropna(dim="x")
        assert isinstance(result.data, self.Array)

    def test_fillna(self):
        result = self.x.fillna(0)
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="ffill uses bottleneck or numbagg")
    def test_ffill(self):
        result = self.x.ffill()
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="bfill uses bottleneck or numbagg")
    def test_bfill(self):
        result = self.x.bfill()
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="interpolate_na uses numpy and scipy")
    def test_interpolate_na(self):
        result = self.x.interpolate_na()
        assert isinstance(result.data, self.Array)

    def test_where(self):
        result = self.x.where(self.x > 2)
        assert isinstance(result.data, self.Array)

    def test_isin(self):
        test_elements = self.constructor(np.asarray([1]))
        result = self.x.isin(test_elements)
        assert isinstance(result.data, self.Array)

    def test_groupby(self):
        result = self.x.groupby("x").mean()
        assert isinstance(result.data, self.Array)

    def test_groupby_bins(self):
        result = self.x.groupby_bins("x", bins=[0, 2, 4, 6]).mean()
        assert isinstance(result.data, self.Array)

    def test_rolling_iter(self):
        result = self.x.rolling(x=3)
        elem = next(iter(result))[1]
        assert isinstance(elem.data, self.Array)

    def test_rolling_construct(self):
        result = self.x.rolling(x=3).construct(x="window")
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_rolling_reduce(self, skipna):
        result = self.x.rolling(x=3).mean(skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="rolling_exp uses numbagg")
    def test_rolling_exp_reduce(self):
        result = self.x.rolling_exp(x=3).mean()
        assert isinstance(result.data, self.Array)

    def test_cumulative_iter(self):
        result = self.x.cumulative("x")
        elem = next(iter(result))[1]
        assert isinstance(elem.data, self.Array)

    def test_cumulative_construct(self):
        result = self.x.cumulative("x").construct(x="window")
        assert isinstance(result.data, self.Array)

    def test_cumulative_reduce(self):
        result = self.x.cumulative("x").sum()
        assert isinstance(result.data, self.Array)

    def test_weighted(self):
        result = self.x.weighted(self.x.fillna(0)).mean()
        assert isinstance(result.data, self.Array)

    def test_coarsen_construct(self):
        result = self.x.coarsen(x=2, boundary="pad").construct(x=["a", "b"])
        assert isinstance(result.data, self.Array)

    def test_coarsen_reduce(self):
        result = self.x.coarsen(x=2, boundary="pad").mean()
        assert isinstance(result.data, self.Array)

    def test_resample(self):
        time_coord = pd.date_range("2000-01-01", periods=5)
        result = self.x.assign_coords(x=time_coord).resample(x="D").mean()
        assert isinstance(result.data, self.Array)

    def test_diff(self):
        result = self.x.diff("x")
        assert isinstance(result.data, self.Array)

    def test_dot(self):
        result = self.x.dot(self.x)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_quantile(self, skipna):
        result = self.x.quantile(0.5, skipna=skipna)
        assert isinstance(result.data, self.Array)

    def test_differentiate(self):
        # edge_order is not implemented in jax, and only supports passing None
        edge_order = None if self.namespace == "jax.numpy" else 1
        result = self.x.differentiate("x", edge_order=edge_order)
        assert isinstance(result.data, self.Array)

    def test_integrate(self):
        result = self.x.integrate("x")
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="polyfit uses numpy linalg")
    def test_polyfit(self):
        # TODO: this could work, there are just a lot of different linalg calls
        result = self.x.polyfit("x", 1)
        assert isinstance(result.polyfit_coefficients.data, self.Array)

    def test_map_blocks(self):
        result = self.x.map_blocks(lambda x: x + 1)
        assert isinstance(result.data, self.Array)

    def test_all(self):
        result = self.x.all(dim="x")
        assert isinstance(result.data, self.Array)

    def test_any(self):
        result = self.x.any(dim="x")
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_argmax(self, skipna):
        result = self.x.argmax(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_argmin(self, skipna):
        result = self.x.argmin(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_idxmax(self, skipna):
        result = self.x.idxmax(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_idxmin(self, skipna):
        result = self.x.idxmin(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_max(self, skipna):
        result = self.x.max(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_min(self, skipna):
        result = self.x.min(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_mean(self, skipna):
        result = self.x.mean(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_median(self, skipna):
        result = self.x.median(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_prod(self, skipna):
        result = self.x.prod(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_sum(self, skipna):
        result = self.x.sum(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_std(self, skipna):
        result = self.x.std(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_var(self, skipna):
        result = self.x.var(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_cumsum(self, skipna):
        result = self.x.cumsum(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    @pytest.mark.parametrize("skipna", [True, False])
    def test_cumprod(self, skipna):
        result = self.x.cumprod(dim="x", skipna=skipna)
        assert isinstance(result.data, self.Array)

    def test_argsort(self):
        result = self.x.argsort()
        assert isinstance(result.data, self.Array)

    def test_astype(self):
        result = self.x.astype(int)
        assert isinstance(result.data, self.Array)

    def test_clip(self):
        result = self.x.clip(min=2.0, max=4.0)
        assert isinstance(result.data, self.Array)

    def test_conj(self):
        result = self.x.conj()
        assert isinstance(result.data, self.Array)

    def test_conjugate(self):
        result = self.x.conjugate()
        assert isinstance(result.data, self.Array)

    def test_imag(self):
        result = self.x.imag
        assert isinstance(result.data, self.Array)

    def test_searchsorted(self):
        v = self.constructor(np.asarray([3]))
        result = self.x.squeeze().searchsorted(v)
        assert isinstance(result, self.Array)

    def test_round(self):
        result = self.x.round()
        assert isinstance(result.data, self.Array)

    def test_real(self):
        result = self.x.real
        assert isinstance(result.data, self.Array)

    def test_T(self):
        result = self.x.T
        assert isinstance(result.data, self.Array)

    @pytest.mark.xfail(reason="rank uses bottleneck")
    def test_rank(self):
        # TODO: scipy has rankdata, as does jax, so this can work
        result = self.x.rank()
        assert isinstance(result.data, self.Array)

    def test_transpose(self):
        result = self.x.transpose()
        assert isinstance(result.data, self.Array)

    def test_stack(self):
        result = self.x.stack(z=("x", "y"))
        assert isinstance(result.data, self.Array)

    def test_unstack(self):
        result = self.x.stack(z=("x", "y")).unstack("z")
        assert isinstance(result.data, self.Array)

    def test_shift(self):
        result = self.x.shift(x=1)
        assert isinstance(result.data, self.Array)

    def test_roll(self):
        result = self.x.roll(x=1)
        assert isinstance(result.data, self.Array)

    def test_pad(self):
        result = self.x.pad(x=1)
        assert isinstance(result.data, self.Array)

    def test_sortby(self):
        result = self.x.sortby("x")
        assert isinstance(result.data, self.Array)

    def test_broadcast_like(self):
        result = self.x.broadcast_like(self.x)
        assert isinstance(result.data, self.Array)